Page last updated: 2024-11-04

pf 5901

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

alpha-pentyl-3-(2-quinolinylmethoxy)benzenemethanol: structure given in first source; platelet activating factor antagonist [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID5059
CHEMBL ID8747
CHEBI ID91821
SCHEMBL ID678489
MeSH IDM0142366

Synonyms (84)

Synonym
CBIOL_001910
1-[3-(quinolin-2-ylmethoxy)phenyl]hexan-1-ol
MLS001076522
BRD-A68281735-001-03-8
rev 5901
smr000058509
MLS000069771 ,
EU-0101042
BIO1_000685
BIO2_000242
BIO1_001174
BIO1_000196
BIO2_000722
IDI1_033992
LOPAC0_001042
BSPBIO_001522
NCGC00094327-02
NCGC00094327-04
KBIOGR_000242
KBIO3_000483
KBIO2_000242
KBIO2_005378
KBIO2_002810
KBIO3_000484
KBIOSS_000242
SMP2_000318
rg 5901
rev-5901
NCGC00094327-03
pf 5901
benzenemethanol, alpha-pentyl-3-(2-quinolinylmethoxy)-
alpha-pentyl-3-(2-quinolinylmethoxy)benzenemethanol
NCGC00094327-01
rg-5901
pf-5901
101910-24-1
NCGC00015895-02
R 5523
HMS1989M04
alpha-pentyl-3-[2-quinolinylmethoxy]benzyl alcohol
NCGC00015895-06
AKOS000278774
CHEMBL8747 ,
rev-901
BML2-G04
HMS1791M04
HMS1361M04
1-[3-(quinolin-2-ylmethoxy)-phenyl]-hexan-1-ol (rg 5901)
1-[3-(quinolin-2-ylmethoxy)-phenyl]-hexan-1-ol(rev-5901)
bdbm50012434
(rev-5,901)1-[3-(quinolin-2-ylmethoxy)-phenyl]-hexan-1-ol
1-[3-(quinolin-2-ylmethoxy)-phenyl]-hexan-1-ol
CCG-205119
wnw5ryd8mg ,
unii-wnw5ryd8mg
HMS2232F10
NCGC00015895-05
NCGC00015895-03
NCGC00015895-04
LP01042
HMS3370K08
SCHEMBL678489
JRLOEMCOOZSCQP-UHFFFAOYSA-N
2-[3-(1-hydroxyhexyl)phenoxymethyl]quinoline
[3-(1-hydroxyhexyl)phenoxymethyl]quinoline
HMS3402M04
HMS3649O15
OPERA_ID_512
benzenemethanol,a-pentyl-3-(2-quinolinylmethoxy)-
CHEBI:91821
SR-01000076105-2
sr-01000076105
1-(3-(quinolin-2-ylmethoxy)phenyl)hexan-1-ol
AKOS032953945
Q27163617
1-[3-(2-quinolinylmethoxy)phenyl]-1-hexanol
SR-01000076105-7
.alpha.-pentyl-3-(2-quinolinylmethoxy)benzenemethanol
benzenemethanol, .alpha.-pentyl-3-(2-quinolinylmethoxy)-
SDCCGSBI-0051012.P002
1-{3-[(quinolin-2-yl)methoxy]phenyl}hexan-1-ol
DTXSID00906795
CS-0046323
HY-112532

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
" The bioavailability (AUC) of 1 in dogs from capsules containing 2 was also higher than that from PEG 1000-based capsules."( Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions.
Augustine, MA; Bernstein, DF; Mufson, D; Serajuddin, AT; Sheen, PC, 1988
)
0.27

Dosage Studied

ExcerptRelevanceReference
"The physicochemical properties of the base and hydrochloride salt of the poorly water-soluble drug alpha-pentyl-3-(2-quinolinylmethoxy) benzenemethanol (REV 5901) were investigated in order to select an appropriate form of the drug for dosage form development."( Preformulation study of a poorly water-soluble drug, alpha-pentyl-3-(2-quinolinylmethoxy)benzenemethanol: selection of the base for dosage form design.
Augustine, MA; Bernstein, DF; Mufson, D; Serajuddin, AT; Sheen, PC, 1986
)
0.27
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
quinolinesA class of aromatic heterocyclic compounds each of which contains a benzene ring ortho fused to carbons 2 and 3 of a pyridine ring.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (60)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, ATP-DEPENDENT DNA HELICASE Q1Homo sapiens (human)Potency28.18380.125919.1169125.8920AID2549
Chain A, Ferritin light chainEquus caballus (horse)Potency14.43265.623417.292931.6228AID2323; AID485281
Chain A, CruzipainTrypanosoma cruziPotency39.81070.002014.677939.8107AID1476
LuciferasePhotinus pyralis (common eastern firefly)Potency37.93300.007215.758889.3584AID588342
endonuclease IVEscherichia coliPotency12.58930.707912.432431.6228AID1708
glp-1 receptor, partialHomo sapiens (human)Potency28.18380.01846.806014.1254AID624417
phosphopantetheinyl transferaseBacillus subtilisPotency50.11870.141337.9142100.0000AID1490
ATAD5 protein, partialHomo sapiens (human)Potency32.64270.004110.890331.5287AID504466
USP1 protein, partialHomo sapiens (human)Potency50.11870.031637.5844354.8130AID504865
TDP1 proteinHomo sapiens (human)Potency22.72650.000811.382244.6684AID686978; AID686979
Smad3Homo sapiens (human)Potency11.22020.00527.809829.0929AID588855
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency39.81070.011212.4002100.0000AID1030
PINK1Homo sapiens (human)Potency50.11872.818418.895944.6684AID624263
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency22.74070.28189.721235.4813AID2326
67.9K proteinVaccinia virusPotency12.58930.00018.4406100.0000AID720580
ParkinHomo sapiens (human)Potency50.11870.819914.830644.6684AID624263
arylsulfatase AHomo sapiens (human)Potency0.75691.069113.955137.9330AID720538
IDH1Homo sapiens (human)Potency14.58100.005210.865235.4813AID686970
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency50.11870.035520.977089.1251AID504332
Bloom syndrome protein isoform 1Homo sapiens (human)Potency35.48130.540617.639296.1227AID2364; AID2528
peripheral myelin protein 22 isoform 1Homo sapiens (human)Potency75.686323.934123.934123.9341AID1967
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency14.12540.001815.663839.8107AID894
atrial natriuretic peptide receptor 1 precursorHomo sapiens (human)Potency10.69100.134610.395030.1313AID1347049
chromobox protein homolog 1Homo sapiens (human)Potency59.62170.006026.168889.1251AID488953; AID540317
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency25.92900.00419.984825.9290AID504444
parathyroid hormone/parathyroid hormone-related peptide receptor precursorHomo sapiens (human)Potency100.00003.548119.542744.6684AID743266
potassium voltage-gated channel subfamily H member 2 isoform dHomo sapiens (human)Potency35.48130.01789.637444.6684AID588834
mitogen-activated protein kinase 1Homo sapiens (human)Potency39.81070.039816.784239.8107AID1454
atrial natriuretic peptide receptor 2 precursorHomo sapiens (human)Potency14.68920.00669.809418.4927AID1347050
serine/threonine-protein kinase mTOR isoform 1Homo sapiens (human)Potency26.12160.00378.618923.2809AID2660
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency0.01350.425612.059128.1838AID504536
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency15.84890.050127.073689.1251AID588590
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency35.48130.00798.23321,122.0200AID2551
gemininHomo sapiens (human)Potency20.27440.004611.374133.4983AID463097; AID624296
DNA polymerase kappa isoform 1Homo sapiens (human)Potency18.88760.031622.3146100.0000AID588579
survival motor neuron protein isoform dHomo sapiens (human)Potency22.38720.125912.234435.4813AID1458
M-phase phosphoprotein 8Homo sapiens (human)Potency40.00610.177824.735279.4328AID488949
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency39.81070.00419.962528.1838AID2675
histone acetyltransferase KAT2A isoform 1Homo sapiens (human)Potency28.18380.251215.843239.8107AID504327
lamin isoform A-delta10Homo sapiens (human)Potency15.25070.891312.067628.1838AID1459; AID1487
neuropeptide S receptor isoform AHomo sapiens (human)Potency12.58930.015812.3113615.5000AID1461
Alpha-synucleinHomo sapiens (human)Potency26.91880.56239.398525.1189AID652106
TAR DNA-binding protein 43Homo sapiens (human)Potency12.58931.778316.208135.4813AID652104
Ataxin-2Homo sapiens (human)Potency39.81070.011912.222168.7989AID588378
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency15.10140.060110.745337.9330AID485368
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Polyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)IC50 (µMol)1.65000.00011.68479.3200AID6942; AID6951
Polyunsaturated fatty acid 5-lipoxygenaseRattus norvegicus (Norway rat)IC50 (µMol)17.36000.00462.018210.0000AID104166; AID179757; AID6781; AID6799; AID6810; AID6849; AID7090; AID7096
Cytochrome P450 11B1, mitochondrialRattus norvegicus (Norway rat)IC50 (µMol)300.00000.49503.52895.0000AID179759
Prostaglandin G/H synthase 1Homo sapiens (human)IC50 (µMol)5.30000.00021.557410.0000AID160717
Sodium- and chloride-dependent GABA transporter 1Rattus norvegicus (Norway rat)IC50 (µMol)300.00000.00132.22068.3000AID179759
Sodium- and chloride-dependent GABA transporter 2Rattus norvegicus (Norway rat)IC50 (µMol)300.00000.00321.79008.3000AID179759
Sodium- and chloride-dependent GABA transporter 3Rattus norvegicus (Norway rat)IC50 (µMol)300.00000.00321.54318.3000AID179759
Prostaglandin G/H synthase 2Homo sapiens (human)IC50 (µMol)5.30000.00010.995010.0000AID160717
Prostaglandin G/H synthase 2 Rattus norvegicus (Norway rat)IC50 (µMol)300.00000.00291.786810.0000AID179759
Sodium- and chloride-dependent betaine transporterRattus norvegicus (Norway rat)IC50 (µMol)300.00000.00321.54318.3000AID179759
Cysteinyl leukotriene receptor 1Cavia porcellus (domestic guinea pig)Ki1.50000.00010.23581.5000AID55066
Prostaglandin G/H synthase 1 Rattus norvegicus (Norway rat)IC50 (µMol)300.00000.00291.823210.0000AID179759
Cysteinyl leukotriene receptor 2Homo sapiens (human)Ki0.70000.00020.94296.2000AID55237
Cysteinyl leukotriene receptor 1Homo sapiens (human)IC50 (µMol)1.10000.00030.948710.0000AID1877343; AID1877351
Cysteinyl leukotriene receptor 1Homo sapiens (human)Ki0.70000.00021.56248.8720AID55237
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
G-protein coupled bile acid receptor 1Homo sapiens (human)EC50 (µMol)2.50000.02372.52598.9000AID1877353
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (202)

Processvia Protein(s)Taxonomy
negative regulation of endothelial cell proliferationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukocyte chemotaxis involved in inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukocyte migration involved in inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukotriene production involved in inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukotriene metabolic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
humoral immune responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of angiogenesisPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukotriene biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
lipoxygenase pathwayPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
positive regulation of bone mineralizationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
dendritic cell migrationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
glucose homeostasisPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
long-chain fatty acid biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of fat cell differentiationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of insulin secretionPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of vascular wound healingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of wound healingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of inflammatory response to woundingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of cytokine production involved in inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of cellular response to oxidative stressPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukotriene A4 biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of reactive oxygen species biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of response to endoplasmic reticulum stressPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of sprouting angiogenesisPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
positive regulation of leukocyte adhesion to arterial endothelial cellPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
lipoxin biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
arachidonic acid metabolic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
lipid oxidationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
prostaglandin biosynthetic processProstaglandin G/H synthase 1Homo sapiens (human)
response to oxidative stressProstaglandin G/H synthase 1Homo sapiens (human)
regulation of blood pressureProstaglandin G/H synthase 1Homo sapiens (human)
cyclooxygenase pathwayProstaglandin G/H synthase 1Homo sapiens (human)
regulation of cell population proliferationProstaglandin G/H synthase 1Homo sapiens (human)
cellular oxidant detoxificationProstaglandin G/H synthase 1Homo sapiens (human)
prostaglandin biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
angiogenesisProstaglandin G/H synthase 2Homo sapiens (human)
response to oxidative stressProstaglandin G/H synthase 2Homo sapiens (human)
embryo implantationProstaglandin G/H synthase 2Homo sapiens (human)
learningProstaglandin G/H synthase 2Homo sapiens (human)
memoryProstaglandin G/H synthase 2Homo sapiens (human)
regulation of blood pressureProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of cell population proliferationProstaglandin G/H synthase 2Homo sapiens (human)
response to xenobiotic stimulusProstaglandin G/H synthase 2Homo sapiens (human)
response to nematodeProstaglandin G/H synthase 2Homo sapiens (human)
response to fructoseProstaglandin G/H synthase 2Homo sapiens (human)
response to manganese ionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of vascular endothelial growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
cyclooxygenase pathwayProstaglandin G/H synthase 2Homo sapiens (human)
bone mineralizationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of prostaglandin biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of fever generationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of synaptic plasticityProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of synaptic transmission, dopaminergicProstaglandin G/H synthase 2Homo sapiens (human)
prostaglandin secretionProstaglandin G/H synthase 2Homo sapiens (human)
response to estradiolProstaglandin G/H synthase 2Homo sapiens (human)
response to lipopolysaccharideProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of peptidyl-serine phosphorylationProstaglandin G/H synthase 2Homo sapiens (human)
response to vitamin DProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to heatProstaglandin G/H synthase 2Homo sapiens (human)
response to tumor necrosis factorProstaglandin G/H synthase 2Homo sapiens (human)
maintenance of blood-brain barrierProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of protein import into nucleusProstaglandin G/H synthase 2Homo sapiens (human)
hair cycleProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of apoptotic processProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of nitric oxide biosynthetic processProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of cell cycleProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of vasoconstrictionProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of smooth muscle contractionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of smooth muscle contractionProstaglandin G/H synthase 2Homo sapiens (human)
decidualizationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of smooth muscle cell proliferationProstaglandin G/H synthase 2Homo sapiens (human)
regulation of inflammatory responseProstaglandin G/H synthase 2Homo sapiens (human)
brown fat cell differentiationProstaglandin G/H synthase 2Homo sapiens (human)
response to glucocorticoidProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of calcium ion transportProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of synaptic transmission, glutamatergicProstaglandin G/H synthase 2Homo sapiens (human)
response to fatty acidProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to mechanical stimulusProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to lead ionProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to ATPProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to hypoxiaProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to non-ionic osmotic stressProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to fluid shear stressProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of transforming growth factor beta productionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of cell migration involved in sprouting angiogenesisProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of fibroblast growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of brown fat cell differentiationProstaglandin G/H synthase 2Homo sapiens (human)
positive regulation of platelet-derived growth factor productionProstaglandin G/H synthase 2Homo sapiens (human)
cellular oxidant detoxificationProstaglandin G/H synthase 2Homo sapiens (human)
regulation of neuroinflammatory responseProstaglandin G/H synthase 2Homo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathway in response to osmotic stressProstaglandin G/H synthase 2Homo sapiens (human)
cellular response to homocysteineProstaglandin G/H synthase 2Homo sapiens (human)
response to angiotensinProstaglandin G/H synthase 2Homo sapiens (human)
calcium ion homeostasisAlpha-synucleinHomo sapiens (human)
negative regulation of transcription by RNA polymerase IIAlpha-synucleinHomo sapiens (human)
microglial cell activationAlpha-synucleinHomo sapiens (human)
positive regulation of receptor recyclingAlpha-synucleinHomo sapiens (human)
positive regulation of neurotransmitter secretionAlpha-synucleinHomo sapiens (human)
negative regulation of protein kinase activityAlpha-synucleinHomo sapiens (human)
fatty acid metabolic processAlpha-synucleinHomo sapiens (human)
neutral lipid metabolic processAlpha-synucleinHomo sapiens (human)
phospholipid metabolic processAlpha-synucleinHomo sapiens (human)
activation of cysteine-type endopeptidase activity involved in apoptotic processAlpha-synucleinHomo sapiens (human)
mitochondrial membrane organizationAlpha-synucleinHomo sapiens (human)
adult locomotory behaviorAlpha-synucleinHomo sapiens (human)
response to xenobiotic stimulusAlpha-synucleinHomo sapiens (human)
response to iron(II) ionAlpha-synucleinHomo sapiens (human)
regulation of phospholipase activityAlpha-synucleinHomo sapiens (human)
negative regulation of platelet-derived growth factor receptor signaling pathwayAlpha-synucleinHomo sapiens (human)
regulation of glutamate secretionAlpha-synucleinHomo sapiens (human)
regulation of dopamine secretionAlpha-synucleinHomo sapiens (human)
synaptic vesicle exocytosisAlpha-synucleinHomo sapiens (human)
synaptic vesicle primingAlpha-synucleinHomo sapiens (human)
regulation of transmembrane transporter activityAlpha-synucleinHomo sapiens (human)
negative regulation of microtubule polymerizationAlpha-synucleinHomo sapiens (human)
receptor internalizationAlpha-synucleinHomo sapiens (human)
protein destabilizationAlpha-synucleinHomo sapiens (human)
response to magnesium ionAlpha-synucleinHomo sapiens (human)
negative regulation of transporter activityAlpha-synucleinHomo sapiens (human)
response to lipopolysaccharideAlpha-synucleinHomo sapiens (human)
negative regulation of monooxygenase activityAlpha-synucleinHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylationAlpha-synucleinHomo sapiens (human)
response to type II interferonAlpha-synucleinHomo sapiens (human)
cellular response to oxidative stressAlpha-synucleinHomo sapiens (human)
SNARE complex assemblyAlpha-synucleinHomo sapiens (human)
positive regulation of SNARE complex assemblyAlpha-synucleinHomo sapiens (human)
regulation of locomotionAlpha-synucleinHomo sapiens (human)
dopamine biosynthetic processAlpha-synucleinHomo sapiens (human)
mitochondrial ATP synthesis coupled electron transportAlpha-synucleinHomo sapiens (human)
regulation of macrophage activationAlpha-synucleinHomo sapiens (human)
positive regulation of apoptotic processAlpha-synucleinHomo sapiens (human)
negative regulation of apoptotic processAlpha-synucleinHomo sapiens (human)
negative regulation of cysteine-type endopeptidase activity involved in apoptotic processAlpha-synucleinHomo sapiens (human)
negative regulation of neuron apoptotic processAlpha-synucleinHomo sapiens (human)
positive regulation of endocytosisAlpha-synucleinHomo sapiens (human)
negative regulation of exocytosisAlpha-synucleinHomo sapiens (human)
positive regulation of exocytosisAlpha-synucleinHomo sapiens (human)
regulation of long-term neuronal synaptic plasticityAlpha-synucleinHomo sapiens (human)
synaptic vesicle endocytosisAlpha-synucleinHomo sapiens (human)
synaptic vesicle transportAlpha-synucleinHomo sapiens (human)
positive regulation of inflammatory responseAlpha-synucleinHomo sapiens (human)
regulation of acyl-CoA biosynthetic processAlpha-synucleinHomo sapiens (human)
protein tetramerizationAlpha-synucleinHomo sapiens (human)
positive regulation of release of sequestered calcium ion into cytosolAlpha-synucleinHomo sapiens (human)
neuron apoptotic processAlpha-synucleinHomo sapiens (human)
dopamine uptake involved in synaptic transmissionAlpha-synucleinHomo sapiens (human)
negative regulation of dopamine uptake involved in synaptic transmissionAlpha-synucleinHomo sapiens (human)
negative regulation of serotonin uptakeAlpha-synucleinHomo sapiens (human)
regulation of norepinephrine uptakeAlpha-synucleinHomo sapiens (human)
negative regulation of norepinephrine uptakeAlpha-synucleinHomo sapiens (human)
excitatory postsynaptic potentialAlpha-synucleinHomo sapiens (human)
long-term synaptic potentiationAlpha-synucleinHomo sapiens (human)
positive regulation of inositol phosphate biosynthetic processAlpha-synucleinHomo sapiens (human)
negative regulation of thrombin-activated receptor signaling pathwayAlpha-synucleinHomo sapiens (human)
response to interleukin-1Alpha-synucleinHomo sapiens (human)
cellular response to copper ionAlpha-synucleinHomo sapiens (human)
cellular response to epinephrine stimulusAlpha-synucleinHomo sapiens (human)
positive regulation of protein serine/threonine kinase activityAlpha-synucleinHomo sapiens (human)
supramolecular fiber organizationAlpha-synucleinHomo sapiens (human)
negative regulation of mitochondrial electron transport, NADH to ubiquinoneAlpha-synucleinHomo sapiens (human)
positive regulation of glutathione peroxidase activityAlpha-synucleinHomo sapiens (human)
positive regulation of hydrogen peroxide catabolic processAlpha-synucleinHomo sapiens (human)
regulation of synaptic vesicle recyclingAlpha-synucleinHomo sapiens (human)
regulation of reactive oxygen species biosynthetic processAlpha-synucleinHomo sapiens (human)
positive regulation of protein localization to cell peripheryAlpha-synucleinHomo sapiens (human)
negative regulation of chaperone-mediated autophagyAlpha-synucleinHomo sapiens (human)
regulation of presynapse assemblyAlpha-synucleinHomo sapiens (human)
amyloid fibril formationAlpha-synucleinHomo sapiens (human)
synapse organizationAlpha-synucleinHomo sapiens (human)
chemical synaptic transmissionAlpha-synucleinHomo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
cell surface bile acid receptor signaling pathwayG-protein coupled bile acid receptor 1Homo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeG-protein coupled bile acid receptor 1Homo sapiens (human)
cellular response to bile acidG-protein coupled bile acid receptor 1Homo sapiens (human)
positive regulation of cholangiocyte proliferationG-protein coupled bile acid receptor 1Homo sapiens (human)
regulation of bicellular tight junction assemblyG-protein coupled bile acid receptor 1Homo sapiens (human)
G protein-coupled receptor signaling pathwayG-protein coupled bile acid receptor 1Homo sapiens (human)
negative regulation of receptor internalizationAtaxin-2Homo sapiens (human)
regulation of translationAtaxin-2Homo sapiens (human)
RNA metabolic processAtaxin-2Homo sapiens (human)
P-body assemblyAtaxin-2Homo sapiens (human)
stress granule assemblyAtaxin-2Homo sapiens (human)
RNA transportAtaxin-2Homo sapiens (human)
immune responseCysteinyl leukotriene receptor 2Homo sapiens (human)
leukotriene signaling pathwayCysteinyl leukotriene receptor 2Homo sapiens (human)
neuropeptide signaling pathwayCysteinyl leukotriene receptor 2Homo sapiens (human)
inflammatory response to antigenic stimulusCysteinyl leukotriene receptor 1Homo sapiens (human)
calcium ion transportCysteinyl leukotriene receptor 1Homo sapiens (human)
chemotaxisCysteinyl leukotriene receptor 1Homo sapiens (human)
defense responseCysteinyl leukotriene receptor 1Homo sapiens (human)
cell surface receptor signaling pathwayCysteinyl leukotriene receptor 1Homo sapiens (human)
positive regulation of cytosolic calcium ion concentrationCysteinyl leukotriene receptor 1Homo sapiens (human)
respiratory gaseous exchange by respiratory systemCysteinyl leukotriene receptor 1Homo sapiens (human)
positive regulation of angiogenesisCysteinyl leukotriene receptor 1Homo sapiens (human)
positive regulation of vasoconstrictionCysteinyl leukotriene receptor 1Homo sapiens (human)
establishment of localization in cellCysteinyl leukotriene receptor 1Homo sapiens (human)
positive regulation of glial cell proliferationCysteinyl leukotriene receptor 1Homo sapiens (human)
leukotriene signaling pathwayCysteinyl leukotriene receptor 1Homo sapiens (human)
cellular response to hypoxiaCysteinyl leukotriene receptor 1Homo sapiens (human)
neuropeptide signaling pathwayCysteinyl leukotriene receptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (52)

Processvia Protein(s)Taxonomy
arachidonate 5-lipoxygenase activityPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
arachidonate 12(S)-lipoxygenase activityPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
iron ion bindingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
protein bindingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
hydrolase activityPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
arachidonate 8(S)-lipoxygenase activityPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
peroxidase activityProstaglandin G/H synthase 1Homo sapiens (human)
prostaglandin-endoperoxide synthase activityProstaglandin G/H synthase 1Homo sapiens (human)
protein bindingProstaglandin G/H synthase 1Homo sapiens (human)
heme bindingProstaglandin G/H synthase 1Homo sapiens (human)
metal ion bindingProstaglandin G/H synthase 1Homo sapiens (human)
oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygenProstaglandin G/H synthase 1Homo sapiens (human)
peroxidase activityProstaglandin G/H synthase 2Homo sapiens (human)
prostaglandin-endoperoxide synthase activityProstaglandin G/H synthase 2Homo sapiens (human)
protein bindingProstaglandin G/H synthase 2Homo sapiens (human)
enzyme bindingProstaglandin G/H synthase 2Homo sapiens (human)
heme bindingProstaglandin G/H synthase 2Homo sapiens (human)
protein homodimerization activityProstaglandin G/H synthase 2Homo sapiens (human)
metal ion bindingProstaglandin G/H synthase 2Homo sapiens (human)
oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygenProstaglandin G/H synthase 2Homo sapiens (human)
fatty acid bindingAlpha-synucleinHomo sapiens (human)
phospholipase D inhibitor activityAlpha-synucleinHomo sapiens (human)
SNARE bindingAlpha-synucleinHomo sapiens (human)
magnesium ion bindingAlpha-synucleinHomo sapiens (human)
transcription cis-regulatory region bindingAlpha-synucleinHomo sapiens (human)
actin bindingAlpha-synucleinHomo sapiens (human)
protein kinase inhibitor activityAlpha-synucleinHomo sapiens (human)
copper ion bindingAlpha-synucleinHomo sapiens (human)
calcium ion bindingAlpha-synucleinHomo sapiens (human)
protein bindingAlpha-synucleinHomo sapiens (human)
phospholipid bindingAlpha-synucleinHomo sapiens (human)
ferrous iron bindingAlpha-synucleinHomo sapiens (human)
zinc ion bindingAlpha-synucleinHomo sapiens (human)
lipid bindingAlpha-synucleinHomo sapiens (human)
oxidoreductase activityAlpha-synucleinHomo sapiens (human)
kinesin bindingAlpha-synucleinHomo sapiens (human)
Hsp70 protein bindingAlpha-synucleinHomo sapiens (human)
histone bindingAlpha-synucleinHomo sapiens (human)
identical protein bindingAlpha-synucleinHomo sapiens (human)
alpha-tubulin bindingAlpha-synucleinHomo sapiens (human)
cysteine-type endopeptidase inhibitor activity involved in apoptotic processAlpha-synucleinHomo sapiens (human)
tau protein bindingAlpha-synucleinHomo sapiens (human)
phosphoprotein bindingAlpha-synucleinHomo sapiens (human)
molecular adaptor activityAlpha-synucleinHomo sapiens (human)
dynein complex bindingAlpha-synucleinHomo sapiens (human)
cuprous ion bindingAlpha-synucleinHomo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
protein bindingG-protein coupled bile acid receptor 1Homo sapiens (human)
bile acid receptor activityG-protein coupled bile acid receptor 1Homo sapiens (human)
G protein-coupled bile acid receptor activityG-protein coupled bile acid receptor 1Homo sapiens (human)
RNA bindingAtaxin-2Homo sapiens (human)
epidermal growth factor receptor bindingAtaxin-2Homo sapiens (human)
protein bindingAtaxin-2Homo sapiens (human)
mRNA bindingAtaxin-2Homo sapiens (human)
leukotriene receptor activityCysteinyl leukotriene receptor 2Homo sapiens (human)
protein bindingCysteinyl leukotriene receptor 2Homo sapiens (human)
cysteinyl leukotriene receptor activityCysteinyl leukotriene receptor 2Homo sapiens (human)
G protein-coupled peptide receptor activityCysteinyl leukotriene receptor 2Homo sapiens (human)
leukotriene receptor activityCysteinyl leukotriene receptor 1Homo sapiens (human)
cysteinyl leukotriene receptor activityCysteinyl leukotriene receptor 1Homo sapiens (human)
G protein-coupled peptide receptor activityCysteinyl leukotriene receptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (50)

Processvia Protein(s)Taxonomy
extracellular regionPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
extracellular spacePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear envelopePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear envelope lumenPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nucleoplasmPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
cytosolPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear matrixPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear membranePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
secretory granule lumenPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
perinuclear region of cytoplasmPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
ficolin-1-rich granule lumenPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear envelopePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
photoreceptor outer segmentProstaglandin G/H synthase 1Homo sapiens (human)
cytoplasmProstaglandin G/H synthase 1Homo sapiens (human)
endoplasmic reticulum membraneProstaglandin G/H synthase 1Homo sapiens (human)
Golgi apparatusProstaglandin G/H synthase 1Homo sapiens (human)
intracellular membrane-bounded organelleProstaglandin G/H synthase 1Homo sapiens (human)
extracellular exosomeProstaglandin G/H synthase 1Homo sapiens (human)
cytoplasmProstaglandin G/H synthase 1Homo sapiens (human)
neuron projectionProstaglandin G/H synthase 1Homo sapiens (human)
nuclear inner membraneProstaglandin G/H synthase 2Homo sapiens (human)
nuclear outer membraneProstaglandin G/H synthase 2Homo sapiens (human)
cytoplasmProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulumProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulum lumenProstaglandin G/H synthase 2Homo sapiens (human)
endoplasmic reticulum membraneProstaglandin G/H synthase 2Homo sapiens (human)
caveolaProstaglandin G/H synthase 2Homo sapiens (human)
neuron projectionProstaglandin G/H synthase 2Homo sapiens (human)
protein-containing complexProstaglandin G/H synthase 2Homo sapiens (human)
neuron projectionProstaglandin G/H synthase 2Homo sapiens (human)
cytoplasmProstaglandin G/H synthase 2Homo sapiens (human)
platelet alpha granule membraneAlpha-synucleinHomo sapiens (human)
extracellular regionAlpha-synucleinHomo sapiens (human)
extracellular spaceAlpha-synucleinHomo sapiens (human)
nucleusAlpha-synucleinHomo sapiens (human)
cytoplasmAlpha-synucleinHomo sapiens (human)
mitochondrionAlpha-synucleinHomo sapiens (human)
lysosomeAlpha-synucleinHomo sapiens (human)
cytosolAlpha-synucleinHomo sapiens (human)
plasma membraneAlpha-synucleinHomo sapiens (human)
cell cortexAlpha-synucleinHomo sapiens (human)
actin cytoskeletonAlpha-synucleinHomo sapiens (human)
membraneAlpha-synucleinHomo sapiens (human)
inclusion bodyAlpha-synucleinHomo sapiens (human)
axonAlpha-synucleinHomo sapiens (human)
growth coneAlpha-synucleinHomo sapiens (human)
synaptic vesicle membraneAlpha-synucleinHomo sapiens (human)
perinuclear region of cytoplasmAlpha-synucleinHomo sapiens (human)
postsynapseAlpha-synucleinHomo sapiens (human)
supramolecular fiberAlpha-synucleinHomo sapiens (human)
protein-containing complexAlpha-synucleinHomo sapiens (human)
cytoplasmAlpha-synucleinHomo sapiens (human)
axon terminusAlpha-synucleinHomo sapiens (human)
neuronal cell bodyAlpha-synucleinHomo sapiens (human)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmG-protein coupled bile acid receptor 1Homo sapiens (human)
plasma membraneG-protein coupled bile acid receptor 1Homo sapiens (human)
receptor complexG-protein coupled bile acid receptor 1Homo sapiens (human)
plasma membraneG-protein coupled bile acid receptor 1Homo sapiens (human)
cytoplasmAtaxin-2Homo sapiens (human)
Golgi apparatusAtaxin-2Homo sapiens (human)
trans-Golgi networkAtaxin-2Homo sapiens (human)
cytosolAtaxin-2Homo sapiens (human)
cytoplasmic stress granuleAtaxin-2Homo sapiens (human)
membraneAtaxin-2Homo sapiens (human)
perinuclear region of cytoplasmAtaxin-2Homo sapiens (human)
ribonucleoprotein complexAtaxin-2Homo sapiens (human)
cytoplasmic stress granuleAtaxin-2Homo sapiens (human)
cellular_componentCysteinyl leukotriene receptor 2Homo sapiens (human)
plasma membraneCysteinyl leukotriene receptor 2Homo sapiens (human)
plasma membraneCysteinyl leukotriene receptor 2Homo sapiens (human)
plasma membraneCysteinyl leukotriene receptor 1Homo sapiens (human)
membraneCysteinyl leukotriene receptor 1Homo sapiens (human)
plasma membraneCysteinyl leukotriene receptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (99)

Assay IDTitleYearJournalArticle
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID74189Antagonist activity was determined by the ability to inhibit of LTD4 (leukotriene D4) induced bronchospasm when administered intraduodenally with respect to REV-5901 compound1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID524792Antiplasmodial activity against Plasmodium falciparum D10 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID161030In vitro inhibition of rat polymorphonuclear leukocyte (PMN) Prostaglandin G/H synthase at 10 uM1986Journal of medicinal chemistry, Aug, Volume: 29, Issue:8
Synthesis of [[(naphthalenylmethoxy)- and [[(quinolinylmethoxy)phenyl]amino]oxoalkanoic acid esters. A novel series of leukotriene D4 antagonists and 5-lipoxygenase inhibitors.
AID1877346Metabolic stability in human liver microsomes assessed as half life at 1 uM measured up to 60 mins in presence of NADPH by LC-MS/MS analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID1877348Metabolic stability in human liver S9 fraction assessed as half life at 1 uM measured after 2 hrs in presence of NADPH by LC-MS/MS analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID6810Compound was tested for its in vitro inhibitory activity against RBL-1 5-LO (insoluble above 45 uM)1987Journal of medicinal chemistry, Mar, Volume: 30, Issue:3
Hydroxamic acid inhibitors of 5-lipoxygenase.
AID1877352Agonist activity against human GPBAR1 expressed in HEK293T cells assessed as transactivation of cAMP-responsive element by measuring maximum efficacy at 10 uM incubated for 18 hrs by luciferase assay based luminometer analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID524795Antiplasmodial activity against Plasmodium falciparum HB3 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID6799Inhibition of rat polymorphonuclear leukocyte (PMN) 5-Lipoxygenase in vitro1986Journal of medicinal chemistry, Aug, Volume: 29, Issue:8
Synthesis of [[(naphthalenylmethoxy)- and [[(quinolinylmethoxy)phenyl]amino]oxoalkanoic acid esters. A novel series of leukotriene D4 antagonists and 5-lipoxygenase inhibitors.
AID76351The compound was tested for inhibition of LTD4 response in guinea pig bronchoconstriction assay after intradermal administration (30 mg/kg)1992Journal of medicinal chemistry, Jul-10, Volume: 35, Issue:14
5-lipoxygenase: properties, pharmacology, and the quinolinyl(bridged)aryl class of inhibitors.
AID1877359Anti-inflammatory activity in mouse RAW264.7 cells assessed as as decrease in LPS-induced IL-1beta expression at 0.1 to 10 uM measured after 16 hrs by RT-PCR analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID1877351Antagonist activity against human CysLT1 expressed in CHO cells assessed as inhibition of LTD4 induced cytosolic Calcium ion mobilization measured after 75 mins by Fluo4 dye based fluorimetric microplate reader assay relative to control2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID79988relative potency antagonist on LTD4-induced contraction of isolated guinea pig trachea1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID1184089Cytotoxicity against human U937 cells at 100 uM after 48 hrs by LDH assay2014European journal of medicinal chemistry, Sep-12, Volume: 84Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism.
AID1877347Metabolic stability in human liver microsomes assessed as Intrinsic clearance at 1 uM measured up to 60 mins in presence of NADPH by LC-MS/MS analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID74195Antagonist activity was determined by the ability to inhibit of ovalbumin induced bronchospasm when administered intraduodenally with respect to REV-5901 compound1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID79842Compound was evaluated for LTD4 induced against guinea pig trachea contraction1996Journal of medicinal chemistry, Jul-05, Volume: 39, Issue:14
Modulators of leukotriene biosynthesis and receptor activation.
AID76724Percent inhibition of LTC4-induced contraction in guinea pig parenchymal strip test, at a concentration of 3.6 uM1987Journal of medicinal chemistry, Jan, Volume: 30, Issue:1
Substituted arylmethyl phenyl ethers. 1. A novel series of 5-lipoxygenase inhibitors and leukotriene antagonists.
AID521220Inhibition of neurosphere proliferation of mouse neural precursor cells by MTT assay2007Nature chemical biology, May, Volume: 3, Issue:5
Chemical genetics reveals a complex functional ground state of neural stem cells.
AID524793Antiplasmodial activity against Plasmodium falciparum Dd2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID1174555Cytotoxicity against human U937 cells at 100 uM after 48 hrs by LDH assay2015European journal of medicinal chemistry, Jan-07, Volume: 89Development and evaluation of ST-1829 based on 5-benzylidene-2-phenylthiazolones as promising agent for anti-leukotriene therapy.
AID179757In vitro inhibition of LTB4 production was measured in rat blood1991Journal of medicinal chemistry, Mar, Volume: 34, Issue:3
Indazolinones, a new series of redox-active 5-lipoxygenase inhibitors with built-in selectivity and oral activity.
AID222741Ability to inhibit the Ovalbumin induced bronchospasm in guinea pig was determined in vivo at a dose of 50 mg/kg id1987Journal of medicinal chemistry, Feb, Volume: 30, Issue:2
Leukotriene D4 antagonists and 5-lipoxygenase inhibitors. Synthesis of benzoheterocyclic [(methoxyphenyl)amino]oxoalkanoic acid esters.
AID1877350Antagonist activity against human CysLT1 expressed in CHO cells assessed as inhibition of LTD4 induced cytosolic Calcium ion mobilization at 10 uM measured after 75 mins by Fluo4 dye based fluorimetric microplate reader assay relative to control2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID1877345Lipophilicity, logD of the compound in octanol and phosphate buffer at pH 7.4 incubated for 2 hrs under shaking condition by LC-MS/MS analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID74192Antagonist activity was determined by the ability to inhibit of LTD4 (leukotriene D4) induced bronchospasm when administered perorally with respect to REV-5901 compound1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID179759In vitro inhibition of PGE-2 production was measured in rat blood1991Journal of medicinal chemistry, Mar, Volume: 34, Issue:3
Indazolinones, a new series of redox-active 5-lipoxygenase inhibitors with built-in selectivity and oral activity.
AID1877354Anti-inflammatory activity in mouse RAW264.7 cells assessed as as decrease in LPS-induced TNF-alpha expression at 0.1 to 10 uM measured after 16 hrs by RT-PCR analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID524791Antiplasmodial activity against Plasmodium falciparum 7G8 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID55066Binding affinity against Cysteinyl leukotriene D4 receptor from guinea pig lung was determined using [3H]LTD4 (0.2 nM)1990Journal of medicinal chemistry, Apr, Volume: 33, Issue:4
Development of a novel series of (2-quinolinylmethoxy)phenyl-containing compounds as high-affinity leukotriene receptor antagonists. 1. Initial structure-activity relationships.
AID76478Relative inhibitory potency against LTD4 (leukotriene D4) induced bronchospasm when administered perorally with respect to REV-5901 compound1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID55237Binding affinity against Cysteinyl leukotriene D4 receptor1996Journal of medicinal chemistry, Jul-05, Volume: 39, Issue:14
Modulators of leukotriene biosynthesis and receptor activation.
AID1877341Aqueous solubility of compound in pH 7.4 PBS buffer measured after 24 hrs by LC-MS/MS analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID7096In vitro inhibition of 5-lipoxygenase (5-lo) from the 20000 g supernatant of RBI-1 cells1991Journal of medicinal chemistry, Jul, Volume: 34, Issue:7
4-hydroxythiazole inhibitors of 5-lipoxygenase.
AID1174553Cytotoxicity against human U937 cells assessed as cell viability at 100 uM after 48 hrs by WST-1 assay2015European journal of medicinal chemistry, Jan-07, Volume: 89Development and evaluation of ST-1829 based on 5-benzylidene-2-phenylthiazolones as promising agent for anti-leukotriene therapy.
AID1877342Inhibition of TNF-alpha/LTD4 induced cell adhesion in human U-937 cells assessed as reduction in cell adhesion to HAEC cells at 10 uM incubated for 26 hrs by BCECF-AM fluorescence based microplate reader assay2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID524790Antiplasmodial activity against Plasmodium falciparum 3D7 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID1877360Anti-inflammatory activity in mouse RAW264.7 cells assessed as as increase in LPS-induced IL-10 expression at 0.1 to 10 uM measured after 16 hrs by RT-PCR analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID6849In vitro inhibitory activity against 5-lipoxygenase from rat basophilic leukemia cells.1987Journal of medicinal chemistry, Jul, Volume: 30, Issue:7
Synthesis and 5-lipoxygenase inhibitory activity of 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid analogues.
AID76589Relative inhibitory potency against ovalbumin induced bronchospasm when administered perorally with respect to REV-5901 compound1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID77997Ability to inhibit the spasmogenic activity of LTD4 in guinea pig parenchymal strips; Not determined1990Journal of medicinal chemistry, Apr, Volume: 33, Issue:4
Development of a novel series of (2-quinolinylmethoxy)phenyl-containing compounds as high-affinity leukotriene receptor antagonists. 1. Initial structure-activity relationships.
AID76182Inhibition of LTD4 induced bronchospasm in guinea pig was determined in at 50 mg/kg i.d.1987Journal of medicinal chemistry, Feb, Volume: 30, Issue:2
Leukotriene D4 antagonists and 5-lipoxygenase inhibitors. Synthesis of benzoheterocyclic [(methoxyphenyl)amino]oxoalkanoic acid esters.
AID6781Inhibition of rat neutrophil 5- Lipoxygenase (5-LO)1987Journal of medicinal chemistry, Jan, Volume: 30, Issue:1
Substituted arylmethyl phenyl ethers. 1. A novel series of 5-lipoxygenase inhibitors and leukotriene antagonists.
AID1877355Antiproliferation activity against LTD4 induced mouse RAW264.7 cells incubated for 48 hrs by Trypan blue staining based MTS assay2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID160717Ability to inhibit Prostaglandin G/H synthase in guinea pig1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID79987Antagonist activity towards LTD4-induced contraction of isolated guinea pig1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID79872In vitro inhibition of [3H]LTD4 binding to guinea pig lung membranes.1992Journal of medicinal chemistry, Oct-16, Volume: 35, Issue:21
Development of a novel series of styrylquinoline compounds as high-affinity leukotriene D4 receptor antagonists: synthetic and structure-activity studies leading to the discovery of (+-)-3-[[[3-[2-(7-chloro-2-quinolinyl)-(E)-ethenyl]phenyl][[3- (dimethyla
AID524794Antiplasmodial activity against Plasmodium falciparum GB4 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID220186Ability to inhibit the rat PMN (polymorphonuclear leukocyte) CO (cyclo-oxygenase) in vitro was determined; NA is 50% inhibition at 100 uM1987Journal of medicinal chemistry, Feb, Volume: 30, Issue:2
Leukotriene D4 antagonists and 5-lipoxygenase inhibitors. Synthesis of benzoheterocyclic [(methoxyphenyl)amino]oxoalkanoic acid esters.
AID6942Ability to inhibit 5-lipoxygenase in guinea pig1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID1877349Metabolic stability in human liver S9 fraction assessed as Intrinsic clearance at 1 uM measured after 2 hrs in presence of NADPH by LC-MS/MS analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID101295Ex vivo inhibition of LTB4 production was measured in dog blood1991Journal of medicinal chemistry, Mar, Volume: 34, Issue:3
Indazolinones, a new series of redox-active 5-lipoxygenase inhibitors with built-in selectivity and oral activity.
AID7090The compound was tested for inhibitory activity against 5-lipoxygenase in rat polymorphonuclear leukocytes[PMNS] (in vivo)1992Journal of medicinal chemistry, Jul-10, Volume: 35, Issue:14
5-lipoxygenase: properties, pharmacology, and the quinolinyl(bridged)aryl class of inhibitors.
AID76481Relative inhibitory potency against ovalbumin induced bronchospasm when administered intraduodenally with respect to REV-5901 compound1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID104166Ability to inhibit Lipoxygenase in vitro was determined1987Journal of medicinal chemistry, Feb, Volume: 30, Issue:2
Leukotriene D4 antagonists and 5-lipoxygenase inhibitors. Synthesis of benzoheterocyclic [(methoxyphenyl)amino]oxoalkanoic acid esters.
AID1877343Antagonist activity at human CysLT1 receptor2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID6951Inhibition against 5-lipoxygenase from guinea pig polymorphonuclear lymphocytes1990Journal of medicinal chemistry, Apr, Volume: 33, Issue:4
Development of a novel series of (2-quinolinylmethoxy)phenyl-containing compounds as high-affinity leukotriene receptor antagonists. 1. Initial structure-activity relationships.
AID524796Antiplasmodial activity against Plasmodium falciparum W2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID79868The compound was tested for binding affinity against guinea pig lung membrane using [3H]LTD4 as radioligand1992Journal of medicinal chemistry, Jul-10, Volume: 35, Issue:14
5-lipoxygenase: properties, pharmacology, and the quinolinyl(bridged)aryl class of inhibitors.
AID74198Antagonist activity was determined by the ability to inhibit of ovalbumin induced bronchospasm when administered perorally with respect to REV-5901 compound1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID1877353Agonist activity against human GPBAR1 expressed in HEK293T cells assessed as transactivation of cAMP-responsive element incubated for 18 hrs by Dual-Luciferase reporter assay based luminometer analysis2021Journal of medicinal chemistry, 11-25, Volume: 64, Issue:22
Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1.
AID76475Relative inhibitory potency against LTD4 (leukotriene D4) induced bronchospasm when administered intraduodenally with respect to REV-5901 compound1987Journal of medicinal chemistry, Nov, Volume: 30, Issue:11
Phenylephrine derivatives as leukotriene D4 antagonists.
AID1224864HCS microscopy assay (F508del-CFTR)2016PloS one, , Volume: 11, Issue:10
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID504836Inducers of the Endoplasmic Reticulum Stress Response (ERSR) in human glioma: Validation2002The Journal of biological chemistry, Apr-19, Volume: 277, Issue:16
Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells.
AID1347050Natriuretic polypeptide receptor (hNpr2) antagonism - Pilot subtype selectivity assay2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID588349qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID588378qHTS for Inhibitors of ATXN expression: Validation
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347045Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot counterscreen GloSensor control cell line2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347049Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot screen2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (83)

TimeframeStudies, This Drug (%)All Drugs %
pre-199018 (21.69)18.7374
1990's30 (36.14)18.2507
2000's16 (19.28)29.6817
2010's13 (15.66)24.3611
2020's6 (7.23)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 10.08

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index10.08 (24.57)
Research Supply Index4.44 (2.92)
Research Growth Index4.52 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (10.08)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews3 (3.57%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other81 (96.43%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]