Page last updated: 2024-11-04

fenamic acid

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

Fenamic acid is a non-steroidal anti-inflammatory drug (NSAID) that is a derivative of anthranilic acid. It is used in the treatment of pain, inflammation, and fever. Fenamic acid is a potent inhibitor of cyclooxygenase (COX), an enzyme that is involved in the production of prostaglandins, which are responsible for pain, inflammation, and fever. Fenamic acid is also an effective inhibitor of the COX-2 enzyme, which is thought to be responsible for the gastrointestinal side effects of NSAIDs. Fenamic acid is a prodrug, which means that it is inactive in its original form and must be metabolized in the body to become active. Fenamic acid is metabolized in the liver to form a number of active metabolites, including mefenamic acid. The active metabolites of fenamic acid are then excreted in the urine. Fenamic acid is generally well-tolerated, but it can cause side effects, such as gastrointestinal upset, headache, and dizziness. Fenamic acid should not be used by people who are allergic to it or who have certain medical conditions, such as asthma, kidney disease, or liver disease. Fenamic acid is available in oral and topical forms. The oral form is typically taken by mouth, while the topical form is applied to the skin. The dosage of fenamic acid will vary depending on the individual and the condition being treated. Fenamic acid has been studied for its potential use in the treatment of a variety of conditions, including arthritis, cancer, and Alzheimer's disease. However, more research is needed to determine the safety and effectiveness of fenamic acid for these conditions. '

fenamic acid: has chloride and potassium channel-blocking activity; RN given refers to parent cpd [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

fenamic acid : An aminobenzoic acid that is the N-phenyl derivative of anthranilic acid. It acts as a parent skeleton for the synthesis of several non-steroidal anti-inflammatory drugs. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID4386
CHEMBL ID23832
CHEBI ID34756
SCHEMBL ID25828
MeSH IDM0041320

Synonyms (137)

Synonym
BIDD:GT0820
n-phenylanthranilic
CBIOL_001836
brn 1456607
nsc 215211
einecs 202-066-8
ai3-08880
smr001230825
MLS002153472
BB 0255314
BRD-K80863915-001-02-9
2-anilino-benzoic acid
fenamic acid
o-anilinobenzoic acid
nsc-4273
phenylanthranilic acid
benzoic acid, 2-(phenylamino)-
anthranilic acid, n-phenyl-
nsc4273
2-(phenylamino)benzoic acid
n-phenyl-o-aminobenzoic acid
2-carboxydiphenylamine
diphenylamine-2-carboxylic acid
n-phenylanthranilic acid
91-40-7
2-anilinobenzoic acid
nsc215211
nsc-215211
EU-0100011
n-phenylanthranilic acid, 98%
OPREA1_622264
BIO2_000621
NCGC00014989-01
BIO1_000611
lopac-144509
CBDIVE_001949
BIO1_001100
BIO1_000122
BIO2_000141
OPREA1_414882
LOPAC0_000011
CMAP_000012
BCBCMAP01_000076
BSPBIO_001421
STK089446
inchi=1/c13h11no2/c15-13(16)11-8-4-5-9-12(11)14-10-6-2-1-3-7-10/h1-9,14h,(h,15,16)
zwjinezuasezbh-uhfffaoysa-
NCGC00093536-05
NCGC00093536-02
NCGC00093536-04
KBIO3_000281
KBIO2_002302
KBIOSS_002304
KBIOSS_000141
KBIO3_002782
KBIO2_007438
KBIO2_004870
KBIO3_000282
KBIOGR_000141
KBIO2_000141
KBIO2_005277
KBIO2_002709
KBIOGR_002302
SPECTRUM1505156
IDI1_033891
NCGC00093536-03
NCGC00093536-06
NCGC00093536-01
n-phenylanthranilic acid, technical, >=95% (t)
NCGC00014989-02
HMS1989H03
diphenylamine-2-carboxylic acid; dpc
D0873
NCGC00014989-08
2-phenylamino-benzoic acid
chebi:34756 ,
CHEMBL23832 ,
AKOS000118791
HMS1791H03
HMS1361H03
A843855
HMS3260C03
bdbm50337278
BBL008122
CCG-204107
HMS2232G15
n-phenyl-ortho-aminobenzoic acid
ortho-anilinobenzoic acid
NCGC00014989-05
NCGC00014989-06
NCGC00014989-04
NCGC00014989-07
NCGC00014989-03
unii-952vn06wbb
952vn06wbb ,
FT-0631438
LP00011
AE-641/02494034
S5517
HMS3373F04
gtpl4182
n-phenylanthranilic acid [mi]
SCHEMBL25828
NCGC00260696-01
tox21_500011
n-phenyl anthranilic acid
n-phenyl-anthranilic acid
DTXSID6059025
W-100309
o-(phenylamino)benzoic acid
diphenylaminecarboxylic acid-(2)
n-phenyl-2-aminobenzoic acid
HMS3402H03
MLS-0412242.P016
mfcd00002421
F3145-3322
MLS-0412242
CS-W021005
SR-01000075342-1
SR-01000075342-2
sr-01000075342
Q498436
SY048561
n-phenyl 2-aminobenzoic acid
DS-14719
BRD-K80863915-001-05-2
EN300-18386
SDCCGSBI-0050000.P002
NCGC00014989-12
AMY40863
2-phenylazanylbenzoic acid
D70372
phenylanthranilsa currencyure
SDCCGMLS-0412242.P028
SB78726
HY-W040265
Z57127451

Research Excerpts

Overview

Mefenamic acid is a relatively potent and selective inhibitor of HL-PST.

ExcerptReferenceRelevance
"Mefenamic acid is a relatively potent and selective inhibitor of HL-PST."( Fenamates and the potent inhibition of human liver phenol sulphotransferase.
De Santi, C; Mosca, F; Pacifici, GM; Pietrabissa, A; Vietri, M, 2000
)
0.87

Dosage Studied

ExcerptRelevanceReference
" When untreated rats were dosed orally with NH4Cl (400 mg/kg) there was a lag period between 0 and 2 hr (when no changes in H+ excretion occurred), but the urinary pH was depressed in the 2- to 4-hr collection period."( The effect of N-phenylanthranilic acid-induced renal papillary necrosis on urinary acidification and renal electrolyte handling.
Bach, PH; Hardy, TL, 1984
)
0.27
" Dose-response relations for PGE2 and subtype receptors EP1/EP3 (sulprostone), EP2 (butaprost), and EP4 (1-OH PGE1) were assessed by cumulated doses of single agonists."( Duodenal secretion in humans mediated by the EP4 receptor subtype.
Bindslev, N; Hansen, MB; Larsen, R, 2005
)
0.33
" Han-Wistar rats were dosed with cisplatin [2."( Fatty-Acid Binding Protein 4 (FABP4) as a Potential Preclinical Biomarker of Drug-Induced Kidney Injury.
Cotter, M; De Ron, P; Dremier, S; Fleurance, R; Gryshkova, V; Nogueira da Costa, A; Obajdin, J; Snelling, S; Valentin, JP, 2018
)
0.48
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
membrane transport modulatorAny agent that affects the transport of molecular entities across a biological membrane.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
secondary amino compoundA compound formally derived from ammonia by replacing two hydrogen atoms by organyl groups.
aminobenzoic acid
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (50)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASEHomo sapiens (human)Potency10.76880.003245.467312,589.2998AID2517
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency39.81070.177814.390939.8107AID2147
USP1 protein, partialHomo sapiens (human)Potency35.48130.031637.5844354.8130AID743255
NFKB1 protein, partialHomo sapiens (human)Potency0.63100.02827.055915.8489AID895; AID928
TDP1 proteinHomo sapiens (human)Potency22.37880.000811.382244.6684AID686978; AID686979
Microtubule-associated protein tauHomo sapiens (human)Potency19.73590.180013.557439.8107AID1460
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency42.23950.011212.4002100.0000AID1030
thyroid stimulating hormone receptorHomo sapiens (human)Potency25.11890.001318.074339.8107AID926; AID938
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency5.62340.28189.721235.4813AID2326
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency0.24040.001530.607315,848.9004AID1224819; AID1224820
arylsulfatase AHomo sapiens (human)Potency8.49211.069113.955137.9330AID720538
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency28.82870.035520.977089.1251AID504332
Bloom syndrome protein isoform 1Homo sapiens (human)Potency0.00010.540617.639296.1227AID2364; AID2528
cytochrome P450 2C9 precursorHomo sapiens (human)Potency15.84890.00636.904339.8107AID883
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency28.18380.001815.663839.8107AID894
chromobox protein homolog 1Homo sapiens (human)Potency50.11870.006026.168889.1251AID488953
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency25.11890.050127.073689.1251AID588590
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency31.62280.031610.279239.8107AID884; AID885
lamin isoform A-delta10Homo sapiens (human)Potency5.62340.891312.067628.1838AID1487
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Alpha-synucleinHomo sapiens (human)Potency35.48130.56239.398525.1189AID652106
Histamine H2 receptorCavia porcellus (domestic guinea pig)Potency15.84890.00638.235039.8107AID883
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
TAR DNA-binding protein 43Homo sapiens (human)Potency31.62281.778316.208135.4813AID652104
GABA theta subunitRattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency31.62281.000012.224831.6228AID885
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency0.37930.060110.745337.9330AID485368
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Carbonic anhydrase 12Homo sapiens (human)Ki0.05000.00021.10439.9000AID678518
Carbonic anhydrase 1Homo sapiens (human)Ki1.20000.00001.372610.0000AID678515
Carbonic anhydrase 2Homo sapiens (human)Ki0.03800.00000.72369.9200AID678516
Fatty acid-binding protein, adipocyteHomo sapiens (human)IC50 (µMol)51.00000.22101.22532.7500AID1871869
Fatty acid-binding protein, adipocyteHomo sapiens (human)Ki50.69030.00200.92916.8000AID1648406
Aldo-keto reductase family 1 member C3Homo sapiens (human)IC50 (µMol)1.51000.05002.207010.0000AID577840; AID666394
Corticosteroid 11-beta-dehydrogenase isozyme 1Mus musculus (house mouse)Ki0.08700.01000.22940.7500AID678520
Aldo-keto reductase family 1 member C2 Homo sapiens (human)IC50 (µMol)0.44000.37004.09519.2800AID577841; AID666395
Carbonic anhydrase 9Homo sapiens (human)Ki0.05000.00010.78749.9000AID678517
Carbonic anhydrase Cryptococcus neoformans var. grubiiKi0.08700.01000.73648.3470AID678520
NAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)IC50 (µMol)100.00000.50003.848110.0000AID690693
NAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)IC50 (µMol)68.00000.00601.62509.0000AID1317155; AID690691
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (284)

Processvia Protein(s)Taxonomy
estrous cycleCarbonic anhydrase 12Homo sapiens (human)
chloride ion homeostasisCarbonic anhydrase 12Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 12Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 1Homo sapiens (human)
morphogenesis of an epitheliumCarbonic anhydrase 2Homo sapiens (human)
positive regulation of synaptic transmission, GABAergicCarbonic anhydrase 2Homo sapiens (human)
positive regulation of cellular pH reductionCarbonic anhydrase 2Homo sapiens (human)
angiotensin-activated signaling pathwayCarbonic anhydrase 2Homo sapiens (human)
regulation of monoatomic anion transportCarbonic anhydrase 2Homo sapiens (human)
secretionCarbonic anhydrase 2Homo sapiens (human)
regulation of intracellular pHCarbonic anhydrase 2Homo sapiens (human)
neuron cellular homeostasisCarbonic anhydrase 2Homo sapiens (human)
positive regulation of dipeptide transmembrane transportCarbonic anhydrase 2Homo sapiens (human)
regulation of chloride transportCarbonic anhydrase 2Homo sapiens (human)
carbon dioxide transportCarbonic anhydrase 2Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 2Homo sapiens (human)
response to bacteriumFatty acid-binding protein, adipocyteHomo sapiens (human)
long-chain fatty acid transportFatty acid-binding protein, adipocyteHomo sapiens (human)
cholesterol homeostasisFatty acid-binding protein, adipocyteHomo sapiens (human)
negative regulation of DNA-templated transcriptionFatty acid-binding protein, adipocyteHomo sapiens (human)
positive regulation of inflammatory responseFatty acid-binding protein, adipocyteHomo sapiens (human)
white fat cell differentiationFatty acid-binding protein, adipocyteHomo sapiens (human)
brown fat cell differentiationFatty acid-binding protein, adipocyteHomo sapiens (human)
cellular response to lithium ionFatty acid-binding protein, adipocyteHomo sapiens (human)
cellular response to tumor necrosis factorFatty acid-binding protein, adipocyteHomo sapiens (human)
positive regulation of cold-induced thermogenesisFatty acid-binding protein, adipocyteHomo sapiens (human)
fatty acid transportFatty acid-binding protein, adipocyteHomo sapiens (human)
calcium ion homeostasisAlpha-synucleinHomo sapiens (human)
negative regulation of transcription by RNA polymerase IIAlpha-synucleinHomo sapiens (human)
microglial cell activationAlpha-synucleinHomo sapiens (human)
positive regulation of receptor recyclingAlpha-synucleinHomo sapiens (human)
positive regulation of neurotransmitter secretionAlpha-synucleinHomo sapiens (human)
negative regulation of protein kinase activityAlpha-synucleinHomo sapiens (human)
fatty acid metabolic processAlpha-synucleinHomo sapiens (human)
neutral lipid metabolic processAlpha-synucleinHomo sapiens (human)
phospholipid metabolic processAlpha-synucleinHomo sapiens (human)
activation of cysteine-type endopeptidase activity involved in apoptotic processAlpha-synucleinHomo sapiens (human)
mitochondrial membrane organizationAlpha-synucleinHomo sapiens (human)
adult locomotory behaviorAlpha-synucleinHomo sapiens (human)
response to xenobiotic stimulusAlpha-synucleinHomo sapiens (human)
response to iron(II) ionAlpha-synucleinHomo sapiens (human)
regulation of phospholipase activityAlpha-synucleinHomo sapiens (human)
negative regulation of platelet-derived growth factor receptor signaling pathwayAlpha-synucleinHomo sapiens (human)
regulation of glutamate secretionAlpha-synucleinHomo sapiens (human)
regulation of dopamine secretionAlpha-synucleinHomo sapiens (human)
synaptic vesicle exocytosisAlpha-synucleinHomo sapiens (human)
synaptic vesicle primingAlpha-synucleinHomo sapiens (human)
regulation of transmembrane transporter activityAlpha-synucleinHomo sapiens (human)
negative regulation of microtubule polymerizationAlpha-synucleinHomo sapiens (human)
receptor internalizationAlpha-synucleinHomo sapiens (human)
protein destabilizationAlpha-synucleinHomo sapiens (human)
response to magnesium ionAlpha-synucleinHomo sapiens (human)
negative regulation of transporter activityAlpha-synucleinHomo sapiens (human)
response to lipopolysaccharideAlpha-synucleinHomo sapiens (human)
negative regulation of monooxygenase activityAlpha-synucleinHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylationAlpha-synucleinHomo sapiens (human)
response to type II interferonAlpha-synucleinHomo sapiens (human)
cellular response to oxidative stressAlpha-synucleinHomo sapiens (human)
SNARE complex assemblyAlpha-synucleinHomo sapiens (human)
positive regulation of SNARE complex assemblyAlpha-synucleinHomo sapiens (human)
regulation of locomotionAlpha-synucleinHomo sapiens (human)
dopamine biosynthetic processAlpha-synucleinHomo sapiens (human)
mitochondrial ATP synthesis coupled electron transportAlpha-synucleinHomo sapiens (human)
regulation of macrophage activationAlpha-synucleinHomo sapiens (human)
positive regulation of apoptotic processAlpha-synucleinHomo sapiens (human)
negative regulation of apoptotic processAlpha-synucleinHomo sapiens (human)
negative regulation of cysteine-type endopeptidase activity involved in apoptotic processAlpha-synucleinHomo sapiens (human)
negative regulation of neuron apoptotic processAlpha-synucleinHomo sapiens (human)
positive regulation of endocytosisAlpha-synucleinHomo sapiens (human)
negative regulation of exocytosisAlpha-synucleinHomo sapiens (human)
positive regulation of exocytosisAlpha-synucleinHomo sapiens (human)
regulation of long-term neuronal synaptic plasticityAlpha-synucleinHomo sapiens (human)
synaptic vesicle endocytosisAlpha-synucleinHomo sapiens (human)
synaptic vesicle transportAlpha-synucleinHomo sapiens (human)
positive regulation of inflammatory responseAlpha-synucleinHomo sapiens (human)
regulation of acyl-CoA biosynthetic processAlpha-synucleinHomo sapiens (human)
protein tetramerizationAlpha-synucleinHomo sapiens (human)
positive regulation of release of sequestered calcium ion into cytosolAlpha-synucleinHomo sapiens (human)
neuron apoptotic processAlpha-synucleinHomo sapiens (human)
dopamine uptake involved in synaptic transmissionAlpha-synucleinHomo sapiens (human)
negative regulation of dopamine uptake involved in synaptic transmissionAlpha-synucleinHomo sapiens (human)
negative regulation of serotonin uptakeAlpha-synucleinHomo sapiens (human)
regulation of norepinephrine uptakeAlpha-synucleinHomo sapiens (human)
negative regulation of norepinephrine uptakeAlpha-synucleinHomo sapiens (human)
excitatory postsynaptic potentialAlpha-synucleinHomo sapiens (human)
long-term synaptic potentiationAlpha-synucleinHomo sapiens (human)
positive regulation of inositol phosphate biosynthetic processAlpha-synucleinHomo sapiens (human)
negative regulation of thrombin-activated receptor signaling pathwayAlpha-synucleinHomo sapiens (human)
response to interleukin-1Alpha-synucleinHomo sapiens (human)
cellular response to copper ionAlpha-synucleinHomo sapiens (human)
cellular response to epinephrine stimulusAlpha-synucleinHomo sapiens (human)
positive regulation of protein serine/threonine kinase activityAlpha-synucleinHomo sapiens (human)
supramolecular fiber organizationAlpha-synucleinHomo sapiens (human)
negative regulation of mitochondrial electron transport, NADH to ubiquinoneAlpha-synucleinHomo sapiens (human)
positive regulation of glutathione peroxidase activityAlpha-synucleinHomo sapiens (human)
positive regulation of hydrogen peroxide catabolic processAlpha-synucleinHomo sapiens (human)
regulation of synaptic vesicle recyclingAlpha-synucleinHomo sapiens (human)
regulation of reactive oxygen species biosynthetic processAlpha-synucleinHomo sapiens (human)
positive regulation of protein localization to cell peripheryAlpha-synucleinHomo sapiens (human)
negative regulation of chaperone-mediated autophagyAlpha-synucleinHomo sapiens (human)
regulation of presynapse assemblyAlpha-synucleinHomo sapiens (human)
amyloid fibril formationAlpha-synucleinHomo sapiens (human)
synapse organizationAlpha-synucleinHomo sapiens (human)
chemical synaptic transmissionAlpha-synucleinHomo sapiens (human)
retinoid metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
prostaglandin metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
G protein-coupled receptor signaling pathwayAldo-keto reductase family 1 member C3Homo sapiens (human)
response to nutrientAldo-keto reductase family 1 member C3Homo sapiens (human)
steroid metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
positive regulation of cell population proliferationAldo-keto reductase family 1 member C3Homo sapiens (human)
male gonad developmentAldo-keto reductase family 1 member C3Homo sapiens (human)
cellular response to starvationAldo-keto reductase family 1 member C3Homo sapiens (human)
farnesol catabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
cyclooxygenase pathwayAldo-keto reductase family 1 member C3Homo sapiens (human)
keratinocyte differentiationAldo-keto reductase family 1 member C3Homo sapiens (human)
progesterone metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
retinol metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
retinal metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
macromolecule metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
daunorubicin metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
doxorubicin metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
regulation of retinoic acid receptor signaling pathwayAldo-keto reductase family 1 member C3Homo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionAldo-keto reductase family 1 member C3Homo sapiens (human)
testosterone biosynthetic processAldo-keto reductase family 1 member C3Homo sapiens (human)
renal absorptionAldo-keto reductase family 1 member C3Homo sapiens (human)
cellular response to calcium ionAldo-keto reductase family 1 member C3Homo sapiens (human)
cellular response to prostaglandin stimulusAldo-keto reductase family 1 member C3Homo sapiens (human)
cellular response to corticosteroid stimulusAldo-keto reductase family 1 member C3Homo sapiens (human)
cellular response to jasmonic acid stimulusAldo-keto reductase family 1 member C3Homo sapiens (human)
cellular response to prostaglandin D stimulusAldo-keto reductase family 1 member C3Homo sapiens (human)
negative regulation of retinoic acid biosynthetic processAldo-keto reductase family 1 member C3Homo sapiens (human)
regulation of testosterone biosynthetic processAldo-keto reductase family 1 member C3Homo sapiens (human)
positive regulation of endothelial cell apoptotic processAldo-keto reductase family 1 member C3Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processAldo-keto reductase family 1 member C3Homo sapiens (human)
prostaglandin metabolic processAldo-keto reductase family 1 member C2 Homo sapiens (human)
G protein-coupled receptor signaling pathwayAldo-keto reductase family 1 member C2 Homo sapiens (human)
digestionAldo-keto reductase family 1 member C2 Homo sapiens (human)
steroid metabolic processAldo-keto reductase family 1 member C2 Homo sapiens (human)
positive regulation of cell population proliferationAldo-keto reductase family 1 member C2 Homo sapiens (human)
epithelial cell differentiationAldo-keto reductase family 1 member C2 Homo sapiens (human)
progesterone metabolic processAldo-keto reductase family 1 member C2 Homo sapiens (human)
daunorubicin metabolic processAldo-keto reductase family 1 member C2 Homo sapiens (human)
doxorubicin metabolic processAldo-keto reductase family 1 member C2 Homo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionAldo-keto reductase family 1 member C2 Homo sapiens (human)
cellular response to jasmonic acid stimulusAldo-keto reductase family 1 member C2 Homo sapiens (human)
cellular response to prostaglandin D stimulusAldo-keto reductase family 1 member C2 Homo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
response to hypoxiaCarbonic anhydrase 9Homo sapiens (human)
morphogenesis of an epitheliumCarbonic anhydrase 9Homo sapiens (human)
response to xenobiotic stimulusCarbonic anhydrase 9Homo sapiens (human)
response to testosteroneCarbonic anhydrase 9Homo sapiens (human)
secretionCarbonic anhydrase 9Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 9Homo sapiens (human)
negative regulation of transcription by RNA polymerase IINAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
rDNA heterochromatin formationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
protein deacetylationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
autophagyNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
mitotic nuclear membrane reassemblyNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
regulation of exit from mitosisNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of autophagyNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of peptidyl-threonine phosphorylationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
substantia nigra developmentNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
myelination in peripheral nervous systemNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
heterochromatin formationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
subtelomeric heterochromatin formationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
regulation of myelinationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of proteasomal ubiquitin-dependent protein catabolic processNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
cellular response to oxidative stressNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
peptidyl-lysine deacetylationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
epigenetic regulation of gene expressionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of protein catabolic processNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
regulation of phosphorylationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
proteasome-mediated ubiquitin-dependent protein catabolic processNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of DNA bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
post-translational protein modificationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
cellular lipid catabolic processNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NLRP3 inflammasome complex assemblyNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
innate immune responseNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of fat cell differentiationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of fatty acid biosynthetic processNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of meiotic nuclear divisionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of striated muscle tissue developmentNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of DNA-templated transcriptionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of transcription by RNA polymerase IINAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
cell divisionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
meiotic cell cycleNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
regulation of cell cycleNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
response to redox stateNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of cell divisionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of attachment of spindle microtubules to kinetochoreNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
cellular response to caloric restrictionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of oligodendrocyte progenitor proliferationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
cellular response to hypoxiaNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
cellular response to epinephrine stimulusNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
tubulin deacetylationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of execution phase of apoptosisNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
positive regulation of oocyte maturationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of NLRP3 inflammasome complex assemblyNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of satellite cell differentiationNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
single strand break repairNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of transcription by RNA polymerase IINAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
rDNA heterochromatin formationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
pyrimidine dimer repair by nucleotide-excision repairNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
DNA synthesis involved in DNA repairNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
angiogenesisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
ovulation from ovarian follicleNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
intracellular glucose homeostasisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of protein phosphorylationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of endothelial cell proliferationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of adaptive immune responseNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
chromatin organizationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
DNA methylation-dependent heterochromatin formationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
protein deacetylationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
triglyceride mobilizationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
DNA damage responseNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
response to oxidative stressNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
spermatogenesisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of mitotic cell cycleNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
muscle organ developmentNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of cell population proliferationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cellular response to starvationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of gene expressionNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of centrosome duplicationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of triglyceride biosynthetic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of cholesterol effluxNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of lipid storageNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of glucose metabolic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of macroautophagyNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
protein ubiquitinationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
peptidyl-lysine acetylationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
macrophage differentiationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of prostaglandin biosynthetic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
heterochromatin formationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
protein destabilizationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of TOR signalingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of endodeoxyribonuclease activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of NF-kappaB transcription factor activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
response to insulinNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
circadian regulation of gene expressionNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
leptin-mediated signaling pathwayNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of smooth muscle cell apoptotic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
intracellular triglyceride homeostasisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of peroxisome proliferator activated receptor signaling pathwayNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of cell population proliferationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cellular response to glucose starvationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of phosphorylationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
response to hydrogen peroxideNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
behavioral response to starvationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cholesterol homeostasisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of apoptotic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of apoptotic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of apoptotic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of canonical NF-kappaB signal transductionNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
proteasome-mediated ubiquitin-dependent protein catabolic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of cysteine-type endopeptidase activity involved in apoptotic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of DNA-binding transcription factor activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of DNA damage response, signal transduction by p53 class mediatorNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of neuron apoptotic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of blood vessel endothelial cell migrationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
response to leptinNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of MHC class II biosynthetic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of fat cell differentiationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of gluconeogenesisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of DNA repairNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of angiogenesisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of cell cycleNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of DNA-templated transcriptionNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of transcription by RNA polymerase IINAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of transcription by glucoseNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of insulin receptor signaling pathwayNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
white fat cell differentiationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of helicase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of smooth muscle cell differentiationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
maintenance of nucleus locationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
fatty acid homeostasisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of androgen receptor signaling pathwayNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of macrophage cytokine productionNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cellular response to hydrogen peroxideNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of bile acid biosynthetic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
UV-damage excision repairNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cellular response to tumor necrosis factorNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cellular response to hypoxiaNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cellular response to ionizing radiationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of protein serine/threonine kinase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of brown fat cell differentiationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
stress-induced premature senescenceNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
energy homeostasisNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
protein depropionylationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
DNA repair-dependent chromatin remodelingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
regulation of cellular response to heatNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of signal transduction by p53 class mediatorNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of protein acetylationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathwayNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathwayNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of adipose tissue developmentNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cellular response to leukemia inhibitory factorNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of macrophage apoptotic processNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of cAMP-dependent protein kinase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of cAMP-dependent protein kinase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of cellular response to testosterone stimulusNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of peptidyl-lysine acetylationNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
negative regulation of cellular senescenceNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of cellular senescenceNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
positive regulation of double-strand break repairNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (103)

Processvia Protein(s)Taxonomy
zinc ion bindingCarbonic anhydrase 12Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 12Homo sapiens (human)
arylesterase activityCarbonic anhydrase 1Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 1Homo sapiens (human)
protein bindingCarbonic anhydrase 1Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 1Homo sapiens (human)
hydro-lyase activityCarbonic anhydrase 1Homo sapiens (human)
cyanamide hydratase activityCarbonic anhydrase 1Homo sapiens (human)
arylesterase activityCarbonic anhydrase 2Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 2Homo sapiens (human)
protein bindingCarbonic anhydrase 2Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 2Homo sapiens (human)
cyanamide hydratase activityCarbonic anhydrase 2Homo sapiens (human)
long-chain fatty acid transmembrane transporter activityFatty acid-binding protein, adipocyteHomo sapiens (human)
long-chain fatty acid bindingFatty acid-binding protein, adipocyteHomo sapiens (human)
hormone receptor bindingFatty acid-binding protein, adipocyteHomo sapiens (human)
fatty acid bindingFatty acid-binding protein, adipocyteHomo sapiens (human)
fatty acid bindingAlpha-synucleinHomo sapiens (human)
phospholipase D inhibitor activityAlpha-synucleinHomo sapiens (human)
SNARE bindingAlpha-synucleinHomo sapiens (human)
magnesium ion bindingAlpha-synucleinHomo sapiens (human)
transcription cis-regulatory region bindingAlpha-synucleinHomo sapiens (human)
actin bindingAlpha-synucleinHomo sapiens (human)
protein kinase inhibitor activityAlpha-synucleinHomo sapiens (human)
copper ion bindingAlpha-synucleinHomo sapiens (human)
calcium ion bindingAlpha-synucleinHomo sapiens (human)
protein bindingAlpha-synucleinHomo sapiens (human)
phospholipid bindingAlpha-synucleinHomo sapiens (human)
ferrous iron bindingAlpha-synucleinHomo sapiens (human)
zinc ion bindingAlpha-synucleinHomo sapiens (human)
lipid bindingAlpha-synucleinHomo sapiens (human)
oxidoreductase activityAlpha-synucleinHomo sapiens (human)
kinesin bindingAlpha-synucleinHomo sapiens (human)
Hsp70 protein bindingAlpha-synucleinHomo sapiens (human)
histone bindingAlpha-synucleinHomo sapiens (human)
identical protein bindingAlpha-synucleinHomo sapiens (human)
alpha-tubulin bindingAlpha-synucleinHomo sapiens (human)
cysteine-type endopeptidase inhibitor activity involved in apoptotic processAlpha-synucleinHomo sapiens (human)
tau protein bindingAlpha-synucleinHomo sapiens (human)
phosphoprotein bindingAlpha-synucleinHomo sapiens (human)
molecular adaptor activityAlpha-synucleinHomo sapiens (human)
dynein complex bindingAlpha-synucleinHomo sapiens (human)
cuprous ion bindingAlpha-synucleinHomo sapiens (human)
retinal dehydrogenase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
aldose reductase (NADPH) activityAldo-keto reductase family 1 member C3Homo sapiens (human)
aldo-keto reductase (NADPH) activityAldo-keto reductase family 1 member C3Homo sapiens (human)
estradiol 17-beta-dehydrogenase [NAD(P)] activityAldo-keto reductase family 1 member C3Homo sapiens (human)
all-trans-retinol dehydrogenase (NAD+) activityAldo-keto reductase family 1 member C3Homo sapiens (human)
oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptorAldo-keto reductase family 1 member C3Homo sapiens (human)
phenanthrene 9,10-monooxygenase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
dihydrotestosterone 17-beta-dehydrogenase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
prostaglandin H2 endoperoxidase reductase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
prostaglandin D2 11-ketoreductase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
geranylgeranyl reductase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
ketoreductase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
prostaglandin-F synthase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
15-hydroxyprostaglandin-D dehydrogenase (NADP+) activityAldo-keto reductase family 1 member C3Homo sapiens (human)
androsterone dehydrogenase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
5alpha-androstane-3beta,17beta-diol dehydrogenase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
testosterone dehydrogenase (NAD+) activityAldo-keto reductase family 1 member C3Homo sapiens (human)
androstan-3-alpha,17-beta-diol dehydrogenase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
testosterone 17-beta-dehydrogenase (NADP+) activityAldo-keto reductase family 1 member C3Homo sapiens (human)
ketosteroid monooxygenase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
Delta4-3-oxosteroid 5beta-reductase activityAldo-keto reductase family 1 member C3Homo sapiens (human)
all-trans-retinol dehydrogenase (NADP+) activityAldo-keto reductase family 1 member C3Homo sapiens (human)
bile acid bindingAldo-keto reductase family 1 member C3Homo sapiens (human)
aldose reductase (NADPH) activityAldo-keto reductase family 1 member C2 Homo sapiens (human)
estradiol 17-beta-dehydrogenase [NAD(P)] activityAldo-keto reductase family 1 member C2 Homo sapiens (human)
oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptorAldo-keto reductase family 1 member C2 Homo sapiens (human)
phenanthrene 9,10-monooxygenase activityAldo-keto reductase family 1 member C2 Homo sapiens (human)
carboxylic acid bindingAldo-keto reductase family 1 member C2 Homo sapiens (human)
bile acid bindingAldo-keto reductase family 1 member C2 Homo sapiens (human)
androstan-3-alpha,17-beta-diol dehydrogenase activityAldo-keto reductase family 1 member C2 Homo sapiens (human)
ketosteroid monooxygenase activityAldo-keto reductase family 1 member C2 Homo sapiens (human)
trans-1,2-dihydrobenzene-1,2-diol dehydrogenase activityAldo-keto reductase family 1 member C2 Homo sapiens (human)
indanol dehydrogenase activityAldo-keto reductase family 1 member C2 Homo sapiens (human)
androsterone dehydrogenase activityAldo-keto reductase family 1 member C2 Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 9Homo sapiens (human)
protein bindingCarbonic anhydrase 9Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 9Homo sapiens (human)
molecular function activator activityCarbonic anhydrase 9Homo sapiens (human)
NAD+ ADP-ribosyltransferase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD+-protein ADP-ribosyltransferase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
chromatin bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD+ ADP-ribosyltransferase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
histone deacetylase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
protein bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
zinc ion bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD-dependent histone deacetylase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
protein lysine deacetylase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD-dependent protein lysine deacetylase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
histone acetyltransferase bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
histone deacetylase bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
tubulin deacetylase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
ubiquitin bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD-dependent histone H4K16 deacetylase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD+ bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
DNA-binding transcription factor bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD-dependent protein demyristoylase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD-dependent protein depalmitoylase activityNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
transcription factor bindingNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
NAD+ ADP-ribosyltransferase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
NAD+-protein ADP-ribosyltransferase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
p53 bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
transcription coactivator activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
transcription corepressor activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
histone deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
protein bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nuclear receptor bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
NAD-dependent histone deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
enzyme bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
NAD-dependent histone H3K14 deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
protein lysine deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
NAD-dependent protein lysine deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
histone bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
identical protein bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
HLH domain bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
bHLH transcription factor bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
metal ion bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
NAD-dependent histone H3K9 deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
NAD-dependent histone H4K16 deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
mitogen-activated protein kinase bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
lysine-acetylated histone bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
protein-propionyllysine depropionylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
DNA-binding transcription factor bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
histone H4K12 deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
histone H3K deacetylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
NAD-dependent histone decrotonylase activityNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
keratin filament bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
promoter-specific chromatin bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
NAD+ bindingNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (63)

Processvia Protein(s)Taxonomy
plasma membraneCarbonic anhydrase 12Homo sapiens (human)
membraneCarbonic anhydrase 12Homo sapiens (human)
basolateral plasma membraneCarbonic anhydrase 12Homo sapiens (human)
apical plasma membraneCarbonic anhydrase 12Homo sapiens (human)
plasma membraneCarbonic anhydrase 12Homo sapiens (human)
cytosolCarbonic anhydrase 1Homo sapiens (human)
extracellular exosomeCarbonic anhydrase 1Homo sapiens (human)
cytoplasmCarbonic anhydrase 2Homo sapiens (human)
cytosolCarbonic anhydrase 2Homo sapiens (human)
plasma membraneCarbonic anhydrase 2Homo sapiens (human)
myelin sheathCarbonic anhydrase 2Homo sapiens (human)
apical part of cellCarbonic anhydrase 2Homo sapiens (human)
extracellular exosomeCarbonic anhydrase 2Homo sapiens (human)
cytoplasmCarbonic anhydrase 2Homo sapiens (human)
plasma membraneCarbonic anhydrase 2Homo sapiens (human)
apical part of cellCarbonic anhydrase 2Homo sapiens (human)
nucleusFatty acid-binding protein, adipocyteHomo sapiens (human)
cytoplasmFatty acid-binding protein, adipocyteHomo sapiens (human)
lipid dropletFatty acid-binding protein, adipocyteHomo sapiens (human)
cytosolFatty acid-binding protein, adipocyteHomo sapiens (human)
extracellular exosomeFatty acid-binding protein, adipocyteHomo sapiens (human)
cytosolFatty acid-binding protein, adipocyteHomo sapiens (human)
nucleusFatty acid-binding protein, adipocyteHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
platelet alpha granule membraneAlpha-synucleinHomo sapiens (human)
extracellular regionAlpha-synucleinHomo sapiens (human)
extracellular spaceAlpha-synucleinHomo sapiens (human)
nucleusAlpha-synucleinHomo sapiens (human)
cytoplasmAlpha-synucleinHomo sapiens (human)
mitochondrionAlpha-synucleinHomo sapiens (human)
lysosomeAlpha-synucleinHomo sapiens (human)
cytosolAlpha-synucleinHomo sapiens (human)
plasma membraneAlpha-synucleinHomo sapiens (human)
cell cortexAlpha-synucleinHomo sapiens (human)
actin cytoskeletonAlpha-synucleinHomo sapiens (human)
membraneAlpha-synucleinHomo sapiens (human)
inclusion bodyAlpha-synucleinHomo sapiens (human)
axonAlpha-synucleinHomo sapiens (human)
growth coneAlpha-synucleinHomo sapiens (human)
synaptic vesicle membraneAlpha-synucleinHomo sapiens (human)
perinuclear region of cytoplasmAlpha-synucleinHomo sapiens (human)
postsynapseAlpha-synucleinHomo sapiens (human)
supramolecular fiberAlpha-synucleinHomo sapiens (human)
protein-containing complexAlpha-synucleinHomo sapiens (human)
cytoplasmAlpha-synucleinHomo sapiens (human)
axon terminusAlpha-synucleinHomo sapiens (human)
neuronal cell bodyAlpha-synucleinHomo sapiens (human)
nucleusAldo-keto reductase family 1 member C3Homo sapiens (human)
cytoplasmAldo-keto reductase family 1 member C3Homo sapiens (human)
cytosolAldo-keto reductase family 1 member C3Homo sapiens (human)
extracellular exosomeAldo-keto reductase family 1 member C3Homo sapiens (human)
cytosolAldo-keto reductase family 1 member C3Homo sapiens (human)
cytosolAldo-keto reductase family 1 member C2 Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
nucleolusCarbonic anhydrase 9Homo sapiens (human)
plasma membraneCarbonic anhydrase 9Homo sapiens (human)
membraneCarbonic anhydrase 9Homo sapiens (human)
basolateral plasma membraneCarbonic anhydrase 9Homo sapiens (human)
microvillus membraneCarbonic anhydrase 9Homo sapiens (human)
plasma membraneCarbonic anhydrase 9Homo sapiens (human)
chromosome, telomeric regionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
nucleusNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
chromosomeNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
nucleolusNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
cytoplasmNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
mitochondrionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
centrosomeNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
centrioleNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
spindleNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
cytosolNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
microtubuleNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
plasma membraneNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
growth coneNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
midbodyNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
paranodal junctionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
paranode region of axonNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
perikaryonNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
myelin sheathNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
lateral loopNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
Schmidt-Lanterman incisureNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
juxtaparanode region of axonNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
perinuclear region of cytoplasmNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
mitotic spindleNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
meiotic spindleNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
glial cell projectionNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
heterochromatinNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
chromatin silencing complexNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
nucleusNAD-dependent protein deacetylase sirtuin-2Homo sapiens (human)
nucleolusNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cytoplasmNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
ESC/E(Z) complexNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cytosolNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
fibrillar centerNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nucleusNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nuclear envelopeNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nuclear inner membraneNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nucleoplasmNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nucleolusNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cytoplasmNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
mitochondrionNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
cytosolNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
PML bodyNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
eNoSc complexNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
chromatinNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
euchromatinNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
heterochromatinNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
chromatin silencing complexNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
rDNA heterochromatinNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nucleusNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nuclear inner membraneNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
nucleoplasmNAD-dependent protein deacetylase sirtuin-1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (66)

Assay IDTitleYearJournalArticle
AID521220Inhibition of neurosphere proliferation of mouse neural precursor cells by MTT assay2007Nature chemical biology, May, Volume: 3, Issue:5
Chemical genetics reveals a complex functional ground state of neural stem cells.
AID577840Inhibition of AKR1C3 by fluorimetric method2011Bioorganic & medicinal chemistry letters, Mar-01, Volume: 21, Issue:5
Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3).
AID19429Partition coefficient (logP)1997Journal of medicinal chemistry, May-09, Volume: 40, Issue:10
Inhibition of thyroid hormone uptake by calcium antagonists of the dihydropyridine class.
AID690693Inhibition of human recombinant SIRT2 using Fluor de Lys-SIRT as substrate incubated for 60 mins prior to substrate addition measured after 60 mins by fluorimetric analysis2012Journal of medicinal chemistry, Jun-28, Volume: 55, Issue:12
Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors.
AID86389Inhibitory effect on L-triiodothyronine (L-T3) uptake by human HepG2 hepatoma cells at an application dose 10E-5 M1997Journal of medicinal chemistry, May-09, Volume: 40, Issue:10
Inhibition of thyroid hormone uptake by calcium antagonists of the dihydropyridine class.
AID577842Selectivity ratio of IC50 for AKR1C2 over IC50 for AKR1C32011Bioorganic & medicinal chemistry letters, Mar-01, Volume: 21, Issue:5
Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3).
AID288184Permeability coefficient through artificial membrane in presence of unstirred water layer by PAMPA2007Bioorganic & medicinal chemistry, Jun-01, Volume: 15, Issue:11
QSAR study on permeability of hydrophobic compounds with artificial membranes.
AID446606Inhibition of AMP-PNP binding to ATP binding site of LCK by saturation transfer difference spectra2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Novel synthesis and structural characterization of a high-affinity paramagnetic kinase probe for the identification of non-ATP site binders by nuclear magnetic resonance.
AID678518Inhibition of human CA12 using CO2 as substrate incubated for 6 hrs prior to substrate addition measured for 10 to 100 secs by stopped flow technique2012Bioorganic & medicinal chemistry letters, Sep-15, Volume: 22, Issue:18
Inhibition of α-class cytosolic human carbonic anhydrases I, II, IX and XII, and β-class fungal enzymes by carboxylic acids and their derivatives: new isoform-I selective nanomolar inhibitors.
AID288185Permeability coefficient through artificial membrane in presence of stirred water layer2007Bioorganic & medicinal chemistry, Jun-01, Volume: 15, Issue:11
QSAR study on permeability of hydrophobic compounds with artificial membranes.
AID1648406Displacement of 1,8-ANS from recombinant human 6His-tagged FABP4 expressed in Escherichia coli BL21 DE3 incubated for 15 mins followed by 1,8-ANS addition and measured after 3 mins by fluorescence based assay2020Journal of medicinal chemistry, 04-23, Volume: 63, Issue:8
Exploration of Fragment Binding Poses Leading to Efficient Discovery of Highly Potent and Orally Effective Inhibitors of FABP4 for Anti-inflammation.
AID690691Inhibition of human recombinant SIRT1 using Fluor de Lys-SIRT as substrate incubated for 60 mins prior to substrate addition measured after 60 mins by fluorimetric analysis2012Journal of medicinal chemistry, Jun-28, Volume: 55, Issue:12
Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors.
AID678516Inhibition of human CA2 using CO2 as substrate incubated for 6 hrs prior to substrate addition measured for 10 to 100 secs by stopped flow technique2012Bioorganic & medicinal chemistry letters, Sep-15, Volume: 22, Issue:18
Inhibition of α-class cytosolic human carbonic anhydrases I, II, IX and XII, and β-class fungal enzymes by carboxylic acids and their derivatives: new isoform-I selective nanomolar inhibitors.
AID1317155Inhibition of SIRT1 (unknown origin) using acetylated lysine as substrate by Fluor de Lys assay2016European journal of medicinal chemistry, Aug-25, Volume: 119How much successful are the medicinal chemists in modulation of SIRT1: A critical review.
AID446611Binding affinity to LCK assessed as reduction of compound relaxation intensity ratio at 100 uM by NMR method2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Novel synthesis and structural characterization of a high-affinity paramagnetic kinase probe for the identification of non-ATP site binders by nuclear magnetic resonance.
AID678517Inhibition of human CA9 using CO2 as substrate incubated for 6 hrs prior to substrate addition measured for 10 to 100 secs by stopped flow technique2012Bioorganic & medicinal chemistry letters, Sep-15, Volume: 22, Issue:18
Inhibition of α-class cytosolic human carbonic anhydrases I, II, IX and XII, and β-class fungal enzymes by carboxylic acids and their derivatives: new isoform-I selective nanomolar inhibitors.
AID678520Inhibition of Cryptococcus neoformans beta carbonic anhydrase Can2 using CO2 as substrate incubated for 6 hrs prior to substrate addition measured for 10 to 100 secs by stopped flow technique2012Bioorganic & medicinal chemistry letters, Sep-15, Volume: 22, Issue:18
Inhibition of α-class cytosolic human carbonic anhydrases I, II, IX and XII, and β-class fungal enzymes by carboxylic acids and their derivatives: new isoform-I selective nanomolar inhibitors.
AID666396Selectivity ratio of IC50 for recombinant AKR1C2 to IC50 for recombinant AKR1C32012Journal of medicinal chemistry, Mar-08, Volume: 55, Issue:5
Development of potent and selective inhibitors of aldo-keto reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase) based on N-phenyl-aminobenzoates and their structure-activity relationships.
AID678521Inhibition of Candida albicans beta carbonic anhydrase NCE103 using CO2 as substrate incubated for 6 hrs prior to substrate addition measured for 10 to 100 secs by stopped flow technique2012Bioorganic & medicinal chemistry letters, Sep-15, Volume: 22, Issue:18
Inhibition of α-class cytosolic human carbonic anhydrases I, II, IX and XII, and β-class fungal enzymes by carboxylic acids and their derivatives: new isoform-I selective nanomolar inhibitors.
AID26962Calculated partition coefficient (clogP)1993Journal of medicinal chemistry, Apr-30, Volume: 36, Issue:9
Thyroid hormone uptake by hepatocytes: structure-activity relationships of phenylanthranilic acids with inhibitory activity.
AID666394Inhibition of recombinant AKR1C3 assessed as NADP+ dependent oxidation of S-tetralol by fluorescence assay2012Journal of medicinal chemistry, Mar-08, Volume: 55, Issue:5
Development of potent and selective inhibitors of aldo-keto reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase) based on N-phenyl-aminobenzoates and their structure-activity relationships.
AID666395Inhibition of recombinant AKR1C2 assessed as NADP+ dependent oxidation of S-tetralol by fluorescence assay2012Journal of medicinal chemistry, Mar-08, Volume: 55, Issue:5
Development of potent and selective inhibitors of aldo-keto reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase) based on N-phenyl-aminobenzoates and their structure-activity relationships.
AID1871869Inhibition of FABP4 (unknown origin)2022Journal of medicinal chemistry, 01-13, Volume: 65, Issue:1
Fragment-to-Lead Medicinal Chemistry Publications in 2020.
AID446610Inhibition of staurosporine binding to ATP binding site of human SRC by saturation transfer difference spectra2010Journal of medicinal chemistry, Feb-11, Volume: 53, Issue:3
Novel synthesis and structural characterization of a high-affinity paramagnetic kinase probe for the identification of non-ATP site binders by nuclear magnetic resonance.
AID577841Inhibition of AKR1C2 by fluorimetric method2011Bioorganic & medicinal chemistry letters, Mar-01, Volume: 21, Issue:5
Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3).
AID678515Inhibition of human CA1 using CO2 as substrate incubated for 6 hrs prior to substrate addition measured for 10 to 100 secs by stopped flow technique2012Bioorganic & medicinal chemistry letters, Sep-15, Volume: 22, Issue:18
Inhibition of α-class cytosolic human carbonic anhydrases I, II, IX and XII, and β-class fungal enzymes by carboxylic acids and their derivatives: new isoform-I selective nanomolar inhibitors.
AID1321962Activation of human TRESK channel expressed in HEK293 cells assessed as induction of channel current at 100 uM by whole cell patch clamp assay relative to control2016Bioorganic & medicinal chemistry letters, 10-15, Volume: 26, Issue:20
Investigation of the structure activity relationship of flufenamic acid derivatives at the human TRESK channel K
AID78389Compound is evaluated for the inhibition of [125I]T3 uptake by H4 rat hepatoma cells at 0.1 mM1993Journal of medicinal chemistry, Apr-30, Volume: 36, Issue:9
Thyroid hormone uptake by hepatocytes: structure-activity relationships of phenylanthranilic acids with inhibitory activity.
AID21661Calculated partition coefficient (clogP) (PALLAS)1997Journal of medicinal chemistry, May-09, Volume: 40, Issue:10
Inhibition of thyroid hormone uptake by calcium antagonists of the dihydropyridine class.
AID346025Binding affinity to beta cyclodextrin2009Bioorganic & medicinal chemistry, Jan-15, Volume: 17, Issue:2
Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.
AID288192Partition coefficient, log P of the compound2007Bioorganic & medicinal chemistry, Jun-01, Volume: 15, Issue:11
QSAR study on permeability of hydrophobic compounds with artificial membranes.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347410qHTS for inhibitors of adenylyl cyclases using a fission yeast platform: a pilot screen against the NCATS LOPAC library2019Cellular signalling, 08, Volume: 60A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1347405qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS LOPAC collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347057CD47-SIRPalpha protein protein interaction - LANCE assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588349qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay
AID1347059CD47-SIRPalpha protein protein interaction - Alpha assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID588378qHTS for Inhibitors of ATXN expression: Validation
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347050Natriuretic polypeptide receptor (hNpr2) antagonism - Pilot subtype selectivity assay2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347049Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot screen2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347045Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot counterscreen GloSensor control cell line2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347058CD47-SIRPalpha protein protein interaction - HTRF assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID504836Inducers of the Endoplasmic Reticulum Stress Response (ERSR) in human glioma: Validation2002The Journal of biological chemistry, Apr-19, Volume: 277, Issue:16
Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (313)

TimeframeStudies, This Drug (%)All Drugs %
pre-199040 (12.78)18.7374
1990's128 (40.89)18.2507
2000's88 (28.12)29.6817
2010's47 (15.02)24.3611
2020's10 (3.19)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 49.44

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index49.44 (24.57)
Research Supply Index5.79 (2.92)
Research Growth Index4.77 (4.65)
Search Engine Demand Index77.33 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (49.44)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials1 (0.31%)5.53%
Reviews9 (2.78%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other314 (96.91%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]