Page last updated: 2024-09-20

crotamiton

Cross-References

ID SourceID
PubMed CID688020
CHEMBL ID1200709
SCHEMBL ID32934
MeSH IDM0047173
PubMed CID2883
CHEMBL ID3183440
CHEBI ID31439
MeSH IDM0047173

Synonyms (152)

Synonym
AB00513973-09
BRD-K57179821-001-05-5
crotamiton ,
2-butenamide, n-ethyl-n-(2-methylphenyl)-
ai3-17732
epa pesticide chemical code 055701
veteusan
eurasil
n-ethyl-n-(2-methylphenyl)-2-butenamide
einecs 207-596-3
eurax
caswell no. 431b
brn 3275497
crotonyl-n-ethyl-o-toluidine
crotamitone
crotalgin
crotamitonum [inn-latin]
o-crotonotoluidide, n-ethyl-
euraxil
inchi=1/c13h17no/c1-4-8-13(15)14(5-2)12-10-7-6-9-11(12)3/h4,6-10h,5h2,1-3h3/b8-4
PRESTWICK2_000951
nsc-78382
nsc78382
BPBIO1_001038
BSPBIO_002722
BSPBIO_000942
MLS001424003
AB00513973
MLS000759489
smr000059145
n-ethyl-o-crotonotoluidide
483-63-6
D01381
crotamiton (jan/usp/inn)
eurax (tn)
n-ethyl-o-crotonotoluidide, 97%
NCGC00094571-02
NCGC00094571-01
NCGC00094571-03
SPECTRUM1505271
PRESTWICK3_000951
NCGC00094571-04
NCGC00094571-05
HMS2051E10
HMS2093O12
HMS2090A10
E0814
124236-29-9
n-crotonyl-n-ethyl-o-toluidine
trans-n-ethyl-n-(o-tolyl)-2-butenamide
MLS002695895
nsc-758951
CHEMBL1200709
MLS002222307
crotamitonum
(e)-n-ethyl-n-(2-methylphenyl)but-2-enamide
HMS1922P21
HMS1570P04
HMS2097P04
NCGC00254708-01
tox21_300804
A827519
(e)-n-ethyl-n-(o-tolyl)but-2-enamide
nsc758951
pharmakon1600-01505271
tox21_110446
HMS2234E16
CCG-39402
bestloid
3-12-00-01856 (beilstein handbook reference)
g 7857
crotamiton [usp:inn:ban:jan]
crotamitex
unii-d6s4o4xd0h
nsc 758951
(2e)-n-ethyl-n-(2-methylphenyl)but-2-enamide
S1711
AKOS015892746
BRD-K13240564-001-01-8
NC00107
SCHEMBL32934
NCGC00094571-08
tox21_110446_1
2EEH27851Y ,
crotamiton, (e)-
2-butenamide, n-ethyl-n-(2-methylphenyl)-, (e)-
trans-crotamiton
2-butenamide, n-ethyl-n-(2-methylphenyl)-, (2e)-
n-ethyl-n-(o-tolyl)but-2-enamide
CS-4730
n-ethyl-o-crotonotoluidine
n-ethyl-n-(2-methylphenyl)-2-butenamide #
component of eurax (salt/mix)
n-ethyl-ortho-crotonotoluidide
Q-200893
unii-2eeh27851y
crotamiton, british pharmacopoeia (bp) reference standard
HY-B1177
AB00513973_10
mfcd00026989
crotamiton, european pharmacopoeia (ep) reference standard
SR-01000759366-6
SR-01000759366-4
sr-01000759366
crotamiton, united states pharmacopeia (usp) reference standard
gtpl11165
SBI-0206763.P001
HMS3714P04
(e)-n-ethyl-n-o-tolylbut-2-enamide
Q2439845
(e)-crotamiton
AS-11641
BCP13315
n-ethyl-o-crotonotoluidide; crotamitone; crotalgin; eurasil; euraxil
BRD-K57179821-001-08-9
D70888
EN300-23049066
DTXSID101256463
(2e)-n-ethyl-n-(2-methylphenyl)-2-butenamide
HMS3393E10
crotan
DB00265
KBIOGR_001728
KBIO3_001942
NCIOPEN2_004405
SPBIO_001660
SPECTRUM2_001700
PRESTWICK0_000951
SPBIO_003091
PRESTWICK1_000951
SPECTRUM4_001234
SPECTRUM3_001081
n-ethylcrotono-o-toluidide
n-ethyl-n-(2-methylphenyl)but-2-enamide
CHEBI:31439 ,
FT-0665225
NCGC00248176-01
dtxcid4020664
dtxsid6040664 ,
crotaglin
d6s4o4xd0h ,
FT-0603174
NCGC00094571-07
HMS3369O11
CHEMBL3183440
AKOS028108434
crotamiton (ep impurity)
crotamiton (mart.)
crotamiton (usp impurity)
crotamiton (ep monograph)
crotamiton (usp monograph)
crotamiton; n-ethyl-n-(2-methylphenyl)but-2-enamide

Roles (2)

RoleDescription
antipruritic drugA drug, usually applied topically, that relieves pruritus (itching).
scabicideAn acaricide that kills mites of the genus Sarcoptes.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
enamideAn alpha,beta-unsaturated carboxylic acid amide of general formula R(1)R(2)C=CR(3)-C(=O)NR(4)R(5) in which the amide C=O function is conjugated to a C=C double bond at the alpha,beta position.
tertiary carboxamideA carboxamide resulting from the formal condensation of a carboxylic acid with a secondary amine; formula RC(=O)NHR(1)R(2).
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (28)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
RAR-related orphan receptor gammaMus musculus (house mouse)Potency3.34910.006038.004119,952.5996AID1159521
AR proteinHomo sapiens (human)Potency12.87770.000221.22318,912.5098AID743035; AID743042
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency39.86860.001022.650876.6163AID1224838; AID1224839
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency17.37680.01237.983543.2770AID1645841
pregnane X nuclear receptorHomo sapiens (human)Potency10.00000.005428.02631,258.9301AID1346985
estrogen nuclear receptor alphaHomo sapiens (human)Potency8.10980.000229.305416,493.5996AID743069
thyroid stimulating hormone receptorHomo sapiens (human)Potency68.58960.001628.015177.1139AID1259385
gemininHomo sapiens (human)Potency0.39810.004611.374133.4983AID624297
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency12.58930.031610.279239.8107AID884; AID885
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Spike glycoproteinSevere acute respiratory syndrome-related coronavirusPotency3.16230.009610.525035.4813AID1479145
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
GABA theta subunitRattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency12.58931.000012.224831.6228AID885
EWS/FLI fusion proteinHomo sapiens (human)Potency29.68310.001310.157742.8575AID1259252; AID1259253; AID1259256
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Bile salt export pumpHomo sapiens (human)IC50 (µMol)109.50000.11007.190310.0000AID1449628
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (22)

Processvia Protein(s)Taxonomy
fatty acid metabolic processBile salt export pumpHomo sapiens (human)
bile acid biosynthetic processBile salt export pumpHomo sapiens (human)
xenobiotic metabolic processBile salt export pumpHomo sapiens (human)
xenobiotic transmembrane transportBile salt export pumpHomo sapiens (human)
response to oxidative stressBile salt export pumpHomo sapiens (human)
bile acid metabolic processBile salt export pumpHomo sapiens (human)
response to organic cyclic compoundBile salt export pumpHomo sapiens (human)
bile acid and bile salt transportBile salt export pumpHomo sapiens (human)
canalicular bile acid transportBile salt export pumpHomo sapiens (human)
protein ubiquitinationBile salt export pumpHomo sapiens (human)
regulation of fatty acid beta-oxidationBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transportBile salt export pumpHomo sapiens (human)
bile acid signaling pathwayBile salt export pumpHomo sapiens (human)
cholesterol homeostasisBile salt export pumpHomo sapiens (human)
response to estrogenBile salt export pumpHomo sapiens (human)
response to ethanolBile salt export pumpHomo sapiens (human)
xenobiotic export from cellBile salt export pumpHomo sapiens (human)
lipid homeostasisBile salt export pumpHomo sapiens (human)
phospholipid homeostasisBile salt export pumpHomo sapiens (human)
positive regulation of bile acid secretionBile salt export pumpHomo sapiens (human)
regulation of bile acid metabolic processBile salt export pumpHomo sapiens (human)
transmembrane transportBile salt export pumpHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (8)

Processvia Protein(s)Taxonomy
protein bindingBile salt export pumpHomo sapiens (human)
ATP bindingBile salt export pumpHomo sapiens (human)
ABC-type xenobiotic transporter activityBile salt export pumpHomo sapiens (human)
bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
canalicular bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transporter activityBile salt export pumpHomo sapiens (human)
ABC-type bile acid transporter activityBile salt export pumpHomo sapiens (human)
ATP hydrolysis activityBile salt export pumpHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (13)

Processvia Protein(s)Taxonomy
basolateral plasma membraneBile salt export pumpHomo sapiens (human)
Golgi membraneBile salt export pumpHomo sapiens (human)
endosomeBile salt export pumpHomo sapiens (human)
plasma membraneBile salt export pumpHomo sapiens (human)
cell surfaceBile salt export pumpHomo sapiens (human)
apical plasma membraneBile salt export pumpHomo sapiens (human)
intercellular canaliculusBile salt export pumpHomo sapiens (human)
intracellular canaliculusBile salt export pumpHomo sapiens (human)
recycling endosomeBile salt export pumpHomo sapiens (human)
recycling endosome membraneBile salt export pumpHomo sapiens (human)
extracellular exosomeBile salt export pumpHomo sapiens (human)
membraneBile salt export pumpHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
virion membraneSpike glycoproteinSevere acute respiratory syndrome-related coronavirus
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (81)

Assay IDTitleYearJournalArticle
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1449628Inhibition of human BSEP expressed in baculovirus transfected fall armyworm Sf21 cell membranes vesicles assessed as reduction in ATP-dependent [3H]-taurocholate transport into vesicles incubated for 5 mins by Topcount based rapid filtration method2012Drug metabolism and disposition: the biological fate of chemicals, Dec, Volume: 40, Issue:12
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1159550Human Phosphogluconate dehydrogenase (6PGD) Inhibitor Screening2015Nature cell biology, Nov, Volume: 17, Issue:11
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (120)

TimeframeStudies, This Drug (%)All Drugs %
pre-199039 (32.50)18.7374
1990's18 (15.00)18.2507
2000's18 (15.00)29.6817
2010's35 (29.17)24.3611
2020's10 (8.33)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials12 (9.60%)5.53%
Trials0 (0.00%)5.53%
Reviews16 (12.80%)6.00%
Reviews0 (0.00%)6.00%
Case Studies25 (20.00%)4.05%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Observational0 (0.00%)0.25%
Other72 (57.60%)84.16%
Other7 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research Highlights

Safety/Toxicity (1)

ArticleYear
Efficacy and safety of antiscabietic agents: A systematic review and network meta-analysis of randomized controlled trials.
Journal of the American Academy of Dermatology, Volume: 80, Issue: 5
2019
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Bioavailability (3)

ArticleYear
Crotamiton-loaded tea tree oil containing phospholipid-based microemulsion hydrogel for scabies treatment:
Drug delivery, Volume: 28, Issue: 1
2021
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology, Volume: 96, Issue: 5
2019
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
The Journal of biological chemistry, 11-15, Volume: 294, Issue: 46
2019
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Dosage (3)

ArticleYear
Percutaneous absorption of crotamiton in man following single and multiple dosing.
Cutaneous and ocular toxicology, Volume: 25, Issue: 3
2006
[Difficulties in the treatment of scabies in infants].
Archives francaises de pediatrie, Volume: 39, Issue: 10
1982
Supercritical fluid chromatography in the routine stability control of antipruritic preparations.
Journal of chromatography, Aug-16, Volume: 553, Issue: 1-2
1991
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]