Page last updated: 2024-11-13

methacycline monohydrochloride

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID54685047
CHEMBL ID2146123
CHEBI ID6806
SCHEMBL ID127702
MeSH IDM0330127

Synonyms (90)

Synonym
AC-4567
nsc 356465
4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methylene-1,11-dioxo-2-naphthacenecarboxamide monohydrochloride
adriamicina
rindex
metacycline hydrochloride
globociclina
germiciclin
2-naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methylene-1,11-dioxo-, monohydrochloride, (4s-(4alpha,4aalpha,5alpha,5aalpha,12aalpha))-
metilenbiotic
megamycine
ciclobiotic
optimycin
einecs 223-568-3
physiomycine
metadomus
methacycline monohydrochloride
cas-3963-95-9
NCGC00016645-01
2-naphthacenecarboxamide,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methylene-1,11-dioxo-, monohydrochloride, (4s-(4.alpha.,4a.alpha.,5.alpha.,5a.alpha.,12a.alpha.))-
nsc-356465
2-naphthacenecarboxamide,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methylene-1,11-dioxo-, monohydrochloride, [4s-(4.alpha.,4a.alpha.,5.alpha.,5a.alpha.,12a.alpha.)]-
2-naphthacenecarboxamide,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methylene-1,11-dioxo-, monohydrochloride, [4s-(4.alpha.,4a.alpha.,5.alpha.,5a.alpha.,12a.alpha.)]
nsc356465
3963-95-9
C08029
methacycline hydrochloride
rondomycin (tn)
methacycline hydrochloride (jan/usp)
D00849
SPECTRUM1501104
MLS000766829
HMS1921D15
HMS1571A09
chebi:6806 ,
CHEMBL2146123
4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methylidene-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide,hydrochloride
3963-45-9
nsc757835
nsc-757835
pharmakon1600-01501104
dtxsid5045382 ,
dtxcid3025382
tox21_110542
AKOS015924655
CCG-39016
methacycline hydrochloride [usp]
9gj0n7zap0 ,
londomycin
methacycline hcl
unii-9gj0n7zap0
2-naphthacenecarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6-methylene-1,11-dioxo-, monohydrochloride, (4s,4ar,5s,5ar,12as)-
6-demethyl-6-deoxy-6-methyleneoxytetracycline monohydrochloride
S2527
methacycline hydrochloride [orange book]
methacycline hydrochloride [vandf]
methacycline hydrochloride [usp-rs]
methacycline hydrochloride [usp monograph]
methacycline hydrochloride [mi]
methacycline hydrochloride [mart.]
methacycline hydrochloride [jan]
metacycline hydrochloride [who-dd]
HY-B0449
methacycline (hydrochloride)
SCHEMBL127702
tox21_110542_1
NCGC00179358-04
KS-1240
2507-30-4
metacycline hcl
(4s,4ar,5s,5ar,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methylene-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide
methacycline hydrochloride (physiomycine)
sr-05000001769
methacycline hydrochloride, vetranal(tm), analytical standard
methacycline hydrochloride, united states pharmacopeia (usp) reference standard
SR-05000001769-2
methacycline hydrochloride, pharmaceutical secondary standard; certified reference material
9beta-?androsta-?4,?6-?diene-?3,?17-?dione
(4s,4ar,5s,5ar,12as)-4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methylene-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide hydrochloride
methacyclinehydrochloride
mfcd04972012
metacyclin hydrochloride
methacycline hcl (physiomycine)
Q27107336
metacycline hydrochloride 100 microg/ml in acetonitrile
DTXSID10947932
4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methylidene-3,12-dioxo-3,4,4a,5,5a,6,12,12a-octahydrotetracene-2-carboximidic acid--hydrogen chloride (1/1)
metacycline hydrochloride rs
doxycycline impurity b hcl salt
PD118485

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" An understanding of structure-activity relationships (SARs) of chemicals can make a significant contribution to the identification of potential toxic effects early in the drug development process and aid in avoiding such problems."( Developing structure-activity relationships for the prediction of hepatotoxicity.
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ, 2010
)
0.36

Bioavailability

ExcerptReferenceRelevance
"Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule."( Highly predictive and interpretable models for PAMPA permeability.
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR, 2017
)
0.46
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (52)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASEHomo sapiens (human)Potency1.88540.003245.467312,589.2998AID2517
Chain A, TYROSYL-DNA PHOSPHODIESTERASEHomo sapiens (human)Potency31.62280.004023.8416100.0000AID485290
Chain A, Beta-lactamaseEscherichia coli K-12Potency50.11870.044717.8581100.0000AID485294
Chain A, Putative fructose-1,6-bisphosphate aldolaseGiardia intestinalisPotency17.74070.140911.194039.8107AID2451
Chain A, JmjC domain-containing histone demethylation protein 3AHomo sapiens (human)Potency7.07950.631035.7641100.0000AID504339
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency3.54810.177814.390939.8107AID2147
Chain A, ATP-DEPENDENT DNA HELICASE Q1Homo sapiens (human)Potency48.53420.125919.1169125.8920AID2549; AID2708
WRNHomo sapiens (human)Potency56.23410.168331.2583100.0000AID651768
phosphopantetheinyl transferaseBacillus subtilisPotency35.48130.141337.9142100.0000AID1490
RAR-related orphan receptor gammaMus musculus (house mouse)Potency31.03990.006038.004119,952.5996AID1159521; AID1159523
USP1 protein, partialHomo sapiens (human)Potency22.38720.031637.5844354.8130AID743255
GLS proteinHomo sapiens (human)Potency35.48130.35487.935539.8107AID624170
TDP1 proteinHomo sapiens (human)Potency22.14270.000811.382244.6684AID686978; AID686979
GLI family zinc finger 3Homo sapiens (human)Potency0.66820.000714.592883.7951AID1259369
Microtubule-associated protein tauHomo sapiens (human)Potency15.58640.180013.557439.8107AID1460; AID1468
thioredoxin glutathione reductaseSchistosoma mansoniPotency35.48130.100022.9075100.0000AID485364
apical membrane antigen 1, AMA1Plasmodium falciparum 3D7Potency3.16230.707912.194339.8107AID720542
hypothetical protein, conservedTrypanosoma bruceiPotency35.48130.223911.245135.4813AID624173
regulator of G-protein signaling 4Homo sapiens (human)Potency44.66840.531815.435837.6858AID504845
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency14.83290.001530.607315,848.9004AID1224848; AID1259403
estrogen nuclear receptor alphaHomo sapiens (human)Potency11.45540.000229.305416,493.5996AID743069
cytochrome P450 2D6Homo sapiens (human)Potency38.90180.00108.379861.1304AID1645840
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency3.54810.707936.904389.1251AID504333
peroxisome proliferator activated receptor gammaHomo sapiens (human)Potency33.48890.001019.414170.9645AID743191
activating transcription factor 6Homo sapiens (human)Potency26.83250.143427.612159.8106AID1159516
runt-related transcription factor 1 isoform AML1bHomo sapiens (human)Potency22.87410.02007.985839.8107AID504374; AID504375
thyroid hormone receptor beta isoform aHomo sapiens (human)Potency31.62280.010039.53711,122.0200AID1479
core-binding factor subunit beta isoform 2Homo sapiens (human)Potency22.87410.02007.985839.8107AID504374; AID504375
importin subunit beta-1 isoform 1Homo sapiens (human)Potency39.81075.804836.130665.1308AID540263
DNA polymerase betaHomo sapiens (human)Potency11.22020.022421.010289.1251AID485314
flap endonuclease 1Homo sapiens (human)Potency32.71530.133725.412989.1251AID588795; AID720498
snurportin-1Homo sapiens (human)Potency39.81075.804836.130665.1308AID540263
DNA polymerase eta isoform 1Homo sapiens (human)Potency22.54100.100028.9256213.3130AID588591; AID720502
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency5.16880.050127.073689.1251AID588590; AID720496
lethal(3)malignant brain tumor-like protein 1 isoform IHomo sapiens (human)Potency0.89130.075215.225339.8107AID485360
gemininHomo sapiens (human)Potency29.09290.004611.374133.4983AID624296
DNA polymerase kappa isoform 1Homo sapiens (human)Potency5.03910.031622.3146100.0000AID588579; AID720501
Rap guanine nucleotide exchange factor 3Homo sapiens (human)Potency15.84896.309660.2008112.2020AID720709
Interferon betaHomo sapiens (human)Potency37.35650.00339.158239.8107AID1347407
Spike glycoproteinSevere acute respiratory syndrome-related coronavirusPotency11.22020.009610.525035.4813AID1479145
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
integrase, partialHuman immunodeficiency virus 1IC50 (µMol)5.62950.07953.52039.9390AID1053171; AID1053172
lens epithelium-derived growth factor p75Homo sapiens (human)IC50 (µMol)5.62950.07953.52039.9390AID1053171; AID1053172
Phospholipase C, gamma 1Homo sapiens (human)IC50 (µMol)122.49001.21203.16626.3720AID743329
NS3, partialIC50 (µMol)108.80305.22405.22405.2240AID2173
rac GTPase-activating protein 1 isoform aHomo sapiens (human)IC50 (µMol)66.85007.390057.8904301.2400AID624330
DNA repair protein RAD52 homologHomo sapiens (human)IC50 (µMol)2.90000.25502.63016.7000AID1639797; AID1639799
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
streptokinase A precursorStreptococcus pyogenes M1 GASEC50 (µMol)0.09300.06008.9128130.5170AID1902
Nuclear receptor subfamily 1 group I member 2Homo sapiens (human)EC50 (µMol)7.90000.00203.519610.0000AID1215087; AID1215094
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
twin arginine protein translocation system - TatA proteinEscherichia coli str. K-12 substr. MG1655AC500.70700.707010.915145.8560AID504941
POsterior SegregationCaenorhabditis elegansAC5011.35903.298012.464924.6150AID493130
Zinc finger protein mex-5Caenorhabditis elegansAC5017.69000.300031.0987106.7000AID449745
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (69)

Processvia Protein(s)Taxonomy
negative regulation of DNA-templated transcriptionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
regulation of DNA-templated transcriptionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
xenobiotic metabolic processNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
signal transductionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
steroid metabolic processNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
positive regulation of gene expressionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
intracellular receptor signaling pathwayNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
xenobiotic catabolic processNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
xenobiotic transportNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
positive regulation of DNA-templated transcriptionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
positive regulation of transcription by RNA polymerase IINuclear receptor subfamily 1 group I member 2Homo sapiens (human)
cell differentiationNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
negative regulation of transcription by RNA polymerase IINuclear receptor subfamily 1 group I member 2Homo sapiens (human)
angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
adaptive immune responseRap guanine nucleotide exchange factor 3Homo sapiens (human)
signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayRap guanine nucleotide exchange factor 3Homo sapiens (human)
associative learningRap guanine nucleotide exchange factor 3Homo sapiens (human)
Rap protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of actin cytoskeleton organizationRap guanine nucleotide exchange factor 3Homo sapiens (human)
negative regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
intracellular signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of GTPase activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of angiogenesisRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of protein export from nucleusRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of stress fiber assemblyRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
positive regulation of syncytium formation by plasma membrane fusionRap guanine nucleotide exchange factor 3Homo sapiens (human)
establishment of endothelial barrierRap guanine nucleotide exchange factor 3Homo sapiens (human)
cellular response to cAMPRap guanine nucleotide exchange factor 3Homo sapiens (human)
Ras protein signal transductionRap guanine nucleotide exchange factor 3Homo sapiens (human)
regulation of insulin secretionRap guanine nucleotide exchange factor 3Homo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
DNA double-strand break processing involved in repair via single-strand annealingDNA repair protein RAD52 homologHomo sapiens (human)
cellular response to oxidative stressDNA repair protein RAD52 homologHomo sapiens (human)
regulation of nucleotide-excision repairDNA repair protein RAD52 homologHomo sapiens (human)
DNA recombinase assemblyDNA repair protein RAD52 homologHomo sapiens (human)
double-strand break repairDNA repair protein RAD52 homologHomo sapiens (human)
DNA recombinationDNA repair protein RAD52 homologHomo sapiens (human)
double-strand break repair via homologous recombinationDNA repair protein RAD52 homologHomo sapiens (human)
mitotic recombinationDNA repair protein RAD52 homologHomo sapiens (human)
double-strand break repair via single-strand annealingDNA repair protein RAD52 homologHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (19)

Processvia Protein(s)Taxonomy
RNA polymerase II transcription regulatory region sequence-specific DNA bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
nuclear receptor activityNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
protein bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
zinc ion bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
nuclear receptor bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
sequence-specific double-stranded DNA bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
guanyl-nucleotide exchange factor activityRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
protein domain specific bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
cAMP bindingRap guanine nucleotide exchange factor 3Homo sapiens (human)
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
DNA bindingDNA repair protein RAD52 homologHomo sapiens (human)
single-stranded DNA bindingDNA repair protein RAD52 homologHomo sapiens (human)
protein bindingDNA repair protein RAD52 homologHomo sapiens (human)
identical protein bindingDNA repair protein RAD52 homologHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (19)

Processvia Protein(s)Taxonomy
nucleoplasmNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
transcription regulator complexNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
nuclear bodyNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
intermediate filament cytoskeletonNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
chromatinNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
nucleusNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
cortical actin cytoskeletonRap guanine nucleotide exchange factor 3Homo sapiens (human)
plasma membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
microvillusRap guanine nucleotide exchange factor 3Homo sapiens (human)
endomembrane systemRap guanine nucleotide exchange factor 3Homo sapiens (human)
membraneRap guanine nucleotide exchange factor 3Homo sapiens (human)
lamellipodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
filopodiumRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular exosomeRap guanine nucleotide exchange factor 3Homo sapiens (human)
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
nucleusDNA repair protein RAD52 homologHomo sapiens (human)
nucleoplasmDNA repair protein RAD52 homologHomo sapiens (human)
protein-containing complexDNA repair protein RAD52 homologHomo sapiens (human)
protein-DNA complexDNA repair protein RAD52 homologHomo sapiens (human)
nucleusDNA repair protein RAD52 homologHomo sapiens (human)
virion membraneSpike glycoproteinSevere acute respiratory syndrome-related coronavirus
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (65)

Assay IDTitleYearJournalArticle
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347161Confirmatory screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508612NCATS Parallel Artificial Membrane Permeability Assay (PAMPA) Profiling2017Bioorganic & medicinal chemistry, 02-01, Volume: 25, Issue:3
Highly predictive and interpretable models for PAMPA permeability.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1508591NCATS Rat Liver Microsome Stability Profiling2020Scientific reports, 11-26, Volume: 10, Issue:1
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID720501qHTS for Inhibitors of Polymerase Kappa: Confirmatory Assay for Cherry-picked Compounds2012PloS one, , Volume: 7, Issue:10
A comprehensive strategy to discover inhibitors of the translesion synthesis DNA polymerase κ.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1159550Human Phosphogluconate dehydrogenase (6PGD) Inhibitor Screening2015Nature cell biology, Nov, Volume: 17, Issue:11
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504787Counterscreen for agonists of nuclear receptor subfamily 2, group E, member 3 (NR2E3): TR-FRET-based biochemical high throughput assay to identify agonists of the interaction between peroxisome proliferator-activated receptor gamma (PPARg) and nuclear rec2006Assay and drug development technologies, Jun, Volume: 4, Issue:3
Development of the high throughput screening assay for identification of agonists of an orphan nuclear receptor.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1215093Activation of rat PXR expressed in human HepG2 cells up to 46 uM after 24 hrs by luciferase reporter gene based luminescent analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID625295Drug Induced Liver Injury Prediction System (DILIps) validation dataset; compound DILI positive/negative as observed in Pfizer data2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID644959Aqueous solubility of the compound2012Bioorganic & medicinal chemistry letters, Feb-15, Volume: 22, Issue:4
Pre-microRNA binding aminoglycosides and antitumor drugs as inhibitors of Dicer catalyzed microRNA processing.
AID644960Displacement of ethidium bromide from human pre-hsa-mir-155 miRNA after 30 mins2012Bioorganic & medicinal chemistry letters, Feb-15, Volume: 22, Issue:4
Pre-microRNA binding aminoglycosides and antitumor drugs as inhibitors of Dicer catalyzed microRNA processing.
AID588210Human drug-induced liver injury (DILI) modelling dataset from Ekins et al2010Drug metabolism and disposition: the biological fate of chemicals, Dec, Volume: 38, Issue:12
A predictive ligand-based Bayesian model for human drug-induced liver injury.
AID1215089Activation of human PXR expressed in human HepG2 (DPX-2) cells assessed as induction of CYP3A4 after 24 hrs by luminescent analysis relative to rifampicin2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215087Activation of human PXR expressed in human HepG2 (DPX-2) cells assessed as induction of CYP3A4 after 24 hrs by luminescent analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID588209Literature-mined public compounds from Greene et al multi-species hepatotoxicity modelling dataset2010Chemical research in toxicology, Jul-19, Volume: 23, Issue:7
Developing structure-activity relationships for the prediction of hepatotoxicity.
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1215095Competitive binding affinity to human PXR LBD (111 to 434) by TR-FRET assay relative to SR128132011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1215094Competitive binding affinity to human PXR LBD (111 to 434) by TR-FRET assay2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215091Activation of human PXR expressed in human HepG2 (DPX-2) cells up to 46 uM after 24 hrs by luciferase reporter gene based luminescent analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (26)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (7.69)29.6817
2010's17 (65.38)24.3611
2020's7 (26.92)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 11.46

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index11.46 (24.57)
Research Supply Index3.30 (2.92)
Research Growth Index4.75 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (11.46)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (3.85%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other25 (96.15%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]