Page last updated: 2024-12-06

pergolide mesylate

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

Pergolide mesylate is a dopamine agonist that was originally marketed for the treatment of Parkinson's disease. It is a synthetic ergot alkaloid derivative with a high affinity for dopamine receptors. Pergolide mesylate acts by stimulating dopamine receptors in the brain, which helps to improve motor function in patients with Parkinson's disease. It is also thought to have a role in the treatment of other movement disorders, such as restless legs syndrome and Tourette's syndrome. However, the use of pergolide mesylate has been limited due to its potential for serious side effects, including valvular heart disease, fibrosis, and pulmonary hypertension. Pergolide mesylate is no longer marketed in the United States, but it is still available in some other countries. Its synthesis involves a multi-step process starting from a natural ergot alkaloid. The compound has been studied for its potential therapeutic effects in various neurological conditions, but its use has been curtailed due to safety concerns.'

pergolide mesylate : A methanesulfonate salt obtained from pergolide by mixing eqimolar amount of pergolide and methanesulfonic acid. A dopamine D2 receptor agonist which also has D1 and D2 agonist properties, it is used in the management of Parkinson's disease, although it was withdrawn from the U.S. and Canadian markets in 2007 due to an increased risk of cardiac valve dysfunction. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID47812
CHEBI ID8021
SCHEMBL ID26920
MeSH IDM0329825

Synonyms (124)

Synonym
mesylate, pergolide
AC-6874
MLS001148155
ly-127809
MLS000069837 ,
celance
smr000058504
nopar
parkotil
pharken
ly-141-b
ergoline, (8.beta.)-, monomethanesulfonate
MPE ,
66104-23-2
pergolide mesylate
8-.beta.-[(methylthio)methyl]-6-propylergoline methanesulfonate
ergoline, methanesulfonate (1:1)
nsc319773
nsc-319773
EU-0100984
pergolide mesylate salt, >=98%, solid
8-beta-((methylthio)methyl)-6-propylergoline methanesulfonate
8beta-((methylthio)methyl)-6-propylergoline monomethanesulfonate
ly127809
8-beta-((methylthio)methyl)-6-propylergoline monomethane sulfonate
ergoline, 8-beta-((methylthio)methyl)-6-propyl-, methanesulfonate (1:1)
pergolide mesylate [usan]
ergoline, 8-((methylthio)methyl)-6-propyl-, monomethanesulfonate, (8beta)-
PRESTWICK_652
cpd000058504
pergolide mesylate (usp)
D00502
pergolide mesilate (jan)
SPECTRUM1503269
NCGC00094284-03
pergolide methanesulfonate
NCGC00094284-02
NCGC00094284-01
pergolide mehanesulfonate
(8b)-8-[(methylsulfanyl)methyl]-6-propylergoline methanesulfonate
MLS002222236
P 8828
HMS2052H09
8-[(methylthio)methyl]-6-propylergoline methanesulfonate
HMS2093C05
chebi:8021 ,
ly 127809
nsc-758442
pergolide mesilate
HMS501G04
HMS1568L12
HMS1922O13
HMS3263E09
HMS2095L12
pergolide mesylate salt
pharmakon1600-01503269
MLS001424320
nsc758442
dtxcid4020583
tox21_110820
dtxsid6040583 ,
HMS2231F08
S4000
CCG-39478
nsc 319773
nsc 758442
55b9hqy616 ,
unii-55b9hqy616
pergolide mesylate [usan:usp]
(8beta)-8-[(methylsulfanyl)methyl]-6-propylergoline methanesulfonate
pergolide monomesylate
(8beta)-8-[(methylsulfanyl)methyl]-6-propylergolin-6-ium methanesulfonate
pergolide monomethanesulfonate
LP00984
AKOS015896681
pergolide mesilate [ep monograph]
pergolide mesylate [usp-rs]
pergolide mesylate [vandf]
ergoline, 8-((methylthio)methyl)-6-propyl-, monomethanesulfonate, (8.beta.)-
pergolide methanesulfonate [mi]
pergolide mesylate [usp monograph]
pergolide mesilate [mart.]
pergolide mesilate [who-dd]
pergolide mesylate [green book]
pergolide mesilate [jan]
ergoline, 8-((methylthio)methyl)-6-propyl-, monomethanesulphonate, (8.beta.)-
pergolide mesylate [orange book]
8.beta.-((methylthio)methyl)-6-propylergoline monomethanesulphonate
8beta-[(methylthio)methyl]-6-propylergoline monomethanesulfonate
HY-13720A
pergolide (mesylate)
NC00428
SCHEMBL26920
NCGC00017366-08
tox21_110820_1
NCGC00261669-01
tox21_500984
Q-201548
OPERA_ID_186
EX-A1334
SR-01000721840-3
(6ar,9r,10ar)-9-((methylthio)methyl)-7-propyl-4,6,6a,7,8,9,10,10a-octahydroindolo[4,3-fg]quinoline methanesulfonate
pergolide mesylate, united states pharmacopeia (usp) reference standard
pergolide mesilate, european pharmacopoeia (ep) reference standard
SR-01000075395-3
sr-01000075395
SR-01000075395-1
HMS3712L12
Q27107641
(6ar,9r,10ar)-9-(methylthiomethyl)-7-propyl-4,6,6a,7,8,9,10,10a-octahydroindolo[4,3-fg]quinoline methanesulfonate
HMS3885K16
D95035
pergolidemesylate
AS-76940
ergoline, 8-((methylthio)methyl)-6-propyl-, monomethanesulphonate, (8beta)-
pergolide mesylate (usp monograph)
8beta-((methylthio)methyl)-6-propylergoline monomethanesulphonate
pergolide mesylate (usp-rs)
(8beta)-8-((methylsulfanyl)methyl)-6-propylergolin-6-ium methanesulfonate
prascend
pergolide mesylate (usan:usp)
pergolide mesilate (ep monograph)
pergolide mesilate (mart.)
(8beta)-8-((methylsulfanyl)methyl)-6-propylergoline methanesulfonate

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (3)

RoleDescription
antiparkinson drugA drug used in the treatment of Parkinson's disease.
dopamine agonistA drug that binds to and activates dopamine receptors.
geroprotectorAny compound that supports healthy aging, slows the biological aging process, or extends lifespan.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (1)

ClassDescription
methanesulfonate salt
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (32)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Ferritin light chainEquus caballus (horse)Potency44.66845.623417.292931.6228AID2323
acetylcholinesteraseHomo sapiens (human)Potency16.23250.002541.796015,848.9004AID1347395; AID1347397; AID1347398
SMAD family member 2Homo sapiens (human)Potency10.68220.173734.304761.8120AID1346859
SMAD family member 3Homo sapiens (human)Potency10.68220.173734.304761.8120AID1346859
TDP1 proteinHomo sapiens (human)Potency31.67680.000811.382244.6684AID686978; AID686979
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency2.18760.01237.983543.2770AID1645841
glucocorticoid receptor [Homo sapiens]Homo sapiens (human)Potency2.39140.000214.376460.0339AID720691
estrogen nuclear receptor alphaHomo sapiens (human)Potency8.38000.000229.305416,493.5996AID743069; AID743080; AID743091
cytochrome P450 2D6Homo sapiens (human)Potency0.05500.00108.379861.1304AID1645840
IDH1Homo sapiens (human)Potency2.90930.005210.865235.4813AID686970
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency79.43280.035520.977089.1251AID504332
Histone H2A.xCricetulus griseus (Chinese hamster)Potency55.19650.039147.5451146.8240AID1224845
Bloom syndrome protein isoform 1Homo sapiens (human)Potency0.03160.540617.639296.1227AID2364; AID2528
chromobox protein homolog 1Homo sapiens (human)Potency100.00000.006026.168889.1251AID540317
potassium voltage-gated channel subfamily H member 2 isoform dHomo sapiens (human)Potency1.99530.01789.637444.6684AID588834
transcriptional regulator ERG isoform 3Homo sapiens (human)Potency11.51890.794321.275750.1187AID624246; AID651804
thyroid hormone receptor beta isoform 2Rattus norvegicus (Norway rat)Potency9.43920.000323.4451159.6830AID743065; AID743067
histone deacetylase 9 isoform 3Homo sapiens (human)Potency33.49150.037617.082361.1927AID1259364
importin subunit beta-1 isoform 1Homo sapiens (human)Potency56.23415.804836.130665.1308AID540263
snurportin-1Homo sapiens (human)Potency56.23415.804836.130665.1308AID540263
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency50.11870.425612.059128.1838AID504891
gemininHomo sapiens (human)Potency1.35260.004611.374133.4983AID624296; AID624297
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency29.51560.00419.962528.1838AID2675; AID493199
D(3) dopamine receptor isoform eHomo sapiens (human)Potency0.02000.02009.148539.8107AID720506
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
ATP-binding cassette sub-family C member 3Homo sapiens (human)IC50 (µMol)133.00000.63154.45319.3000AID1473740
Multidrug resistance-associated protein 4Homo sapiens (human)IC50 (µMol)133.00000.20005.677410.0000AID1473741
Bile salt export pumpHomo sapiens (human)IC50 (µMol)133.00000.11007.190310.0000AID1473738
D(2) dopamine receptorBos taurus (cattle)IC50 (µMol)0.05000.00100.79948.0000AID62436
Canalicular multispecific organic anion transporter 1Homo sapiens (human)IC50 (µMol)133.00002.41006.343310.0000AID1473739
DBos taurus (cattle)IC50 (µMol)0.05000.00100.47208.0000AID62436
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
mu-type opioid receptor isoform MOR-1Homo sapiens (human)EC50 (µMol)92.48000.13203.30049.5690AID624499
5-hydroxytryptamine receptor 2AMus musculus (house mouse)EC50 (µMol)0.00380.00381.36218.3930AID624503
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (47)

Processvia Protein(s)Taxonomy
xenobiotic metabolic processATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
bile acid and bile salt transportATP-binding cassette sub-family C member 3Homo sapiens (human)
glucuronoside transportATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transportATP-binding cassette sub-family C member 3Homo sapiens (human)
transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
leukotriene transportATP-binding cassette sub-family C member 3Homo sapiens (human)
monoatomic anion transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
transport across blood-brain barrierATP-binding cassette sub-family C member 3Homo sapiens (human)
prostaglandin secretionMultidrug resistance-associated protein 4Homo sapiens (human)
cilium assemblyMultidrug resistance-associated protein 4Homo sapiens (human)
platelet degranulationMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic metabolic processMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
bile acid and bile salt transportMultidrug resistance-associated protein 4Homo sapiens (human)
prostaglandin transportMultidrug resistance-associated protein 4Homo sapiens (human)
urate transportMultidrug resistance-associated protein 4Homo sapiens (human)
glutathione transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
cAMP transportMultidrug resistance-associated protein 4Homo sapiens (human)
leukotriene transportMultidrug resistance-associated protein 4Homo sapiens (human)
monoatomic anion transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
export across plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
transport across blood-brain barrierMultidrug resistance-associated protein 4Homo sapiens (human)
guanine nucleotide transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
fatty acid metabolic processBile salt export pumpHomo sapiens (human)
bile acid biosynthetic processBile salt export pumpHomo sapiens (human)
xenobiotic metabolic processBile salt export pumpHomo sapiens (human)
xenobiotic transmembrane transportBile salt export pumpHomo sapiens (human)
response to oxidative stressBile salt export pumpHomo sapiens (human)
bile acid metabolic processBile salt export pumpHomo sapiens (human)
response to organic cyclic compoundBile salt export pumpHomo sapiens (human)
bile acid and bile salt transportBile salt export pumpHomo sapiens (human)
canalicular bile acid transportBile salt export pumpHomo sapiens (human)
protein ubiquitinationBile salt export pumpHomo sapiens (human)
regulation of fatty acid beta-oxidationBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transportBile salt export pumpHomo sapiens (human)
bile acid signaling pathwayBile salt export pumpHomo sapiens (human)
cholesterol homeostasisBile salt export pumpHomo sapiens (human)
response to estrogenBile salt export pumpHomo sapiens (human)
response to ethanolBile salt export pumpHomo sapiens (human)
xenobiotic export from cellBile salt export pumpHomo sapiens (human)
lipid homeostasisBile salt export pumpHomo sapiens (human)
phospholipid homeostasisBile salt export pumpHomo sapiens (human)
positive regulation of bile acid secretionBile salt export pumpHomo sapiens (human)
regulation of bile acid metabolic processBile salt export pumpHomo sapiens (human)
transmembrane transportBile salt export pumpHomo sapiens (human)
synaptic transmission, dopaminergicD(2) dopamine receptorBos taurus (cattle)
negative regulation of prolactin secretionD(2) dopamine receptorBos taurus (cattle)
negative regulation of lactationD(2) dopamine receptorBos taurus (cattle)
positive regulation of mammary gland involutionD(2) dopamine receptorBos taurus (cattle)
hyaloid vascular plexus regressionD(2) dopamine receptorBos taurus (cattle)
xenobiotic metabolic processCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
negative regulation of gene expressionCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bile acid and bile salt transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bilirubin transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
heme catabolic processCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic export from cellCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transepithelial transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
leukotriene transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
monoatomic anion transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transport across blood-brain barrierCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transport across blood-brain barrierCanalicular multispecific organic anion transporter 1Homo sapiens (human)
synaptic transmission, dopaminergicDBos taurus (cattle)
vasodilationDBos taurus (cattle)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (24)

Processvia Protein(s)Taxonomy
ATP bindingATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type xenobiotic transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
glucuronoside transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type bile acid transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATP hydrolysis activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATPase-coupled transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
icosanoid transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
guanine nucleotide transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
protein bindingMultidrug resistance-associated protein 4Homo sapiens (human)
ATP bindingMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type xenobiotic transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
prostaglandin transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
urate transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
purine nucleotide transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type bile acid transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
efflux transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
15-hydroxyprostaglandin dehydrogenase (NAD+) activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATP hydrolysis activityMultidrug resistance-associated protein 4Homo sapiens (human)
glutathione transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATPase-coupled transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
protein bindingBile salt export pumpHomo sapiens (human)
ATP bindingBile salt export pumpHomo sapiens (human)
ABC-type xenobiotic transporter activityBile salt export pumpHomo sapiens (human)
bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
canalicular bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transporter activityBile salt export pumpHomo sapiens (human)
ABC-type bile acid transporter activityBile salt export pumpHomo sapiens (human)
ATP hydrolysis activityBile salt export pumpHomo sapiens (human)
protein bindingCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATP bindingCanalicular multispecific organic anion transporter 1Homo sapiens (human)
organic anion transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type xenobiotic transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bilirubin transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATP hydrolysis activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATPase-coupled transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (20)

Processvia Protein(s)Taxonomy
plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
basal plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
basolateral plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
nucleolusMultidrug resistance-associated protein 4Homo sapiens (human)
Golgi apparatusMultidrug resistance-associated protein 4Homo sapiens (human)
plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
membraneMultidrug resistance-associated protein 4Homo sapiens (human)
basolateral plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
apical plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
platelet dense granule membraneMultidrug resistance-associated protein 4Homo sapiens (human)
external side of apical plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
basolateral plasma membraneBile salt export pumpHomo sapiens (human)
Golgi membraneBile salt export pumpHomo sapiens (human)
endosomeBile salt export pumpHomo sapiens (human)
plasma membraneBile salt export pumpHomo sapiens (human)
cell surfaceBile salt export pumpHomo sapiens (human)
apical plasma membraneBile salt export pumpHomo sapiens (human)
intercellular canaliculusBile salt export pumpHomo sapiens (human)
intracellular canaliculusBile salt export pumpHomo sapiens (human)
recycling endosomeBile salt export pumpHomo sapiens (human)
recycling endosome membraneBile salt export pumpHomo sapiens (human)
extracellular exosomeBile salt export pumpHomo sapiens (human)
membraneBile salt export pumpHomo sapiens (human)
Golgi membraneD(2) dopamine receptorBos taurus (cattle)
plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
cell surfaceCanalicular multispecific organic anion transporter 1Homo sapiens (human)
apical plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
intercellular canaliculusCanalicular multispecific organic anion transporter 1Homo sapiens (human)
apical plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
endoplasmic reticulum membraneDBos taurus (cattle)
dendritic spineDBos taurus (cattle)
ciliary membraneDBos taurus (cattle)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (82)

Assay IDTitleYearJournalArticle
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1473741Inhibition of human MRP4 overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID521220Inhibition of neurosphere proliferation of mouse neural precursor cells by MTT assay2007Nature chemical biology, May, Volume: 3, Issue:5
Chemical genetics reveals a complex functional ground state of neural stem cells.
AID524792Antiplasmodial activity against Plasmodium falciparum D10 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID174779Inhibitory activity against plasma prolactin level in male Sprague-Dawley rats after peroral administration (5mg/Kg), activity expressed as mean duration for submaximal inhibition1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID185025Minimum effective dose required to decrease striatal DA turnover in rats1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID524790Antiplasmodial activity against Plasmodium falciparum 3D7 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID1473738Inhibition of human BSEP overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-taurocholate in presence of ATP measured after 15 to 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID59399Minimum effective dose (sc) to induce emesis in male or female Beagle dogs1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID185027Minimum effective dose required to produce stereotypies in rats1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID524794Antiplasmodial activity against Plasmodium falciparum GB4 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID524795Antiplasmodial activity against Plasmodium falciparum HB3 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID524796Antiplasmodial activity against Plasmodium falciparum W2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID62865In vitro binding affinity towards dopamine receptor was determined in rat striatal membrane using [3H]spiroperidol as the radioligand1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID62436In vitro binding affinity towards dopamine receptor was determined in bovine anterior pituitary membrane using [3H]dihydroergocriptine as the radioligand1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID1473740Inhibition of human MRP3 overexpressed in Sf9 insect cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 10 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID185026Minimum effective dose required to induce rotations in rats with unilateral lesion in the nigrostriatal pathway1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID117089Lethal dose in male mice (administered ip), activity expressed as LD50 values.1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID196079Inhibitory activity against prolactin release in rat anterior pituitary cells1983Journal of medicinal chemistry, Apr, Volume: 26, Issue:4
Synthesis and central dopaminergic activities of (+/-)-hexahydro-7H-indolo[3,4-gh][1,4]benzoxazine derivatives [(+/-)-9-oxaergolines].
AID1473739Inhibition of human MRP2 overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID524791Antiplasmodial activity against Plasmodium falciparum 7G8 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID524793Antiplasmodial activity against Plasmodium falciparum Dd2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID1224864HCS microscopy assay (F508del-CFTR)2016PloS one, , Volume: 11, Issue:10
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID1159550Human Phosphogluconate dehydrogenase (6PGD) Inhibitor Screening2015Nature cell biology, Nov, Volume: 17, Issue:11
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (24)

TimeframeStudies, This Drug (%)All Drugs %
pre-19901 (4.17)18.7374
1990's0 (0.00)18.2507
2000's3 (12.50)29.6817
2010's13 (54.17)24.3611
2020's7 (29.17)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 27.00

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index27.00 (24.57)
Research Supply Index3.22 (2.92)
Research Growth Index4.58 (4.65)
Search Engine Demand Index45.80 (26.88)
Search Engine Supply Index3.28 (0.95)

This Compound (27.00)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (4.17%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other23 (95.83%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]