Page last updated: 2024-11-07

san 58035

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID122215
CHEMBL ID40998
SCHEMBL ID4430655
MeSH IDM0119969

Synonyms (39)

Synonym
3-(decyl-dimethyl-silanyl)-n-(1-phenyl-2-p-tolyl-ethyl)-propionamide
bdbm50034738
sandoz58-35
EU-0100057
sandoz 58-035, >98% (hplc), powder
san 58035
3-(decyldimethylsilyl)-n-(2-(4-methylphenyl)-1-phenylethyl)propanamide
sandoz 58035
san-58035
san 58-035
compound-58-035
propanamide, 3-(decyldimethylsilyl)-n-(2-(4-methylphenyl)-1-phenylethyl)-
sandoz 58-035
NCGC00093571-02
NCGC00093571-01
NCGC00015980-02
S 9318
NCGC00015980-04
sa-58035
CHEMBL40998 ,
3-[decyl(dimethyl)silyl]-n-[2-(4-methylphenyl)-1-phenylethyl]propanamide
HMS3260K15
CCG-204152
qzw7o5c9ag ,
unii-qzw7o5c9ag
78934-83-5
NCGC00015980-03
sa 58-035
LP00057
tox21_500057
NCGC00260742-01
SCHEMBL4430655
sr-01000075677
SR-01000075677-1
SDCCGSBI-0050045.P002
NCGC00015980-06
3-[decyl(dimethyl)silyl]-n-[2-(4-methylphenyl)-1-phenylethyl]propanimidic acid
DTXSID501000145
3-(decyldimethylsilyl)-n-(1-phenyl-2-(p-tolyl)ethyl)propanamide

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
" DMPP was poorly absorbed in the fasting subjects."( Influence of high-fat meal on the absorption of a silicon-containing amide, an inhibitor of acyl-CoA: cholesterol acyltransferase, in man.
Jaffe, JM; Tse, FL,
)
0.13

Dosage Studied

ExcerptRelevanceReference
" In dose-response studies, down-regulation of the receptor by 58-035 paralleled its inhibition of ACAT activity."( Inhibition of acyl coenzyme A:cholesterol acyl transferase in J774 macrophages enhances down-regulation of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase and prevents low density lipoprotein-induced cholesterol ac
Tabas, I; Tall, AR; Weiland, DA, 1986
)
0.27
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (10)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Ferritin light chainEquus caballus (horse)Potency63.09575.623417.292931.6228AID2323
thioredoxin reductaseRattus norvegicus (Norway rat)Potency0.31620.100020.879379.4328AID588453
arylsulfatase AHomo sapiens (human)Potency37.93301.069113.955137.9330AID720538
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency2.39460.035520.977089.1251AID504332
Bloom syndrome protein isoform 1Homo sapiens (human)Potency0.89130.540617.639296.1227AID2364; AID2528
peripheral myelin protein 22 isoform 1Homo sapiens (human)Potency84.921423.934123.934123.9341AID1967
survival motor neuron protein isoform dHomo sapiens (human)Potency0.00320.125912.234435.4813AID1458
lamin isoform A-delta10Homo sapiens (human)Potency0.00090.891312.067628.1838AID1487
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency37.93300.060110.745337.9330AID485368
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Liver carboxylesterase 1Homo sapiens (human)IC50 (µMol)19.87000.00400.25510.6000AID1801082
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (16)

Processvia Protein(s)Taxonomy
cholesterol biosynthetic processLiver carboxylesterase 1Homo sapiens (human)
cholesterol metabolic processLiver carboxylesterase 1Homo sapiens (human)
response to toxic substanceLiver carboxylesterase 1Homo sapiens (human)
positive regulation of cholesterol effluxLiver carboxylesterase 1Homo sapiens (human)
negative regulation of cholesterol storageLiver carboxylesterase 1Homo sapiens (human)
epithelial cell differentiationLiver carboxylesterase 1Homo sapiens (human)
cholesterol homeostasisLiver carboxylesterase 1Homo sapiens (human)
reverse cholesterol transportLiver carboxylesterase 1Homo sapiens (human)
medium-chain fatty acid metabolic processLiver carboxylesterase 1Homo sapiens (human)
regulation of bile acid biosynthetic processLiver carboxylesterase 1Homo sapiens (human)
cellular response to cholesterolLiver carboxylesterase 1Homo sapiens (human)
cellular response to low-density lipoprotein particle stimulusLiver carboxylesterase 1Homo sapiens (human)
cholesterol ester hydrolysis involved in cholesterol transportLiver carboxylesterase 1Homo sapiens (human)
positive regulation of cholesterol metabolic processLiver carboxylesterase 1Homo sapiens (human)
regulation of bile acid secretionLiver carboxylesterase 1Homo sapiens (human)
lipid catabolic processLiver carboxylesterase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (4)

Processvia Protein(s)Taxonomy
sterol esterase activityLiver carboxylesterase 1Homo sapiens (human)
methylumbelliferyl-acetate deacetylase activityLiver carboxylesterase 1Homo sapiens (human)
carboxylesterase activityLiver carboxylesterase 1Homo sapiens (human)
carboxylic ester hydrolase activityLiver carboxylesterase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (5)

Processvia Protein(s)Taxonomy
cytoplasmLiver carboxylesterase 1Homo sapiens (human)
endoplasmic reticulumLiver carboxylesterase 1Homo sapiens (human)
endoplasmic reticulum lumenLiver carboxylesterase 1Homo sapiens (human)
lipid dropletLiver carboxylesterase 1Homo sapiens (human)
cytosolLiver carboxylesterase 1Homo sapiens (human)
lipid dropletLiver carboxylesterase 1Homo sapiens (human)
endoplasmic reticulumLiver carboxylesterase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (33)

Assay IDTitleYearJournalArticle
AID1347058CD47-SIRPalpha protein protein interaction - HTRF assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347057CD47-SIRPalpha protein protein interaction - LANCE assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID504836Inducers of the Endoplasmic Reticulum Stress Response (ERSR) in human glioma: Validation2002The Journal of biological chemistry, Apr-19, Volume: 277, Issue:16
Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347059CD47-SIRPalpha protein protein interaction - Alpha assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347049Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot screen2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347045Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot counterscreen GloSensor control cell line2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347410qHTS for inhibitors of adenylyl cyclases using a fission yeast platform: a pilot screen against the NCATS LOPAC library2019Cellular signalling, 08, Volume: 60A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening.
AID1347050Natriuretic polypeptide receptor (hNpr2) antagonism - Pilot subtype selectivity assay2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID588378qHTS for Inhibitors of ATXN expression: Validation
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347405qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS LOPAC collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID588349qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay
AID524794Antiplasmodial activity against Plasmodium falciparum GB4 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID84174In vivo effect on cholesteryl esters in cholesterol-fed hamsters at a dose of 100(mpk)1995Journal of medicinal chemistry, May-12, Volume: 38, Issue:10
Substituted (1,2-diarylethyl)amide acyl-CoA:cholesterol acyltransferase inhibitors: effect of polar groups on in vitro and in vivo activity.
AID524795Antiplasmodial activity against Plasmodium falciparum HB3 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID84310In vivo effect on serum cholesterol level of cholesterol-fed hamsters at a dose of 100(mpk)1995Journal of medicinal chemistry, May-12, Volume: 38, Issue:10
Substituted (1,2-diarylethyl)amide acyl-CoA:cholesterol acyltransferase inhibitors: effect of polar groups on in vitro and in vivo activity.
AID521220Inhibition of neurosphere proliferation of mouse neural precursor cells by MTT assay2007Nature chemical biology, May, Volume: 3, Issue:5
Chemical genetics reveals a complex functional ground state of neural stem cells.
AID524790Antiplasmodial activity against Plasmodium falciparum 3D7 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID524792Antiplasmodial activity against Plasmodium falciparum D10 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID31664In vitro inhibition of acyl coenzyme A:cholesterol acyltransferase 1, rat liver microsomal assay1995Journal of medicinal chemistry, May-12, Volume: 38, Issue:10
Substituted (1,2-diarylethyl)amide acyl-CoA:cholesterol acyltransferase inhibitors: effect of polar groups on in vitro and in vivo activity.
AID524791Antiplasmodial activity against Plasmodium falciparum 7G8 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID481536Inhibition of ACAT at 10 ug/ml2010Bioorganic & medicinal chemistry letters, May-15, Volume: 20, Issue:10
First identification of xanthone sulfonamides as potent acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors.
AID524793Antiplasmodial activity against Plasmodium falciparum Dd2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID524796Antiplasmodial activity against Plasmodium falciparum W2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID1801082Fluorescent ACAT Assay from Article 10.1111/cbdd.12419: \\Synthesis, biological evaluation, and molecular docking studies of xanthone sulfonamides as ACAT inhibitors.\\2015Chemical biology & drug design, Mar, Volume: 85, Issue:3
Synthesis, biological evaluation, and molecular docking studies of xanthone sulfonamides as ACAT inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (57)

TimeframeStudies, This Drug (%)All Drugs %
pre-199015 (26.32)18.7374
1990's15 (26.32)18.2507
2000's10 (17.54)29.6817
2010's11 (19.30)24.3611
2020's6 (10.53)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 10.38

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index10.38 (24.57)
Research Supply Index4.09 (2.92)
Research Growth Index4.48 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (10.38)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials1 (1.72%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other57 (98.28%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]