Page last updated: 2024-11-04

chlorpropamide

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

Chlorpropamide: A sulfonylurea hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. (From Martindale, The Extra Pharmacopoeia, 30th ed, p277) [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

chlorpropamide : An N-sulfonylurea that is urea in which a hydrogen attached to one of the nitrogens is substituted by 4-chlorobenzenesulfonyl group and a hydrogen attached to the other nitrogen is substituted by propyl group. Chlorpropamide is a hypoglycaemic agent used in the treatment of type 2 (non-insulin-dependent) diabetes mellitus not responding to dietary modification. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID2727
CHEMBL ID498
CHEBI ID3650
SCHEMBL ID23947
MeSH IDM0004204

Synonyms (249)

Synonym
chlorpropamidum
clorpropamida
MLS001148665
BRD-K97746869-001-05-6
nsc626720
nsc-626720
diabeneza
n-propyl-n'-(p-chlorobenzenesulfonyl)urea
1-propyl-3-(p-chlorobenzenesulfonyl)urea
diabaril
nci-c01752
diabet-pages
n-(p-chlorobenzenesulfonyl)-n'-propylurea
diabetoral
nsc44634
wln: gr dswmvm3
benzenesulfonamide, 4-chloro-n-[(propylamino)carbonyl]-
diamel ex
nsc-44634
1-(p-chlorobenzenesulfonyl)-3-propylurea
n-(4-chlorophenylsulfonyl)-n'-propylurea
insulase
diabinese
p 607
1-p-chlorophenyl-3-(propylsulfonyl)urea
dynalase
n-propyl-n'-p-chlorphenylsulfonylcarbamide
u-9818
melitase
chlorpropamide
glisema
chlorodiabina
diabenese
94-20-2
1-(p-chlorophenylsulfonyl)-3-propylurea
chlorpropamid
chloropropamide
catanil
urea, 1-[(p-chlorophenyl)sulfonyl]-3-propyl-
meldian
adiaben
chloronase
1-(4-chlorophenyl)sulfonyl-3-propyl-urea
oradian
asucrol
mellinese
diabexan
benzenesulfonamide, 4-chloro-n-((propylamino)carbonyl)-
diabechlor
millinese
urea, 1-((p-chlorophenyl)sulfonyl)-3-propyl-
prodiaben
diabenal
DIVK1C_000513
KBIO1_000513
4-chloro-n-[(propylamino)carbonyl]benzenesulfonamide
EU-0100229
SPECTRUM_000144
PRESTWICK_684
NCGC00015216-02
cas-94-20-2
NCGC00015216-01
lopac-c-1290
BSPBIO_000325
BPBIO1_000359
IDI1_000513
SPECTRUM5_000719
CMAP_000007
LOPAC0_000229
PRESTWICK2_000323
BSPBIO_002013
NCGC00021451-03
AB00051944
ccris 155
u-3818
urea, 1-((p-chloropenyl)sulfonyl)-3-propyl-
einecs 202-314-5
chlorpropamidum [inn-latin]
clorpropamida [inn-spanish]
clorpropamid
nsc 626720
1-(p-chlorobenzensulfonyl)-3-propylurea
brn 2218363
nsc 44634
clorpropamide [dcit]
hsdb 2051
1-((p-chlorophenyl)sulfonyl)-3-propylurea
clorpropamide [italian]
glucamide
4-chloro-4-((propylamino)carbonyl)benzenesulfonamide
bioglumin
DB00672
4-chloro-n-((propylamino)carbonyl)benzenesulfonamide
n-propyl-n'-p-chlorophenylsulfonylcarbamide
diabinese (tn)
D00271
chlorpropamide (jp17/usp/inn)
NCGC00021451-06
NCGC00021451-08
NCGC00021451-05
smr000058364
MLS000028395 ,
KBIOSS_000624
KBIO2_005760
KBIOGR_000808
KBIOGR_002273
KBIO3_001233
KBIO2_000624
KBIO2_002273
KBIO3_002753
KBIO2_007409
KBIOSS_002274
KBIO2_003192
KBIO2_004841
SPECTRUM2_000089
SPECTRUM3_000347
PRESTWICK0_000323
NINDS_000513
SPECTRUM4_000284
SPBIO_000018
SPBIO_002246
PRESTWICK1_000323
SPECTRUM1500185
PRESTWICK3_000323
NCGC00021451-04
NCGC00015216-03
NCGC00021451-07
NCGC00015216-07
HMS2091E08
C 1290 ,
C1220
1-(4-chlorophenylsulfonyl)-3-propylurea
NCGC00015216-12
AKOS001482739
chebi:3650 ,
CHEMBL498 ,
HMS501J15
insogen
STK857458
4-chloro-n-(propylcarbamoyl)benzenesulfonamide
HMS1569A07
HMS1920M05
1-(4-chlorophenyl)sulfonyl-3-propylurea
NCGC00015216-11
HMS2096A07
HMS3260N19
HMS3259A17
dtxsid9020322 ,
NCGC00256414-01
tox21_302789
dtxcid30322
tox21_201391
NCGC00258942-01
bdbm50344965
pharmakon1600-01500185
nsc756690
nsc-756690
tox21_110102
1-[(4-chlorobenzene)sulfonyl]-3-propylurea
HMS2233L19
CCG-38905
NCGC00015216-09
NCGC00015216-10
NCGC00015216-06
NCGC00015216-04
NCGC00015216-13
NCGC00015216-08
NCGC00015216-05
NCGC00015216-14
1-(4-chlorobenzenesulfonyl)-3-propylurea
chlorporpamide
clorpropamide
unii-wtm2c3il2x
chlorpropamide [usp:inn:ban:jan]
wtm2c3il2x ,
LP00229
gtpl6801
HMS3373D09
chlorpropamide [vandf]
chlorpropamide [mi]
chlorpropamide [jan]
chlorpropamide [usp monograph]
chlorpropamide [who-dd]
chlorpropamide [orange book]
chlorpropamide [mart.]
chlorpropamide [usp-rs]
chlorpropamide [ep impurity]
chlorpropamide [hsdb]
chlorpropamide [inn]
NC00503
SCHEMBL23947
tox21_110102_1
NCGC00015216-17
KS-5316
1-(4-chloro-benzenesulfonyl)-3-n-propyl-urea
NCGC00260914-01
CS-4917
tox21_500229
W-100205
S4166
1-chloro-4-(([(propylamino)carbonyl]amino)sulfonyl)benzene #
4-chloro-n-[(propylamino)-carbonyl]benzenesulfonamide
p-607
urea, 1-propyl-3-(p-chloro-benzenesulfonyl)-
HY-B1429
HMS3428C03
OPERA_ID_359
AB00051944_17
AB00051944_16
mfcd00079004
chlorpropamide, european pharmacopoeia (ep) reference standard
chlorpropamide, analytical standard, >=97%
SR-01000000060-2
sr-01000000060
chlorpropamide, united states pharmacopeia (usp) reference standard
HMS3652L03
chlorpropamide, pharmaceutical secondary standard; certified reference material
SR-01000000060-6
SR-01000000060-4
SBI-0050217.P004
MRF-0000539
NCGC00015216-18
HMS3713A07
SW196839-3
SY052508
nsc-813219
nsc813219
BCP09162
Q1075324
BRD-K97746869-001-15-5
A16447
SDCCGSBI-0050217.P005
NCGC00015216-23
AC8695
chlorpropamide, alpha-form
chlorpropamide, delta-form
chlorpropamide, epsilon`-form
4-chloro-n-((propylaminocarbonyl)benzenesulfonamide
chlorpropamide, epsilon-form
4-chloro-n-(propylaminocarbonyl)benzenesulfonamide
adenylosuccinicacid
EN300-7388134
Z276509110
chlorpropamide (usp-rs)
chlorpropamide (ep impurity)
u 9818
diabinase
chlorpropamide (mart.)
chlorpropamide (usp monograph)

Research Excerpts

Overview

Chlorpropamide was found to be an effective antidiuretic agent in vasopressin-sensitive diabetes insipidus.

ExcerptReferenceRelevance
"Chlorpropamide was found to be an effective treatment for the syndrome."( "Essential" hypernatremia due to ineffective osmotic and intact volume regulation of vasopressin secretion.
Beck, N; Davis, BB; DeRubertis, FR; Field, JB; Michelis, MF, 1971
)
0.97
"Chlorpropamide was found to be an effective antidiuretic agent in vasopressin-sensitive diabetes insipidus. "( Oral therapy of diabetes insipidus with chlorpropamide.
Beauchamp, CJ; Cushard, WG; Martin, ND, 1971
)
1.96

Effects

Chlorpropamide (CPM) has been reported to produce impaired water excretion. It is still unknown whether CPM gives rise to ADH release with a subsequent hyponatremia in diabetes mellitus (DM), which, in turn, causes an impairment of the central nervous system.

ExcerptReferenceRelevance
"Chlorpropamide has caused serious hypoglycemia in seniors to a greater extent than some other agents."( The effect of deinsuring chlorpropamide on the prescribing of oral antihyperglycemics for Nova Scotia Seniors' Pharmacare beneficiaries.
Allen, MJ; Frail, DM; Kephart, GC; Skedgel, C; Sketris, IS, 2004
)
1.35
"Chlorpropamide (CPM) has been reported to produce impaired water excretion due to the enhancement of renal vasopressin (ADH) action and/or due to centrally enhanced ADH release, but it is still unknown whether CPM gives rise to ADH release with a subsequent hyponatremia in diabetes mellitus (DM), which, in turn, causes an impairment of the central nervous system. "( Chlorpropamide-induced ADH release, hyponatremia and central pontine myelinolysis in diabetes mellitus.
Funyu, T; Kimura, T; Mori, T; Ohta, M; Ota, K; Sahata, T; Sato, K; Shoji, M; Sugimura, K; Yamamoto, T, 1995
)
3.18

Actions

ExcerptReferenceRelevance
"Chlorpropamide is known to enhance the water permeability response of the toad urinary bladder to vasopressin and to theophylline. "( Inhibition of vasopressin-stimulated prostaglandin E biosynthesis by chlorpropamide in the toad urinary bladder. Mechanism of enhancement of vasopressin-stimulated water flow.
Handler, JS; Keiser, HR; Zusman, RM, 1977
)
1.93

Treatment

Chlorpropamide treatment by restoring beta-cell function, reducing blood sugar levels, and improving glucose tolerance might be contributing to the correction of the reduced inflammatory response tested as paw edema and pleural exudate in n-STZ diabetic rats. Chlor Propamide had no effect on insulin binding, altering neither receptor number nor affinity.

ExcerptReferenceRelevance
"Chlorpropamide treatment improved glucose tolerance, beta-cell function (assessed by HOMA-beta), corrected paw edema, and pleural exudate volume in n-STZ. "( Chlorpropamide treatment restores the reduced carrageenan-induced paw edema and pleural exudate volume in diabetic rats.
Bersani-Amado, CA; Carvalho, MH; Cuman, RK; Fortes, ZB; Melo, GA; Nigro, D; Oliveira, MA; Passaglia, RT; Santos, RA; Sartoretto, JL, 2008
)
3.23
"Chlorpropamide treatment by restoring beta-cell function, reducing blood sugar levels, and improving glucose tolerance might be contributing to the correction of the reduced inflammatory response tested as paw edema and pleural exudate in n-STZ diabetic rats."( Chlorpropamide treatment restores the reduced carrageenan-induced paw edema and pleural exudate volume in diabetic rats.
Bersani-Amado, CA; Carvalho, MH; Cuman, RK; Fortes, ZB; Melo, GA; Nigro, D; Oliveira, MA; Passaglia, RT; Santos, RA; Sartoretto, JL, 2008
)
3.23
"Chlorpropamide treatment increased the slopes of potentiation from 0.26 +/- 0.11 to 1.47 +/- 0.70 (P less than 0.01)."( Chronic chlorpropamide therapy of noninsulin-dependent diabetes augments basal and stimulated insulin secretion by increasing islet sensitivity to glucose.
Beard, JC; Best, JD; Halter, JB; Judzewitsch, RG; Pfeifer, MA; Porte, D, 1982
)
1.42
"Chlorpropamide-treated patients showed a mean coefficient of failure of 0.34 HbA(1c)%/year (0.44%/year sd) and glibenclamide-treated patients 0.50 HbA(1c)%/year (0.50%/year sd) (P = 0.046; unpaired two-tailed t-test). "( Coefficient of failure: a methodology for examining longitudinal beta-cell function in Type 2 diabetes.
Matthews, DR; Wallace, TM, 2002
)
1.76
"Chlorpropamide treatment reduced the insulin requirement to zero, which was unrelated to a change in insulin antibody concentration."( Sulphonylureas and insulin resistance.
Lloyd, E; Vinik, AI, 1975
)
0.98
"Chlorpropamide treatment had no effect on insulin binding, altering neither receptor number nor affinity."( Effect of chlorpropamide on glucose transport in rat adipocytes in the absence of changes in insulin binding and receptor-associated tyrosine kinase activity.
Hayes, GR; Jacobs, DB; Lockwood, DH, 1987
)
1.4
"Chlorpropamide treatment significantly depressed basal phosphorylase a activity and lessened the increments in the activity of this enzyme induced by 10(-10) -10(-8) M glucagon and arginine vasopressin."( Inhibition of hormonal activation of hepatic phosphorylase by chlorpropamide: evidence for an intracellular site of drug action.
Blumenthal, SA; Moses, AM, 1985
)
1.23
"Treatment with chlorpropamide (one to three months, average dose equals 375 mg/day) was associated with a marked reduction in hyperglycemia and an increase toward normal in insulin binding to mononuclear cells."( Effects of sulfonylurea therapy on insulin binding to mononuclear leukocytes of diabetic patients.
Olefsky, JM; Reaven, GM, 1976
)
0.6
"Treatment with chlorpropamide proved effective."( [Hypernatremia and adipsia (author's transl)].
Galbe, M; Miguel, A; Ramos Polo, E; Rodríguez-Vigil, E; Roza, M, 1979
)
0.6

Toxicity

ExcerptReferenceRelevance
" Glyburide has a therapeutic effectiveness comparable to that of the first-generation sulfonylurea chlorpropamide; however, it has a lower frequency of adverse effects."( Glyburide: a second-generation sulfonylurea hypoglycemic agent. History, chemistry, metabolism, pharmacokinetics, clinical use and adverse effects.
Feldman, JM,
)
0.35
" An understanding of structure-activity relationships (SARs) of chemicals can make a significant contribution to the identification of potential toxic effects early in the drug development process and aid in avoiding such problems."( Developing structure-activity relationships for the prediction of hepatotoxicity.
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ, 2010
)
0.36
"Many adverse drug reactions are caused by the cytochrome P450 (CYP)-dependent activation of drugs into reactive metabolites."( Development of a cell viability assay to assess drug metabolite structure-toxicity relationships.
Jones, LH; Nadanaciva, S; Rana, P; Will, Y, 2016
)
0.43

Pharmacokinetics

The effect of three routinely prescribed antiretroviral (ARV) drugs on the pharmacokinetic profile of an antidiabetic drug, chlorpropamide, was investigated in 18 human subjects. The half-life of chlor Propamide was significantly shorter in the patients.

ExcerptReferenceRelevance
" The concentration profile in serum and the pharmacokinetic parameters of the parent drug were similar in both groups."( The relationship between debrisoquine oxidation phenotype and the pharmacokinetics of chlorpropamide.
Huupponen, R; Kallio, J; Pyykkö, K, 1990
)
0.5
" The half-life of chlorpropamide was significantly shorter in the patients (34."( Pharmacokinetics of chlorpropamide in epileptic patients: effects of enzyme induction and urine pH on chlorpropamide elimination.
Kärkkäinen, S; Lehtovaara, R; Neuvonen, PJ, 1987
)
0.93
" A long elimination half-life with considerable variations between subjects was recorded."( Chlorpropamide bioavailability and pharmacokinetics.
Huupponen, R; Lammintausta, R, 1981
)
1.71
" pharmacokinetic data on 670 drugs representing, to our knowledge, the largest publicly available set of human clinical pharmacokinetic data."( Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Lombardo, F; Obach, RS; Waters, NJ, 2008
)
0.35
"05), while all pharmacokinetic parameters and plasma glucose levels were not significantly altered in Treatment II."( Effect of Nigerian meals on the pharmacokinetics of chlorpropamide in type II diabetic patients.
Abdu Aguye, I; Bakare-Odunola, MT; Mustapha, A,
)
0.38
" The effect of three routinely prescribed antiretroviral (ARV) drugs on the pharmacokinetic profile of an antidiabetic drug, chlorpropamide, was investigated in 18 human subjects, who had recently been diagnosed positive for human immunodeficiency virus (HIV) infection."( The influence of lamivudine, stavudine and nevirapine on the pharmacokinetics of chlorpropamide in human subjects.
Bakare-Odunola, MT; Enemali, I; Garba, M; Mustapha, KB; Obodozie, OO,
)
0.56

Bioavailability

The relative bioavailability of two brands of chlorpropamide, Dibonis, and Diabinese has been evaluated in four healthy male volunteers. The differences in the bioavailability do not seem to be a critical factor in the previously reported large interindividual variations in chlor Propamide steady-state concentrations.

ExcerptReferenceRelevance
"The bioavailability of chlorpropamide from two new formulations (Melitase tablets) has been compared to that from a reference formulation which is currently in clinical use as a hypoglycaemic agent."( Plasma concentrations, bioavailability and dissolution of chlorpropamide.
Assinder, DF; Bradford, PM; Burton, JS; Chasseaud, LF; Taylor, T, 1977
)
0.81
" There was a small but therapeutically insignificant difference in the rate of absorption of the drug from the two tablets."( Bioavailability of chlorpropamide.
Evans, M; Glass, RC; Mitchard, M; Munday, BM; Yates, R, 1979
)
0.59
" It is concluded that magnesium hydroxide increased the early bioavailability of tolbutamide, resulting in enhanced insulin and glucose responses."( Effect of magnesium hydroxide on the absorption and efficacy of tolbutamide and chlorpropamide.
Kivistö, KT; Neuvonen, PJ, 1992
)
0.51
"The relative bioavailability of two brands of chlorpropamide, Dibonis, and Diabinese has been evaluated in four healthy male volunteers in a randomized, balanced, cross-over study."( Comparative bioavailability of two brands of chlorpropamide in Kenyans.
Kibwage, IO; McLigeyo, SI; Ndemo, FA; Ondari, CO, 1989
)
0.79
" Additionally, glyburide does not appear to interact with other medications and is well absorbed from the gastrointestinal tract."( Review of glyburide after one year on the market.
Feldman, JM, 1985
)
0.27
" Glyburide and glipizide are well absorbed after oral administration."( Glyburide and glipizide, second-generation oral sulfonylurea hypoglycemic agents.
Prendergast, BD,
)
0.13
" Food did not affect the bioavailability of any of the four drugs, but delayed Gz absorption."( Kinetics-effect relations of glipizide and other sulfonylureas.
Melander, A; Sartor, G; Scherstén, B; Wåhlin-Boll, E, 1980
)
0.26
" The bioavailability of glipizide was apparently greater than that of glibenclamide."( Comparative single-dose kinetics and effects of four sulfonylureas in healthy volunteers.
Melander, A; Sartor, G; Scherstén, B; Wåhlin-Boll, E, 1980
)
0.26
"The bioavailability of a chlorpropamide tablet formulation chlorpropamide tablet formulation was assessed by comparing it to a reference suspension of chlorpropamide."( Comparative bioavailability of chlorpropamide tablet and suspension formulations.
Batenhorst, RL; Bivins, BA; Bustrack, JA; Foster, TS,
)
0.72
" Thus, the differences in the bioavailability do not seem to be a critical factor in the previously reported large interindividual variations in chlorpropamide steady-state concentrations."( Chlorpropamide bioavailability and pharmacokinetics.
Huupponen, R; Lammintausta, R, 1981
)
1.91
"The quantitative structure-bioavailability relationship of 232 structurally diverse drugs was studied to evaluate the feasibility of constructing a predictive model for the human oral bioavailability of prospective new medicinal agents."( QSAR model for drug human oral bioavailability.
Topliss, JG; Yoshida, F, 2000
)
0.31
"Oral bioavailability (F) is a product of fraction absorbed (Fa), fraction escaping gut-wall elimination (Fg), and fraction escaping hepatic elimination (Fh)."( Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV, 2010
)
0.36
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

Ten Type 2 diabetics were examined during long-term treatment. The C-peptide release, the plasma insulin increase and the blood glucose reduction were greater when glipizide was given in divided dosage. A reverse-phase liquid chromatographic method was developed for determining chlorpropamide in tablet dosage forms.

ExcerptRelevanceReference
"A quantitative high-performance liquid chromatographic method for the determination of chlorpropamide, tolbutamide, and their respective hydrolysis products, p-chlorobenzenesulfonamide and p-toluenesulfonamide, in solid dosage forms was developed."( Stability-indicating high-performance liquid chromatographic determination of chlorpropamide, tolbutamide, and their respective sulfonamide degradates.
Butterfield, AG; Kolasinski, H; Lovering, EG; Matsui, FF; Robertson, DL, 1979
)
0.71
" The serum tolbutamide concentrations varied widely between the patients (from close to zero to 370 mumol/l (100 mug/ml)), yet the variation in dosage was only sixfold (0."( Serum tolbutamide and chlorpropamide concentrations in patients with diabetes mellitus.
Bitzén, PO; Melander, A; Sartor, G; Scherstén, B; Wåhlin, E, 1978
)
0.57
" The dosage of chlorpropamide usually was 500 mg daily or even more."( [Hyponatremia and hypoglycemia after treatment with chlorpropamide. Case histories with review of the literature on 18 cases of chlorpropamide induced hyponatremia].
Berger, W; Bründler, H, 1978
)
0.86
" The changes in weight were similar and both drugs were devoid of serious toxic effects in the dosage prescribed."( Comparative study of glibenclamide & chlorpropamide in newly diagnosed maturity onset diabetics.
Haider, Z; Obaidullah, S, 1976
)
0.53
" This combined drug therapy proved effective in all three cases: the good antidiuretic effect of chlorpropamide at high dosage is impaired by hypoglycaemia; the combination of carbamazepine allowed the dosage of chlorpropamide to be decreased without impairment of the obtained antidiuretic effect and with avoidance of hypoglycaemia and other side effects."( [Treatment of central diabetes insipidus with a combination of chlorpropamide and carbamazepine (author's transl)].
Stögmann, W, 1975
)
0.71
" The dosage was adjusted to obtain adequate control or up to the maximum recommended dosage."( Efficacy of gliclazide in comparison with other sulphonylureas in the treatment of NIDDM.
Harrower, AD, 1991
)
0.28
" The dramatic response of our patients to cyclophosphamide, which is known to inhibit cell-mediated cytotoxicity by inhibiting both the recognition and lethal hit stages, together with the rapid regrowth of the epidermis within 4 days to a week in patients who received adequate dosage of the drug, supports the preceding concepts."( Efficacy of cyclophosphamide in toxic epidermal necrolysis. Clinical and pathophysiologic aspects.
Allen, SG; Heng, MC, 1991
)
0.28
"A reverse-phase liquid chromatographic method was developed for determining chlorpropamide in tablet dosage forms."( Liquid chromatographic determination of chlorpropamide in tablet dosage forms: collaborative study.
Everett, RL,
)
0.63
" To determine an optimal glyburide dosage schedule, the effects of glyburide once (every morning) or twice daily and chlorpropamide once daily (every morning) were compared in 18 men with non-insulin-dependent diabetes mellitus in a randomized, double-blind fashion."( Once-daily use of glyburide.
Fajardo, F; Ginier, P; Levin, SR; Madan, S, 1985
)
0.48
" Dose-response analysis revealed a significant (p less than ."( Effect of tolbutamide and chlorpropamide on acetaldehyde metabolism in two inbred strains of mice.
Little, RG; Petersen, DR, 1985
)
0.57
"3 A dose-response curve for chlorpropamide (5, 10, and 20 mg/24 h) in DI rats treated with Pitressin (25 mu/24 h) indicated that the drug decreased fluid intake further, but only by a maximum of 13."( The effect of chlorpropamide on water balance in pitressin-treated Brattleboro rats.
Laycock, JF; Lee, J; Lewis, AF, 1974
)
0.91
") was used to diagnose chemical diabetes during pregnancy in 180 women, 50 of whom subsequently received chlorpropamide therapy in a daily dosage of 100 mg; the remainder had no drug therapy."( Evaluation of chlorpropamide in chemical diabetes diagnosed during pregnancy.
Bewsher, PD; Cormack, JD; Stowers, JM; Sutherland, HW, 1973
)
0.83
"The chemistry, pharmacology, pharmacokinetics, clinical efficacy, adverse effects, and dosage of glyburide and glipizide, two second-generation oral sulfonylurea hypoglycemic agents, are reviewed."( Glyburide and glipizide, second-generation oral sulfonylurea hypoglycemic agents.
Prendergast, BD,
)
0.13
" For each of the four drugs, the steady state concentrations showed very large between-patient variations, not attributable to dosage or weight differences but to individual differences in drug kinetics and to insufficient compliance."( Kinetics-effect relations of glipizide and other sulfonylureas.
Melander, A; Sartor, G; Scherstén, B; Wåhlin-Boll, E, 1980
)
0.26
" A wide interindividual variation in chlorpropamide levels was observed and thus, the prediction of drug concentration was difficult from the dosage alone, despite a statistically significant correlation between the dose per body weight and the serum drug level."( Chlorpropamide and glibenclamide serum concentrations in hospitalized patients.
Huupponen, R; Saarimaa, H; Viikari, J, 1982
)
1.98
" Following lunch, the C-peptide release, the plasma insulin increase and the blood glucose reduction were greater when glipizide was given in divided dosage than when once-daily glipizide or chlorpropamide was employed."( Effects of sulfonylurea on the secretion and disposition of insulin and C-peptide.
Almér, LO; Johansson, E; Melander, A; Wåhlin-Boll, E, 1981
)
0.45
" In 2 elderly women who had diabetes mellitus, the SIADH developed two months after the chlorpropamide dosage had been increased to 500 mg daily."( Chlorpropamide-induced Syndrome of Inappropriate Antidiuretic Hormone Secretion.
Abramov, AL; Firemann, Z; Tanay, A; Yust, I, 1981
)
1.93
"A 62-year-old man who had been taking 250 mg of chlorpropamide daily for several years received rifampin concomitantly and had a subsequent increased dosing requirement of chlorpropamide."( Interaction of rifampin and chlorpropamide.
Morris, T; Self, TH, 1980
)
0.81
" Therapy was initiated with human insulin 20 IU/day and 500 mg cholopropamide, titrating insulin dosage in order to achieve euglycemia."( [Response of insulin and C-peptide to a mixed meal in non-insulin-dependent diabetics treated with insulin and chlorpropamide].
Alemán-Hoey, DD; García-Rubi, E,
)
0.34
" Therefore, for the improvement of the compliance of the patients, the development of a transdermal dosage form of sulfonylureas was attempted in this study."( [Trial for transdermal administration of sulfonylureas].
Furuya, K; Iwata, M; Machida, Y; Onishi, H; Shirotake, S; Takahashi, Y, 1997
)
0.3
"To compare prescribing, dosage and blood glucose levels in patients with type 2 diabetes in two communities with differences in anti-hyperglycaemic drug utilization."( Differences in pharmacotherapy and in glucose control of type 2 diabetes patients in two neighbouring towns: a longitudinal population-based study.
Gottsäter, M; Lindberg, G; Lindwall, K; Melander, A; Olsson, J; Tisell, A, 2001
)
0.31
" However, there were pronounced between-town differences in dosage and glucose control."( Differences in pharmacotherapy and in glucose control of type 2 diabetes patients in two neighbouring towns: a longitudinal population-based study.
Gottsäter, M; Lindberg, G; Lindwall, K; Melander, A; Olsson, J; Tisell, A, 2001
)
0.31
" Changes in liver function tests were seen in 17 out of 56 patients treated for more than three months and were correlated with the dosage of the drug and the duration of treatment."( Clinical experience with chlorpro-pamide.
KINSELL, LW; WALKER, G, 1961
)
0.24
" For the alloxan-induced diabetic rats, the same dosage pattern was administered to three groups of rats for seven days (Groups V, VI and VII) while group VIII which received normal saline served as control."( Hypoglycaemic and hypolipidaemic effect of aqueous leaf extract of Murraya koenigii in normal and alloxan-diabetic rats.
Atiku, MK; Khelpai, DG; Lawal, HA; Wannang, NN,
)
0.13
" We proposed a systematic classification scheme using FDA-approved drug labeling to assess the DILI potential of drugs, which yielded a benchmark dataset with 287 drugs representing a wide range of therapeutic categories and daily dosage amounts."( FDA-approved drug labeling for the study of drug-induced liver injury.
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V, 2011
)
0.37
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (2)

RoleDescription
hypoglycemic agentA drug which lowers the blood glucose level.
insulin secretagogueA secretagogue that causes the secretion of insulin.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
N-sulfonylureaA urea in which one of the hydrogens attached to a nitrogen of the urea group is replaced by a sulfonyl group. The N-sulfonylurea moiety is a key group in various herbicides, as well as in a number of antidiabetic drugs used in the management of type 2 diabetis mellitus.
monochlorobenzenesAny member of the class of chlorobenzenes containing a mono- or poly-substituted benzene ring in which only one substituent is chlorine.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (50)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Ferritin light chainEquus caballus (horse)Potency0.25125.623417.292931.6228AID485281
thioredoxin reductaseRattus norvegicus (Norway rat)Potency0.89130.100020.879379.4328AID588453
NFKB1 protein, partialHomo sapiens (human)Potency0.44670.02827.055915.8489AID895; AID928
GLI family zinc finger 3Homo sapiens (human)Potency1.88340.000714.592883.7951AID1259369
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency7.94330.011212.4002100.0000AID1030
thyroid stimulating hormone receptorHomo sapiens (human)Potency2.37360.001318.074339.8107AID926; AID938
retinoid X nuclear receptor alphaHomo sapiens (human)Potency27.87900.000817.505159.3239AID1159527; AID1159531
estrogen nuclear receptor alphaHomo sapiens (human)Potency27.71390.000229.305416,493.5996AID743069; AID743075
GVesicular stomatitis virusPotency6.91780.01238.964839.8107AID1645842
arylsulfatase AHomo sapiens (human)Potency26.85451.069113.955137.9330AID720538
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency11.22020.035520.977089.1251AID504332
aryl hydrocarbon receptorHomo sapiens (human)Potency19.33120.000723.06741,258.9301AID743122
cytochrome P450 2C19 precursorHomo sapiens (human)Potency39.81070.00255.840031.6228AID899
chromobox protein homolog 1Homo sapiens (human)Potency50.00210.006026.168889.1251AID488953; AID540317
thyroid hormone receptor beta isoform aHomo sapiens (human)Potency1.99530.010039.53711,122.0200AID1479
transcriptional regulator ERG isoform 3Homo sapiens (human)Potency25.11890.794321.275750.1187AID624246
flap endonuclease 1Homo sapiens (human)Potency1.12200.133725.412989.1251AID588795
survival motor neuron protein isoform dHomo sapiens (human)Potency1.58490.125912.234435.4813AID1458
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency15.84890.031610.279239.8107AID884; AID885
lamin isoform A-delta10Homo sapiens (human)Potency0.00500.891312.067628.1838AID1487
neuropeptide S receptor isoform AHomo sapiens (human)Potency5.01190.015812.3113615.5000AID1461
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Interferon betaHomo sapiens (human)Potency10.08620.00339.158239.8107AID1347407; AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency6.91780.01238.964839.8107AID1645842
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
GABA theta subunitRattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency6.91780.01238.964839.8107AID1645842
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency15.84891.000012.224831.6228AID885
cytochrome P450 2C9, partialHomo sapiens (human)Potency6.91780.01238.964839.8107AID1645842
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency10.69100.060110.745337.9330AID485368
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
ATP-binding cassette sub-family C member 3Homo sapiens (human)IC50 (µMol)133.00000.63154.45319.3000AID1473740
Multidrug resistance-associated protein 4Homo sapiens (human)IC50 (µMol)133.00000.20005.677410.0000AID1473741
Solute carrier family 22 member 6Rattus norvegicus (Norway rat)Ki39.50001.60005.744010.0000AID598879; AID679148
Bile salt export pumpRattus norvegicus (Norway rat)IC50 (µMol)1,000.00000.40002.75008.6000AID1209456
Bile salt export pumpHomo sapiens (human)IC50 (µMol)567.00000.11007.190310.0000AID1209455; AID1443980; AID1449628; AID1473738
Lanosterol 14-alpha demethylaseHomo sapiens (human)IC50 (µMol)200.00000.05001.43904.0000AID322753
Canalicular multispecific organic anion transporter 1Homo sapiens (human)IC50 (µMol)133.00002.41006.343310.0000AID1473739
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (97)

Processvia Protein(s)Taxonomy
xenobiotic metabolic processATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
bile acid and bile salt transportATP-binding cassette sub-family C member 3Homo sapiens (human)
glucuronoside transportATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transportATP-binding cassette sub-family C member 3Homo sapiens (human)
transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
leukotriene transportATP-binding cassette sub-family C member 3Homo sapiens (human)
monoatomic anion transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
transport across blood-brain barrierATP-binding cassette sub-family C member 3Homo sapiens (human)
prostaglandin secretionMultidrug resistance-associated protein 4Homo sapiens (human)
cilium assemblyMultidrug resistance-associated protein 4Homo sapiens (human)
platelet degranulationMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic metabolic processMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
bile acid and bile salt transportMultidrug resistance-associated protein 4Homo sapiens (human)
prostaglandin transportMultidrug resistance-associated protein 4Homo sapiens (human)
urate transportMultidrug resistance-associated protein 4Homo sapiens (human)
glutathione transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
cAMP transportMultidrug resistance-associated protein 4Homo sapiens (human)
leukotriene transportMultidrug resistance-associated protein 4Homo sapiens (human)
monoatomic anion transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
export across plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
transport across blood-brain barrierMultidrug resistance-associated protein 4Homo sapiens (human)
guanine nucleotide transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
fatty acid metabolic processBile salt export pumpHomo sapiens (human)
bile acid biosynthetic processBile salt export pumpHomo sapiens (human)
xenobiotic metabolic processBile salt export pumpHomo sapiens (human)
xenobiotic transmembrane transportBile salt export pumpHomo sapiens (human)
response to oxidative stressBile salt export pumpHomo sapiens (human)
bile acid metabolic processBile salt export pumpHomo sapiens (human)
response to organic cyclic compoundBile salt export pumpHomo sapiens (human)
bile acid and bile salt transportBile salt export pumpHomo sapiens (human)
canalicular bile acid transportBile salt export pumpHomo sapiens (human)
protein ubiquitinationBile salt export pumpHomo sapiens (human)
regulation of fatty acid beta-oxidationBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transportBile salt export pumpHomo sapiens (human)
bile acid signaling pathwayBile salt export pumpHomo sapiens (human)
cholesterol homeostasisBile salt export pumpHomo sapiens (human)
response to estrogenBile salt export pumpHomo sapiens (human)
response to ethanolBile salt export pumpHomo sapiens (human)
xenobiotic export from cellBile salt export pumpHomo sapiens (human)
lipid homeostasisBile salt export pumpHomo sapiens (human)
phospholipid homeostasisBile salt export pumpHomo sapiens (human)
positive regulation of bile acid secretionBile salt export pumpHomo sapiens (human)
regulation of bile acid metabolic processBile salt export pumpHomo sapiens (human)
transmembrane transportBile salt export pumpHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cellular response to starvationAlbuminHomo sapiens (human)
negative regulation of mitochondrial depolarizationAlbuminHomo sapiens (human)
cellular response to calcium ion starvationAlbuminHomo sapiens (human)
cellular oxidant detoxificationAlbuminHomo sapiens (human)
transportAlbuminHomo sapiens (human)
steroid biosynthetic processLanosterol 14-alpha demethylaseHomo sapiens (human)
cholesterol biosynthetic processLanosterol 14-alpha demethylaseHomo sapiens (human)
sterol metabolic processLanosterol 14-alpha demethylaseHomo sapiens (human)
negative regulation of protein catabolic processLanosterol 14-alpha demethylaseHomo sapiens (human)
negative regulation of protein secretionLanosterol 14-alpha demethylaseHomo sapiens (human)
negative regulation of amyloid-beta clearanceLanosterol 14-alpha demethylaseHomo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
xenobiotic metabolic processCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
negative regulation of gene expressionCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bile acid and bile salt transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bilirubin transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
heme catabolic processCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic export from cellCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transepithelial transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
leukotriene transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
monoatomic anion transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transport across blood-brain barrierCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transport across blood-brain barrierCanalicular multispecific organic anion transporter 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (55)

Processvia Protein(s)Taxonomy
ATP bindingATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type xenobiotic transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
glucuronoside transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type bile acid transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATP hydrolysis activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATPase-coupled transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
icosanoid transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
guanine nucleotide transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
protein bindingMultidrug resistance-associated protein 4Homo sapiens (human)
ATP bindingMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type xenobiotic transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
prostaglandin transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
urate transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
purine nucleotide transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type bile acid transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
efflux transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
15-hydroxyprostaglandin dehydrogenase (NAD+) activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATP hydrolysis activityMultidrug resistance-associated protein 4Homo sapiens (human)
glutathione transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATPase-coupled transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
protein bindingBile salt export pumpHomo sapiens (human)
ATP bindingBile salt export pumpHomo sapiens (human)
ABC-type xenobiotic transporter activityBile salt export pumpHomo sapiens (human)
bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
canalicular bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transporter activityBile salt export pumpHomo sapiens (human)
ABC-type bile acid transporter activityBile salt export pumpHomo sapiens (human)
ATP hydrolysis activityBile salt export pumpHomo sapiens (human)
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
oxygen bindingAlbuminHomo sapiens (human)
DNA bindingAlbuminHomo sapiens (human)
fatty acid bindingAlbuminHomo sapiens (human)
copper ion bindingAlbuminHomo sapiens (human)
protein bindingAlbuminHomo sapiens (human)
toxic substance bindingAlbuminHomo sapiens (human)
antioxidant activityAlbuminHomo sapiens (human)
pyridoxal phosphate bindingAlbuminHomo sapiens (human)
identical protein bindingAlbuminHomo sapiens (human)
protein-folding chaperone bindingAlbuminHomo sapiens (human)
exogenous protein bindingAlbuminHomo sapiens (human)
enterobactin bindingAlbuminHomo sapiens (human)
iron ion bindingLanosterol 14-alpha demethylaseHomo sapiens (human)
sterol 14-demethylase activityLanosterol 14-alpha demethylaseHomo sapiens (human)
heme bindingLanosterol 14-alpha demethylaseHomo sapiens (human)
oxidoreductase activityLanosterol 14-alpha demethylaseHomo sapiens (human)
oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygenLanosterol 14-alpha demethylaseHomo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATP bindingCanalicular multispecific organic anion transporter 1Homo sapiens (human)
organic anion transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type xenobiotic transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bilirubin transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATP hydrolysis activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATPase-coupled transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (37)

Processvia Protein(s)Taxonomy
plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
basal plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
basolateral plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
nucleolusMultidrug resistance-associated protein 4Homo sapiens (human)
Golgi apparatusMultidrug resistance-associated protein 4Homo sapiens (human)
plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
membraneMultidrug resistance-associated protein 4Homo sapiens (human)
basolateral plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
apical plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
platelet dense granule membraneMultidrug resistance-associated protein 4Homo sapiens (human)
external side of apical plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
basolateral plasma membraneBile salt export pumpHomo sapiens (human)
Golgi membraneBile salt export pumpHomo sapiens (human)
endosomeBile salt export pumpHomo sapiens (human)
plasma membraneBile salt export pumpHomo sapiens (human)
cell surfaceBile salt export pumpHomo sapiens (human)
apical plasma membraneBile salt export pumpHomo sapiens (human)
intercellular canaliculusBile salt export pumpHomo sapiens (human)
intracellular canaliculusBile salt export pumpHomo sapiens (human)
recycling endosomeBile salt export pumpHomo sapiens (human)
recycling endosome membraneBile salt export pumpHomo sapiens (human)
extracellular exosomeBile salt export pumpHomo sapiens (human)
membraneBile salt export pumpHomo sapiens (human)
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular regionAlbuminHomo sapiens (human)
extracellular spaceAlbuminHomo sapiens (human)
nucleusAlbuminHomo sapiens (human)
endoplasmic reticulumAlbuminHomo sapiens (human)
endoplasmic reticulum lumenAlbuminHomo sapiens (human)
Golgi apparatusAlbuminHomo sapiens (human)
platelet alpha granule lumenAlbuminHomo sapiens (human)
extracellular exosomeAlbuminHomo sapiens (human)
blood microparticleAlbuminHomo sapiens (human)
protein-containing complexAlbuminHomo sapiens (human)
cytoplasmAlbuminHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
endoplasmic reticulum membraneLanosterol 14-alpha demethylaseHomo sapiens (human)
membraneLanosterol 14-alpha demethylaseHomo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
cell surfaceCanalicular multispecific organic anion transporter 1Homo sapiens (human)
apical plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
intercellular canaliculusCanalicular multispecific organic anion transporter 1Homo sapiens (human)
apical plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (218)

Assay IDTitleYearJournalArticle
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588220Literature-mined public compounds from Kruhlak et al phospholipidosis modelling dataset2008Toxicology mechanisms and methods, , Volume: 18, Issue:2-3
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
AID1220560Fraction unbound in human occipital cortex at 1 uM after 6 hrs by equilibrium dialysis method2011Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 39, Issue:7
Species independence in brain tissue binding using brain homogenates.
AID1079936Choleostatic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is < 2 (see ACUTE). Value is number of references indexed. [column 'CHOLE' in source]
AID1079948Times to onset, minimal and maximal, observed in the indexed observations. [column 'DELAI' in source]
AID496817Antimicrobial activity against Trypanosoma cruzi2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID1079935Cytolytic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is > 5 (see ACUTE). Value is number of references indexed. [column 'CYTOL' in source]
AID50718Inhibition of class II aldehyde dehydrogenase in vitro in intact rat liver mitochondria assayed by nmol of acetaldehyde oxidized/min.mg of protein1989Journal of medicinal chemistry, Jun, Volume: 32, Issue:6
N1-alkyl-substituted derivatives of chlorpropamide as inhibitors of aldehyde dehydrogenase.
AID1079937Severe hepatitis, defined as possibly life-threatening liver failure or through clinical observations. Value is number of references indexed. [column 'MASS' in source]
AID1220554Fraction unbound in Wistar Han rat brain homogenates at 1 uM after 6 hrs by equilibrium dialysis method2011Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 39, Issue:7
Species independence in brain tissue binding using brain homogenates.
AID1220557Fraction unbound in Hartley guinea pig brain homogenates at 1 uM after 6 hrs by equilibrium dialysis method2011Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 39, Issue:7
Species independence in brain tissue binding using brain homogenates.
AID496820Antimicrobial activity against Trypanosoma brucei2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID1636357Drug activation in human Hep3B cells assessed as human CYP3A4-mediated drug metabolism-induced cytotoxicity measured as decrease in cell viability at 300 uM pre-incubated with BSO for 18 hrs followed by incubation with compound for 3 hrs in presence of NA2016Bioorganic & medicinal chemistry letters, 08-15, Volume: 26, Issue:16
Development of a cell viability assay to assess drug metabolite structure-toxicity relationships.
AID1209457Unbound Cmax in human plasma2012Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 40, Issue:1
In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans.
AID588210Human drug-induced liver injury (DILI) modelling dataset from Ekins et al2010Drug metabolism and disposition: the biological fate of chemicals, Dec, Volume: 38, Issue:12
A predictive ligand-based Bayesian model for human drug-induced liver injury.
AID604741Displacement of radiolabeled warfarin from fatty acid-free human serum albumin site 1 in phosphate buffer at pH 7.4 at 12 uM by fluorescence spectroscopy2010Bioorganic & medicinal chemistry, Nov-01, Volume: 18, Issue:21
A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions.
AID540213Half life in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID679685TP_TRANSPORTER: inhibition of Taurocholate uptake (Taurocholate: 5 uM, Chlorpropamide: 100 uM) in NTCP-expressing HeLa cells1999The Journal of pharmacology and experimental therapeutics, Dec, Volume: 291, Issue:3
Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity.
AID1474167Liver toxicity in human assessed as induction of drug-induced liver injury by measuring verified drug-induced liver injury concern status2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID496831Antimicrobial activity against Cryptosporidium parvum2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID496829Antimicrobial activity against Leishmania infantum2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID170890Percentage change in blood glucose concentration in male Wistar rats after 2 hr post treatment at a dose of 100 mg/Kg po; Hypoglycemic1982Journal of medicinal chemistry, Jun, Volume: 25, Issue:6
Synthesis of N-[[(substituted-phenyl)carbonyl]amino]-1,2,3,6-tetrahydropyridines with analgesic and hyperglycemic activity.
AID496821Antimicrobial activity against Leishmania2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID1079933Acute liver toxicity defined via clinical observations and clear clinical-chemistry results: serum ALT or AST activity > 6 N or serum alkaline phosphatases activity > 1.7 N. This category includes cytolytic, choleostatic and mixed liver toxicity. Value is
AID50720Inhibition of class II aldehyde dehydrogenase in vitro in osmotically disrupted rat liver mitochondria assayed by nmol of acetaldehyde oxidized/min.mg of protein1989Journal of medicinal chemistry, Jun, Volume: 32, Issue:6
N1-alkyl-substituted derivatives of chlorpropamide as inhibitors of aldehyde dehydrogenase.
AID28681Partition coefficient (logD6.5)2000Journal of medicinal chemistry, Jun-29, Volume: 43, Issue:13
QSAR model for drug human oral bioavailability.
AID496830Antimicrobial activity against Leishmania major2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID604743Displacement of radiolabeled warfarin from fatty acid containing human serum albumin site 1 in phosphate buffer at pH 7.4 at 12 uM by fluorescence spectroscopy2010Bioorganic & medicinal chemistry, Nov-01, Volume: 18, Issue:21
A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions.
AID1079944Benign tumor, proven histopathologically. Value is number of references indexed. [column 'T.BEN' in source]
AID515780Intrinsic solubility of the compound in water2010Bioorganic & medicinal chemistry, Oct-01, Volume: 18, Issue:19
QSAR-based solubility model for drug-like compounds.
AID496824Antimicrobial activity against Toxoplasma gondii2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID678717Inhibition of human CYP3A4 assessed as ratio of IC50 in absence of NADPH to IC50 for presence of NADPH using 7-benzyloxyquinoline as substrate after 30 mins2012Chemical research in toxicology, Oct-15, Volume: 25, Issue:10
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
AID1079938Chronic liver disease either proven histopathologically, or through a chonic elevation of serum amino-transferase activity after 6 months. Value is number of references indexed. [column 'CHRON' in source]
AID193670Hyperglycemic activity and change in blood glucose concentration was reported 4 hours after administration (100 mg/Kg perorally)1987Journal of medicinal chemistry, Jan, Volume: 30, Issue:1
Synthesis of N-(3,6-dihydro-1(2H)-pyridinyl)benzamides with hyperglycemic-hypoglycemic activity.
AID588213Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in non-rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID1079931Moderate liver toxicity, defined via clinical-chemistry results: ALT or AST serum activity 6 times the normal upper limit (N) or alkaline phosphatase serum activity of 1.7 N. Value is number of references indexed. [column 'BIOL' in source]
AID679148TP_TRANSPORTER: inhibition of PAH uptake in Xenopus laevis oocytes2000European journal of pharmacology, Jun-16, Volume: 398, Issue:2
Inhibitory effect of anti-diabetic agents on rat organic anion transporter rOAT1.
AID444050Fraction unbound in human plasma2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID425652Total body clearance in human2009Journal of medicinal chemistry, Aug-13, Volume: 52, Issue:15
Physicochemical determinants of human renal clearance.
AID1079940Granulomatous liver disease, proven histopathologically. Value is number of references indexed. [column 'GRAN' in source]
AID540211Fraction unbound in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID1220558Fraction unbound in Beagle dog brain homogenates at 1 uM after 6 hrs by equilibrium dialysis method2011Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 39, Issue:7
Species independence in brain tissue binding using brain homogenates.
AID625277FDA Liver Toxicity Knowledge Base Benchmark Dataset (LTKB-BD) drugs of less concern for DILI2011Drug discovery today, Aug, Volume: 16, Issue:15-16
FDA-approved drug labeling for the study of drug-induced liver injury.
AID50721Percent inhibition of class II aldehyde dehydrogenase in vitro in intact rat liver mitochondria1989Journal of medicinal chemistry, Jun, Volume: 32, Issue:6
N1-alkyl-substituted derivatives of chlorpropamide as inhibitors of aldehyde dehydrogenase.
AID1449628Inhibition of human BSEP expressed in baculovirus transfected fall armyworm Sf21 cell membranes vesicles assessed as reduction in ATP-dependent [3H]-taurocholate transport into vesicles incubated for 5 mins by Topcount based rapid filtration method2012Drug metabolism and disposition: the biological fate of chemicals, Dec, Volume: 40, Issue:12
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
AID588212Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID604744Displacement of radiolabeled dansylsarcosine from fatty acid containing human serum albumin site 2 in phosphate buffer at pH 7.4 at 12 uM by fluorescence spectroscopy2010Bioorganic & medicinal chemistry, Nov-01, Volume: 18, Issue:21
A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions.
AID1443980Inhibition of human BSEP expressed in fall armyworm sf9 cell plasma membrane vesicles assessed as reduction in vesicle-associated [3H]-taurocholate transport preincubated for 10 mins prior to ATP addition measured after 15 mins in presence of [3H]-tauroch2010Toxicological sciences : an official journal of the Society of Toxicology, Dec, Volume: 118, Issue:2
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
AID1129361Unbound fraction in HEK293 cell homogenate at 0.1 uM by equilibrium dialysis based UPLC-MS/MS analysis2014Journal of medicinal chemistry, Apr-10, Volume: 57, Issue:7
A high-throughput cell-based method to predict the unbound drug fraction in the brain.
AID678714Inhibition of human CYP2C19 assessed as ratio of IC50 in absence of NADPH to IC50 for presence of NADPH using 3-butyryl-7-methoxycoumarin as substrate after 30 mins2012Chemical research in toxicology, Oct-15, Volume: 25, Issue:10
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
AID29811Oral bioavailability in human2000Journal of medicinal chemistry, Jun-29, Volume: 43, Issue:13
QSAR model for drug human oral bioavailability.
AID496832Antimicrobial activity against Trypanosoma brucei rhodesiense2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID625284Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatic failure2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID409960Inhibition of bovine brain MAOB2008Journal of medicinal chemistry, Nov-13, Volume: 51, Issue:21
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
AID193668Hyperglycemic activity and change in blood glucose concentration was reported 2 hours after administration of 100 mg/Kg perorally1987Journal of medicinal chemistry, Jan, Volume: 30, Issue:1
Synthesis of N-(3,6-dihydro-1(2H)-pyridinyl)benzamides with hyperglycemic-hypoglycemic activity.
AID625287Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatomegaly2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID23464Partition coefficient (logP)1987Journal of medicinal chemistry, Jan, Volume: 30, Issue:1
Synthesis of N-(3,6-dihydro-1(2H)-pyridinyl)benzamides with hyperglycemic-hypoglycemic activity.
AID1220559Fraction unbound in cynomolgus monkey brain homogenates at 1 uM after 6 hrs by equilibrium dialysis method2011Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 39, Issue:7
Species independence in brain tissue binding using brain homogenates.
AID496818Antimicrobial activity against Trypanosoma brucei brucei2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID1145533Hypoglycemic activity in 18 to 24 hrs-fasted rat assessed as reduction in blood glucose at 5 mg/kg, ip measured after 1 hr relative to saline-treated control1976Journal of medicinal chemistry, May, Volume: 19, Issue:5
Sulfamylurea hypoglycemic agents. 6. High-potency derivatives.
AID444056Fraction escaping gut-wall elimination in human2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID1220555Fraction unbound in Sprague-Dawley rat brain homogenates at 1 uM after 6 hrs by equilibrium dialysis method2011Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 39, Issue:7
Species independence in brain tissue binding using brain homogenates.
AID1473741Inhibition of human MRP4 overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID678721Metabolic stability in human liver microsomes assessed as GSH adduct formation at 100 uM after 90 mins by HPLC-MS analysis2012Chemical research in toxicology, Oct-15, Volume: 25, Issue:10
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
AID384956Dissociation constant, pKa of the compound2008Journal of medicinal chemistry, May-22, Volume: 51, Issue:10
Molecular characteristics for solid-state limited solubility.
AID384955Intrinsic aqueous solubility at pH 10 by shake-flask method2008Journal of medicinal chemistry, May-22, Volume: 51, Issue:10
Molecular characteristics for solid-state limited solubility.
AID1079949Proposed mechanism(s) of liver damage. [column 'MEC' in source]
AID425653Renal clearance in human2009Journal of medicinal chemistry, Aug-13, Volume: 52, Issue:15
Physicochemical determinants of human renal clearance.
AID540209Volume of distribution at steady state in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID243230Binding affinity towards human serum albumin2005Journal of medicinal chemistry, Apr-07, Volume: 48, Issue:7
Predicting human serum albumin affinity of interleukin-8 (CXCL8) inhibitors by 3D-QSPR approach.
AID588209Literature-mined public compounds from Greene et al multi-species hepatotoxicity modelling dataset2010Chemical research in toxicology, Jul-19, Volume: 23, Issue:7
Developing structure-activity relationships for the prediction of hepatotoxicity.
AID678722Covalent binding affinity to human liver microsomes assessed per mg of protein at 10 uM after 60 mins presence of NADPH2012Chemical research in toxicology, Oct-15, Volume: 25, Issue:10
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
AID170893Percentage change in blood glucose concentration in male Wistar rats after 4 hr post treatment at a dose of 100 mg/Kg po; Hypoglycemic1982Journal of medicinal chemistry, Jun, Volume: 25, Issue:6
Synthesis of N-[[(substituted-phenyl)carbonyl]amino]-1,2,3,6-tetrahydropyridines with analgesic and hyperglycemic activity.
AID540210Clearance in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID625279Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for bilirubinemia2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID34033In vitro inhibition of yeast alcohol dehydrogenase is evaluated by the formation of NADH1989Journal of medicinal chemistry, Jun, Volume: 32, Issue:6
N1-alkyl-substituted derivatives of chlorpropamide as inhibitors of aldehyde dehydrogenase.
AID50722Percent inhibition of class II aldehyde dehydrogenase in vitro in osmotically disrupted rat liver mitochondria1989Journal of medicinal chemistry, Jun, Volume: 32, Issue:6
N1-alkyl-substituted derivatives of chlorpropamide as inhibitors of aldehyde dehydrogenase.
AID322753Inhibition of human CYP51 expressed in Topp 3 cells by lanosterol demethylase assay2007Drug metabolism and disposition: the biological fate of chemicals, Mar, Volume: 35, Issue:3
Three-dimensional quantitative structure-activity relationship analysis of human CYP51 inhibitors.
AID1220556Fraction unbound in CD-1 mouse brain homogenates at 1 uM after 6 hrs by equilibrium dialysis method2011Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 39, Issue:7
Species independence in brain tissue binding using brain homogenates.
AID680719TP_TRANSPORTER: increase in Rhodamine 123 intracellular accumulation (R123: 150 uM, Chlorpromazine: 2.5 ug/mL) in MDR1-expressing NIH3T3 cells2000The Journal of pharmacology and experimental therapeutics, Dec, Volume: 295, Issue:3
Influence of antipsychotic, antiemetic, and Ca(2+) channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation.
AID496828Antimicrobial activity against Leishmania donovani2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID444053Renal clearance in human2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID1209455Inhibition of human BSEP expressed in plasma membrane vesicles of Sf21 cells assessed as inhibition of ATP-dependent [3H]taurocholate uptake2012Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 40, Issue:1
In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans.
AID1079945Animal toxicity known. [column 'TOXIC' in source]
AID409958Inhibition of bovine brain MAOA2008Journal of medicinal chemistry, Nov-13, Volume: 51, Issue:21
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
AID496826Antimicrobial activity against Entamoeba histolytica2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID625280Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cholecystitis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID496825Antimicrobial activity against Leishmania mexicana2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID29359Ionization constant (pKa)2000Journal of medicinal chemistry, Jun-29, Volume: 43, Issue:13
QSAR model for drug human oral bioavailability.
AID444057Fraction escaping hepatic elimination in human2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID497005Antimicrobial activity against Pneumocystis carinii2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID1079946Presence of at least one case with successful reintroduction. [column 'REINT' in source]
AID521220Inhibition of neurosphere proliferation of mouse neural precursor cells by MTT assay2007Nature chemical biology, May, Volume: 3, Issue:5
Chemical genetics reveals a complex functional ground state of neural stem cells.
AID496819Antimicrobial activity against Plasmodium falciparum2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID679862TP_TRANSPORTER: inhibition of Gly-Sar uptake (Gly-Sar: 20 uM, Chlorpropamide: 1000uM) in PEPT1-expressing LLC-PK1 cells2000European journal of pharmacology, Mar-24, Volume: 392, Issue:1-2
Inhibitory effect of novel oral hypoglycemic agent nateglinide (AY4166) on peptide transporters PEPT1 and PEPT2.
AID444051Total clearance in human2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID625286Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatitis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID496827Antimicrobial activity against Leishmania amazonensis2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID625281Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cholelithiasis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625285Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatic necrosis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID444058Volume of distribution at steady state in human2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID625288Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for jaundice2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID604742Displacement of radiolabeled dansylsarcosine from fatty acid-free human serum albumin site 2 in phosphate buffer at pH 7.4 at 12 uM by fluorescence spectroscopy2010Bioorganic & medicinal chemistry, Nov-01, Volume: 18, Issue:21
A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions.
AID598879Inhibition of rat Oat1 expressed in Xenopus oocytes2011Bioorganic & medicinal chemistry, Jun-01, Volume: 19, Issue:11
Elucidation of common pharmacophores from analysis of targeted metabolites transported by the multispecific drug transporter-Organic anion transporter1 (Oat1).
AID678715Inhibition of human CYP2D6 assessed as ratio of IC50 in absence of NADPH to IC50 for presence of NADPH using 4-methylaminoethyl-7-methoxycoumarin as substrate after 30 mins2012Chemical research in toxicology, Oct-15, Volume: 25, Issue:10
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
AID239780Percentage plasma protein binding towards human serum albumin2005Journal of medicinal chemistry, Apr-07, Volume: 48, Issue:7
Predicting human serum albumin affinity of interleukin-8 (CXCL8) inhibitors by 3D-QSPR approach.
AID1145535Hypoglycemic activity in 18 to 24 hrs-fasted rat assessed as reduction in blood glucose at 50 mg/kg, ip measured after 1 hr relative to saline-treated control1976Journal of medicinal chemistry, May, Volume: 19, Issue:5
Sulfamylurea hypoglycemic agents. 6. High-potency derivatives.
AID1473739Inhibition of human MRP2 overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID1636440Drug activation in human Hep3B cells assessed as human CYP2D6-mediated drug metabolism-induced cytotoxicity measured as decrease in cell viability at 300 uM pre-incubated with BSO for 18 hrs followed by incubation with compound for 3 hrs in presence of NA2016Bioorganic & medicinal chemistry letters, 08-15, Volume: 26, Issue:16
Development of a cell viability assay to assess drug metabolite structure-toxicity relationships.
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1079943Malignant tumor, proven histopathologically. Value is number of references indexed. [column 'T.MAL' in source]
AID170435Compound was evaluated for blood acetaldehyde levels elicited by compound after ethanol administration to rat1994Journal of medicinal chemistry, Nov-25, Volume: 37, Issue:24
Latent alkyl isocyanates as inhibitors of aldehyde dehydrogenase in vivo.
AID1474166Liver toxicity in human assessed as induction of drug-induced liver injury by measuring severity class index2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID588211Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in humans2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID1079941Liver damage due to vascular disease: peliosis hepatitis, hepatic veno-occlusive disease, Budd-Chiari syndrome. Value is number of references indexed. [column 'VASC' in source]
AID34037In vitro inhibition of yeast alcohol dehydrogenase1989Journal of medicinal chemistry, Jun, Volume: 32, Issue:6
N1-alkyl-substituted derivatives of chlorpropamide as inhibitors of aldehyde dehydrogenase.
AID678879TP_TRANSPORTER: inhibition of Gly-Sar uptake (Gly-Sar: 20 uM, Chlorpropamide: 1000uM) in PEPT2-expressing LLC-PK1 cells2000European journal of pharmacology, Mar-24, Volume: 392, Issue:1-2
Inhibitory effect of novel oral hypoglycemic agent nateglinide (AY4166) on peptide transporters PEPT1 and PEPT2.
AID1209456Inhibition of Sprague-Dawley rat Bsep expressed in plasma membrane vesicles of Sf21 cells assessed as inhibition of ATP-dependent [3H]taurocholate uptake2012Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 40, Issue:1
In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans.
AID1145537Hypoglycemic activity in 18 to 24 hrs-fasted rat assessed as reduction in blood glucose at 15 mg/kg, ip measured after 1 hr relative to saline-treated control1976Journal of medicinal chemistry, May, Volume: 19, Issue:5
Sulfamylurea hypoglycemic agents. 6. High-potency derivatives.
AID1079939Cirrhosis, proven histopathologically. Value is number of references indexed. [column 'CIRRH' in source]
AID444052Hepatic clearance in human2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID27167Delta logD (logD6.5 - logD7.4)2000Journal of medicinal chemistry, Jun-29, Volume: 43, Issue:13
QSAR model for drug human oral bioavailability.
AID91481Binding constant against human serum albumin (HSA)2001Journal of medicinal chemistry, Dec-06, Volume: 44, Issue:25
Cheminformatic models to predict binding affinities to human serum albumin.
AID625290Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver fatty2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID678716Inhibition of human CYP3A4 assessed as ratio of IC50 in absence of NADPH to IC50 for presence of NADPH using diethoxyfluorescein as substrate after 30 mins2012Chemical research in toxicology, Oct-15, Volume: 25, Issue:10
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
AID1079942Steatosis, proven histopathologically. Value is number of references indexed. [column 'STEAT' in source]
AID678712Inhibition of human CYP1A2 assessed as ratio of IC50 in absence of NADPH to IC50 for presence of NADPH using ethoxyresorufin as substrate after 30 mins2012Chemical research in toxicology, Oct-15, Volume: 25, Issue:10
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
AID1636356Drug activation in human Hep3B cells assessed as human CYP2C9-mediated drug metabolism-induced cytotoxicity measured as decrease in cell viability at 300 uM pre-incubated with BSO for 18 hrs followed by incubation with compound for 3 hrs in presence of NA2016Bioorganic & medicinal chemistry letters, 08-15, Volume: 26, Issue:16
Development of a cell viability assay to assess drug metabolite structure-toxicity relationships.
AID1079932Highest frequency of moderate liver toxicity observed during clinical trials, expressed as a percentage. [column '% BIOL' in source]
AID1079934Highest frequency of acute liver toxicity observed during clinical trials, expressed as a percentage. [column '% AIGUE' in source]
AID625289Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver disease2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID444054Oral bioavailability in human2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID1079947Comments (NB not yet translated). [column 'COMMENTAIRES' in source]
AID540212Mean residence time in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID625291Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver function tests abnormal2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625282Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cirrhosis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID444055Fraction absorbed in human2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
AID1473740Inhibition of human MRP3 overexpressed in Sf9 insect cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 10 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID496823Antimicrobial activity against Trichomonas vaginalis2010Bioorganic & medicinal chemistry, Mar-15, Volume: 18, Issue:6
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
AID678713Inhibition of human CYP2C9 assessed as ratio of IC50 in absence of NADPH to IC50 for presence of NADPH using 7-methoxy-4-trifluoromethylcoumarin-3-acetic acid as substrate after 30 mins2012Chemical research in toxicology, Oct-15, Volume: 25, Issue:10
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
AID1473738Inhibition of human BSEP overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-taurocholate in presence of ATP measured after 15 to 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID625283Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for elevated liver function tests2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625292Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) combined score2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1347058CD47-SIRPalpha protein protein interaction - HTRF assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347049Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot screen2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347405qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS LOPAC collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347045Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot counterscreen GloSensor control cell line2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347059CD47-SIRPalpha protein protein interaction - Alpha assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347050Natriuretic polypeptide receptor (hNpr2) antagonism - Pilot subtype selectivity assay2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID504836Inducers of the Endoplasmic Reticulum Stress Response (ERSR) in human glioma: Validation2002The Journal of biological chemistry, Apr-19, Volume: 277, Issue:16
Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells.
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID588349qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay
AID1347057CD47-SIRPalpha protein protein interaction - LANCE assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID588378qHTS for Inhibitors of ATXN expression: Validation
AID1347410qHTS for inhibitors of adenylyl cyclases using a fission yeast platform: a pilot screen against the NCATS LOPAC library2019Cellular signalling, 08, Volume: 60A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID1159550Human Phosphogluconate dehydrogenase (6PGD) Inhibitor Screening2015Nature cell biology, Nov, Volume: 17, Issue:11
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID1224864HCS microscopy assay (F508del-CFTR)2016PloS one, , Volume: 11, Issue:10
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (1,697)

TimeframeStudies, This Drug (%)All Drugs %
pre-19901474 (86.86)18.7374
1990's73 (4.30)18.2507
2000's63 (3.71)29.6817
2010's74 (4.36)24.3611
2020's13 (0.77)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 59.31

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be very strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index59.31 (24.57)
Research Supply Index7.60 (2.92)
Research Growth Index4.28 (4.65)
Search Engine Demand Index103.40 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (59.31)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials101 (5.35%)5.53%
Reviews90 (4.77%)6.00%
Case Studies175 (9.27%)4.05%
Observational0 (0.00%)0.25%
Other1,522 (80.61%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Clinical Trials (5)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Incretin-based Drugs and the Risk of Heart Failure: A Multi-center Network Observational Study [NCT02456428]1,499,650 participants (Actual)Observational2014-03-31Completed
A Multi-center, Double-blind, Placebo-controlled, Randomized Study to Compare the Effect of a Subcutaneous Canakinumab Administration to Placebo in Patients With Impaired Glucose Tolerance or Patients With Type 2 Diabetes Treated With Differing Baseline D [NCT01068860]Phase 2246 participants (Actual)Interventional2010-02-28Completed
The Use of Incretin-based Drugs and the Risk of Acute Pancreatitis in Patients With Type 2 Diabetes [NCT02476760]1,417,914 participants (Actual)Observational2014-03-31Completed
[NCT00004363]0 participants Observational1995-12-31Completed
The Use of Incretin-based Drugs and the Risk of Pancreatic Cancer in Patients With Type 2 Diabetes [NCT02475499]886,172 participants (Actual)Observational2014-03-31Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Trial Outcomes

TrialOutcome
NCT01068860 (16) [back to overview]Mean Change in Absolute Glucose Level at 2 Hours, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in C-peptide Area Under the Curve (AUC), 0-4 Hours, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Fasting Plasma Glucose, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Fasting Plasma Insulin, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Fructosamine, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Insulin Area Under the Curve (AUC) 0-4 Hours, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Meal Stimulated Insulin Secretion Rate (ISR) Relative to Glucose 0-2 Hours, From Baseline to 4 Weeks.
NCT01068860 (16) [back to overview]Mean Change in Meal Stimulated Insulin Secretion Rate (ISR) Relative to Glucose 0-4 Hours, From Baseline to 4 Weeks.
NCT01068860 (16) [back to overview]Mean Change in Meal Stimulated Insulin Secretion Rate (ISR) Relative to Glucose 2-4 Hours, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Peak Plasma C-peptide Level, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Peak Plasma Glucose, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Peak Plasma Insulin, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Post-prandial Glucose Area Under the Curve (AUC)0-4 Hours, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Quantitative Insulin Sensitivity Check Index (QUICKI) Score, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Mean Change in Fasting Glucose Disposition Index(GDI)1 and Index 2, From Baseline to 4 Weeks
NCT01068860 (16) [back to overview]Number of Participants Reporting Death, Serious Adverse Events (SAEs) and Adverse Events (AEs) Above 5% Frequency, From Baseline to 4 Weeks

Mean Change in Absolute Glucose Level at 2 Hours, From Baseline to 4 Weeks

"Change in glucose level measured after 2 hours of fasting. Blood sample was drawn at 0 minutes and at 240 minutes.~A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population." (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionmmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-0.53
Placebo + Metformin0.13
Canakinumab 150 mg + Metformin + Sulfonylurea-0.60
Placebo + Metformin + Sulfonylurea0.18
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-1.08
Placebo + Met + Sulfonyl + Thiaz-0.56
Canakinumab 150 mg + Insulin-0.56
Placebo + Insulin-0.16
Canakinumab 150 mg in Participants With IGT-0.26
Placebo in Participants With IGT-0.25

[back to top]

Mean Change in C-peptide Area Under the Curve (AUC), 0-4 Hours, From Baseline to 4 Weeks

Blood samples were drawn after a test meal at 0, 15, 30, 45, 60, 90, 120, 180 and 240 min. Insulin levels over 4 hrs were shown as Area Under the Curve,(AUC). AUC was calculated as: x=1 AUC ΣAx n Where Ax = AUC for the 240 min.interval, and X = 1 for the 1st interval. A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab vs placebo within each T2DM group. The mixed model didn't include the IGT group. (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionnmol*hour/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-0.18
Placebo + Metformin-0.18
Canakinumab 150 mg + Metformin + Sulfonylurea-0.21
Placebo + Metformin + Sulfonylurea0.12
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-0.61
Placebo + Met + Sulfonyl + Thiaz0.02
Canakinumab 150 mg + Insulin0.16
Placebo + Insulin-0.29
Canakinumab 150 mg in Participants With IGT-0.43
Placebo in Participants With IGT-0.40

[back to top]

Mean Change in Fasting Plasma Glucose, From Baseline to 4 Weeks

"Change in Fasting Glucose Level measured from plasma taken at Baseline and after 4 weeks of treatment.~A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population" (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionmmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-0.32
Placebo + Metformin0.33
Canakinumab 150 mg + Metformin + Sulfonylurea-0.20
Placebo + Metformin + Sulfonylurea-0.23
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-0.33
Placebo + Met + Sulfonyl + Thiaz-0.36
Canakinumab 150 mg + Insulin-0.26
Placebo + Insulin-0.80
Canakinumab 150 mg in Participants With IGT-0.06
Placebo in Participants With IGT0.10

[back to top]

Mean Change in Fasting Plasma Insulin, From Baseline to 4 Weeks

"Change in Fasting Insulin level taken from plasma, measured at Baseline and after 4 weeks of treatment.~A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population" (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionpmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-3.58
Placebo + Metformin10.73
Canakinumab 150 mg + Metformin + Sulfonylurea-16.07
Placebo + Metformin + Sulfonylurea-9.40
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-0.77
Placebo + Met + Sulfonyl + Thiaz2.31
Canakinumab 150 mg + Insulin21.27
Placebo + Insulin25.67
Canakinumab 150 mg in Participants With IGT-.021
Placebo in Participants With IGT-3.43

[back to top]

Mean Change in Fructosamine, From Baseline to 4 Weeks

"Change in Fructosamine Level taken from plasma, measured at Baseline and after 4 weeks of treatment.~A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population" (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionmmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-5.30
Placebo + Metformin-0.75
Canakinumab 150 mg + Metformin + Sulfonylurea-3.45
Placebo + Metformin + Sulfonylurea-7.50
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-1.81
Placebo + Met + Sulfonyl + Thiaz-3.07
Canakinumab 150 mg + Insulin-3.00
Placebo + Insulin-19.73
Canakinumab 150 mg in Participants With IGT-6.36
Placebo in Participants With IGT1.39

[back to top]

Mean Change in Insulin Area Under the Curve (AUC) 0-4 Hours, From Baseline to 4 Weeks

Blood samples were drawn after a test meal at 0, 15, 30, 45, 60, 90, 120, 180 and 240 min. Insulin levels over 4 hrs were shown as Area Under the Curve,(AUC). AUC was calculated as: x=1 AUC ΣAx n Where Ax = AUC for the 240 min.interval, and X = 1 for the 1st interval. A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab vs placebo within each T2DM group. The mixed model didn't include the IGT group. (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionpmol*hour/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-9.37
Placebo + Metformin1.21
Canakinumab 150 mg + Metformin + Sulfonylurea-73.25
Placebo + Metformin + Sulfonylurea-38.32
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-36.96
Placebo + Met + Sulfonyl + Thiaz8.46
Canakinumab 150 mg + Insulin163.87
Placebo + Insulin139.24
Canakinumab 150 mg in Participants With IGT44.27
Placebo in Participants With IGT-106.68

[back to top]

Mean Change in Meal Stimulated Insulin Secretion Rate (ISR) Relative to Glucose 0-2 Hours, From Baseline to 4 Weeks.

Change in Insulin Secretion Rate stimulated by Liquid mixed-meal challenge. Blood samples were taken prior to and after meal for glucose and insulin at sample times: -20, -10, -1 and 10, 20, 30, 60, 90, 120, 180, and 240 minutes relative to the start of the meal.A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include patients from the IGT population (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionpmol/min/m^2/mmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-0.06
Placebo + Metformin-0.23
Canakinumab 150 mg + Metformin + Sulfonylurea0.04
Placebo + Metformin + Sulfonylurea0.45
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-0.79
Placebo + Met + Sulfonyl + Thiaz1.16
Canakinumab 150 mg + Insulin1.23
Placebo + Insulin-0.49
Canakinumab 150 mg in Participants With IGT-1.50
Placebo in Participants With IGT-1.93

[back to top]

Mean Change in Meal Stimulated Insulin Secretion Rate (ISR) Relative to Glucose 0-4 Hours, From Baseline to 4 Weeks.

Change in Insulin Secretion Rate stimulated by Liquid mixed-meal challenge. Blood samples were taken prior to and after meal for glucose, insulin and C-peptide at sample times: -20, -10, -1 and 10, 20, 30, 60, 90, 120, 180, and 240 minutes relative to the start of the meal. A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population. (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionpmol/min/m^2/mmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin0.44
Placebo + Metformin-0.99
Canakinumab 150 mg + Metformin + Sulfonylurea-0.32
Placebo + Metformin + Sulfonylurea1.22
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-0.63
Placebo + Met + Sulfonyl + Thiaz1.24
Canakinumab 150 mg + Insulin0.53
Placebo + Insulin-0.49
Canakinumab 150 mg in Participants With IGT-1.38
Placebo in Participants With IGT-1.35

[back to top]

Mean Change in Meal Stimulated Insulin Secretion Rate (ISR) Relative to Glucose 2-4 Hours, From Baseline to 4 Weeks

Change in Insulin Secretion Rate stimulated by Liquid mixed-meal challenge Blood samples were taken prior to and after meal for glucose and insulin at sample times: -20, -10, -1 and 10, 20, 30, 60, 90, 120, 180, and 240 minutes relative to the start of the meal. A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionpmol/min/m^2/mmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin0.21
Placebo + Metformin-2.15
Canakinumab 150 mg + Metformin + Sulfonylurea-2.98
Placebo + Metformin + Sulfonylurea2.02
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia0.15
Placebo + Met + Sulfonyl + Thiaz1.19
Canakinumab 150 mg + Insulin-0.43
Placebo + Insulin-0.51
Canakinumab 150 mg in Participants With IGT-0.71
Placebo in Participants With IGT-1.00

[back to top]

Mean Change in Peak Plasma C-peptide Level, From Baseline to 4 Weeks

"Change in mean peak plasma C-peptide level measured from Baseline to 4 weeks of treatment.~A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population." (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionnmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-0.04
Placebo + Metformin-0.04
Canakinumab 150 mg + Metformin + Sulfonylurea-0.10
Placebo + Metformin + Sulfonylurea0.16
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-0.21
Placebo + Met + Sulfonyl + Thiaz0.05
Canakinumab 150 mg + Insulin0.07
Placebo + Insulin-0.14
Canakinumab 150 mg in Participants With IGT-0.18
Placebo in Participants With IGT-0.18

[back to top]

Mean Change in Peak Plasma Glucose, From Baseline to 4 Weeks

"Change in peak plasma glucose level as measured from Baseline to 4 weeks of treatment.~A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population." (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionmmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-0.41
Placebo + Metformin0.21
Canakinumab 150 mg + Metformin + Sulfonylurea-0.43
Placebo + Metformin + Sulfonylurea-0.03
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-0.82
Placebo + Met + Sulfonyl + Thiaz-0.77
Canakinumab 150 mg + Insulin-0.15
Placebo + Insulin-0.60
Canakinumab 150 mg in Participants With IGT-0.34
Placebo in Participants With IGT-0.04

[back to top]

Mean Change in Peak Plasma Insulin, From Baseline to 4 Weeks

Change in mean peak plasma Insulin level as measured from Baseline to 4 weeks of treatment. A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population. (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionpmol/L (Least Squares Mean)
Canakinumab 150 mg + Metformin8.09
Placebo + Metformin44.56
Canakinumab 150 mg + Metformin + Sulfonylurea-55.07
Placebo + Metformin + Sulfonylurea11.33
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia5.13
Placebo + Met + Sulfonyl + Thiaz-5.15
Canakinumab 150 mg + Insulin91.74
Placebo + Insulin36.87
Canakinumab 150 mg in Participants With IGT56.21
Placebo in Participants With IGT-26.43

[back to top]

Mean Change in Post-prandial Glucose Area Under the Curve (AUC)0-4 Hours, From Baseline to 4 Weeks

Blood samples were drawn after a test meal at 0, 15, 30, 45, 60, 90, 120, 180 and 240 min. Insulin levels over 4 hrs were shown as Area Under the Curve,(AUC). AUC was calculated as: x=1 AUC ΣAx n Where Ax = AUC for the 240 min.interval, and X = 1 for the 1st interval. A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab vs placebo within each T2DM group. The mixed model didn't include the IGT group. (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionmmol*hr/L (Least Squares Mean)
Canakinumab 150 mg + Metformin-0.59
Placebo + Metformin0.46
Canakinumab 150 mg + Metformin + Sulfonylurea-1.37
Placebo + Metformin + Sulfonylurea-1.24
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia-3.58
Placebo + Met + Sulfonyl + Thiaz-2.88
Canakinumab 150 mg + Insulin-1.49
Placebo + Insulin-1.76
Canakinumab 150 mg in Participants With IGT-0.71
Placebo in Participants With IGT-0.10

[back to top]

Mean Change in Quantitative Insulin Sensitivity Check Index (QUICKI) Score, From Baseline to 4 Weeks

"The Quantitative Insulin Sensitivity Check Index (QUICKI) score, measures insulin sensitivity which is the inverse of insulin resistance. The score is calculated by the equation: 1 /(log(fasting insulin µU/mL) + log(fasting glucose mg/dL)). In normal subjects the mean score ± SE is 0.366 ± 0.029.~A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT population." (NCT01068860)
Timeframe: Baseline, 4 weeks

Interventionnumber (Least Squares Mean)
Canakinumab 150 mg + Metformin0.004
Placebo + Metformin-0.000
Canakinumab 150 mg + Metformin + Sulfonylurea0.002
Placebo + Metformin + Sulfonylurea0.009
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia0.018
Placebo + Met + Sulfonyl + Thiaz-0.001
Canakinumab 150 mg + Insulin-0.003
Placebo + Insulin0.005
Canakinumab 150 mg in Participants With IGT-0.001
Placebo in Participants With IGT0.001

[back to top]

Mean Change in Fasting Glucose Disposition Index(GDI)1 and Index 2, From Baseline to 4 Weeks

GDI 1 is the product of insulin sensitivity index (Si)during the 1st phase of insulin secretion and β-cell function as measured by the acute insulin response (AIR).GDI 2 is the product of (Si)during the 2nd phase of insulin secretion and β-cell function as measured by the acute insulin response (AIR). A mixed model with treatment fitted as fixed effect, and population and the interaction of population and treatment fitted as random effects were used for the comparison of Canakinumab versus placebo within each T2DM population. The mixed model did not include participants from the IGT group. (NCT01068860)
Timeframe: Baseline, 4 weeks

,,,,,,,,,
Interventionnumber (Least Squares Mean)
Index 1Index 2 (n= 32,15, 29,15, 30,13, 25, 15, 20, 26)
Canakinumab 150 mg + Insulin0.25-0.21
Canakinumab 150 mg + Metformin0.060.14
Canakinumab 150 mg + Metformin + Sulfonylurea0.06-0.94
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia0.240.62
Canakinumab 150 mg in Participants With IGT-0.51-0.16
Placebo + Insulin-0.27-0.25
Placebo + Met + Sulfonyl + Thiaz0.330.49
Placebo + Metformin-0.29-0.81
Placebo + Metformin + Sulfonylurea0.370.81
Placebo in Participants With IGT-0.64-0.31

[back to top]

Number of Participants Reporting Death, Serious Adverse Events (SAEs) and Adverse Events (AEs) Above 5% Frequency, From Baseline to 4 Weeks

An adverse event is any unwanted event, whether related to study drug or not occuring during the study period. A Serious Adverse Event (SAE) is an event resulting in death, requiring or prolonging hospitalization, a congenital anomaly or other important medical event. AEs and SAEs were recorded at each visit. (NCT01068860)
Timeframe: Baseline, 4 weeks

,,,,,,,,,
Interventionparticipants (Number)
Number of Participants with Serious Adverse EventsNumber of Participants with Non-serious AEs > 5%
Canakinumab 150 mg + Insulin06
Canakinumab 150 mg + Metformin00
Canakinumab 150 mg + Metformin + Sulfonylurea06
Canakinumab 150 mg Canakinumab 150 mg + Met + Sulfonyl + Thia04
Canakinumab 150 mg in Participants With IGT00
Placebo + Insulin03
Placebo + Met + Sulfonyl + Thiaz03
Placebo + Metformin04
Placebo + Metformin + Sulfonylurea03
Placebo in Participants With IGT00

[back to top]