Page last updated: 2024-12-05

polythiazide

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Polythiazide is a thiazide diuretic that was first synthesized in 1957. It is a potent diuretic, meaning it increases the production of urine, and is used to treat high blood pressure and edema. Polythiazide is also used to treat fluid retention in conditions such as heart failure, liver disease, and kidney disease. Polythiazide is available as a generic drug. It is taken orally, usually once a day. Common side effects of polythiazide include dehydration, electrolyte imbalance, and low blood pressure. Polythiazide can also cause hypokalemia (low potassium levels in the blood). Polythiazide is a potent diuretic that is used to treat a variety of conditions, but it is important to be aware of the potential side effects. It is important to talk to your doctor about any concerns you have about polythiazide.'

Cross-References

ID SourceID
PubMed CID4870
CHEMBL ID1587
CHEBI ID8327
SCHEMBL ID27909
MeSH IDM0017269

Synonyms (75)

Synonym
2h-1,2,4-benzothiadiazine-7-sulfonamide, 6-chloro-3,4-dihydro-2-methyl-3-[[(2,2,2-trifluoroethyl)thio]methyl]-, 1,1-dioxide
nephril
346-18-9
renese
6-chloro-3,2,2-trifluoroethyl)thio]methyl]-2h-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide
nsc-108161
p-2525
drenusil
2h-1,4-benzothiadiazine-7-sulfonamide, 6-chloro-3,4-dihydro-2-methyl-3-[[(2,2,2-trifluoroethyl)thio]methyl]-, 1,1-dioxide
nsc108161
wln: t66 bswn em dhj c1 d1s1xfff hg iszw
p 2525
nsc 108161
2h-1,2,4-benzothiadiazine-7-sulfonamide, 6-chloro-3,4-dihydro-2-methyl-3-(((2,2,2-trifluoroethyl)thio)methyl)-, 1,1-dioxide
ccris 6094
politiazida [inn-spanish]
einecs 206-468-4
brn 0770371
hsdb 850
2-methyl-3-(beta,beta,beta-trifluoroethylthiomethyl)-6-chloro-7-sulfamyl-3,4-dihydro-1,2,4-benzothiadiazine 1,1-dioxide
6-chloro-3,4-dihydro-2-methyl-7-sulphamoyl-3-(2,2,2-trifluoroethylthiomethyl)-2h-benzo-1,2,4-thiadiazine 1,1-dioxide
6-chloro-3,4-dihydro-2-methyl-3-(((2,2,2-trifluoroethyl)thio)methyl)-2h-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide
C07766
DB01324
renese (tn)
D00657
6-chloro-2-methyl-3-{[(2,2,2-trifluoroethyl)thio]methyl}-3,4-dihydro-2h-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide
chebi:8327 ,
CHEMBL1587
NCGC00182076-02
dtxcid805939
dtxsid6025939 ,
tox21_113137
cas-346-18-9
FT-0673974
unii-36780apv5n
politiazida
36780apv5n ,
gtpl7274
6-chloro-2-methyl-1,1-dioxo-3-(2,2,2-trifluoroethylsulfanylmethyl)-3,4-dihydrobenzo[e][1,2,4]thiadiazine-7-sulfonamide
6-chloro-3,4-dihydro-2-methyl-3-[[(2,2,2-trifluoroethyl)thio]methyl]-2h-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide
SCHEMBL27909
tox21_113137_1
NCGC00182076-03
6-chloro-2-methyl-3-([(2,2,2-trifluoroethyl)sulfanyl]methyl)-3,4-dihydro-2h-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide #
6-chloro-2-methyl-1,1-dioxo-3-{[(2,2,2-trifluoroethyl)sulfanyl]methyl}-3,4-dihydro-2h-1$l^{6},2,4-benzothiadiazine-7-sulfonamide
6-chloro-2-methyl-3-[[(2,2,2-trifluoroethyl)sulfanyl]methyl]-3,4-dihydro-2h-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide
sr-01000883970
SR-01000883970-1
6-chloro-2-methyl-3-(((2,2,2-trifluoroethyl)thio)methyl)-3,4-dihydro-2h-benzo[e][1,2,4]thiadiazine-7-sulfonamide 1,1-dioxide
2h-1,2,4-benzothiadiazine-7-sulfonamide, 6-chloro-3,4-dihydro-2-methyl-3-(((2,2,2-trifluoroethyl)thio)methyl)-, 1,1-dioxide (8ci, 9ci)
KS-1466
Q7227099
drenusil; nsc 108161; nephril; p 2525; renese
96783-10-7
2h-1,2,4-benzothiadiazine-7-sulfonamide, 6-chloro-3,4-dihydro-2-methyl-3-(((2,2,2-trifluoroethyl)thio)methyl)-, 1,1-dioxide, (+)-
SWY93BD8RL ,
nephril, (+)-
AKOS037653999
unii-swy93bd8rl
6-chloro-2-methyl-1,1-dioxo-3-(2,2,2-trifluoroethylsulfanylmethyl)-3,4-dihydro-1lambda6,2,4-benzothiadiazine-7-sulfonamide
EN300-18539445
6-chloro-2-methyl-1,1-dioxo-3-{[(2,2,2-trifluoroethyl)sulfanyl]methyl}-3,4-dihydro-2h-1lambda6,2,4-benzothiadiazine-7-sulfonamide
HY-16403
CS-0006323
6-chloro-3,4-dihydro-2-methyl-7-sulphamoyl-3-(2,2,2-trifluoroethylthiomethyl)2h-benzo-1,2,4-thiadiazine 1,1-dioxide
6-chloro-3,4-dihydro-2-methyl-7-sulphamoyl-3-(2,2,2-tri fluoroethylthiomethyl)-2h-benzo-1,2,4-thiadiazine 1,1-dioxide
c03ab05
nehpril
6-chloro-3,4-dihydro-2-methyl-3-
6-chloro-3,4dihydro-2-methyl-3-(((2,2,2-trifluoroethyl)thio)methyl)2h-1,2,4-benzothiadiazine-7-sulfonamide, 1,1-dioxide
politiazide
c03aa05
politiazida (inn-spanish)
(+-)-polythiazide

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
benzothiadiazineHeterocyclic compound of a ring with sulfur and two nitrogen atoms fused to a benzene ring. Members inhibit sodium-potassium-chloride symporters and are used as diuretics.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Pathways (1)

PathwayProteinsCompounds
Polythiazide Action Pathway319

Protein Targets (7)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
GALC proteinHomo sapiens (human)Potency0.707928.183828.183828.1838AID1159614
TDP1 proteinHomo sapiens (human)Potency26.60860.000811.382244.6684AID686978; AID686979
GLI family zinc finger 3Homo sapiens (human)Potency8.41270.000714.592883.7951AID1259369
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency28.85590.001530.607315,848.9004AID1224841; AID1224848; AID1224849; AID1259403
pregnane X nuclear receptorHomo sapiens (human)Potency29.84930.005428.02631,258.9301AID1346982
estrogen nuclear receptor alphaHomo sapiens (human)Potency12.12280.000229.305416,493.5996AID743075; AID743080
nuclear factor erythroid 2-related factor 2 isoform 1Homo sapiens (human)Potency27.66220.000627.21521,122.0200AID743202; AID743219
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Bioassays (69)

Assay IDTitleYearJournalArticle
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID625288Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for jaundice2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1079934Highest frequency of acute liver toxicity observed during clinical trials, expressed as a percentage. [column '% AIGUE' in source]
AID1079949Proposed mechanism(s) of liver damage. [column 'MEC' in source]
AID1079947Comments (NB not yet translated). [column 'COMMENTAIRES' in source]
AID625289Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver disease2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625285Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatic necrosis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625286Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatitis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1079938Chronic liver disease either proven histopathologically, or through a chonic elevation of serum amino-transferase activity after 6 months. Value is number of references indexed. [column 'CHRON' in source]
AID625292Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) combined score2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1079941Liver damage due to vascular disease: peliosis hepatitis, hepatic veno-occlusive disease, Budd-Chiari syndrome. Value is number of references indexed. [column 'VASC' in source]
AID1079933Acute liver toxicity defined via clinical observations and clear clinical-chemistry results: serum ALT or AST activity > 6 N or serum alkaline phosphatases activity > 1.7 N. This category includes cytolytic, choleostatic and mixed liver toxicity. Value is
AID625291Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver function tests abnormal2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625282Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cirrhosis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1079946Presence of at least one case with successful reintroduction. [column 'REINT' in source]
AID1079944Benign tumor, proven histopathologically. Value is number of references indexed. [column 'T.BEN' in source]
AID409949Inhibition of human liver MAOA2008Journal of medicinal chemistry, Nov-13, Volume: 51, Issue:21
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
AID1079939Cirrhosis, proven histopathologically. Value is number of references indexed. [column 'CIRRH' in source]
AID1079935Cytolytic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is > 5 (see ACUTE). Value is number of references indexed. [column 'CYTOL' in source]
AID1079948Times to onset, minimal and maximal, observed in the indexed observations. [column 'DELAI' in source]
AID1079945Animal toxicity known. [column 'TOXIC' in source]
AID625287Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatomegaly2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1474166Liver toxicity in human assessed as induction of drug-induced liver injury by measuring severity class index2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID1474167Liver toxicity in human assessed as induction of drug-induced liver injury by measuring verified drug-induced liver injury concern status2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID625284Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatic failure2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1079932Highest frequency of moderate liver toxicity observed during clinical trials, expressed as a percentage. [column '% BIOL' in source]
AID1079936Choleostatic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is < 2 (see ACUTE). Value is number of references indexed. [column 'CHOLE' in source]
AID1079942Steatosis, proven histopathologically. Value is number of references indexed. [column 'STEAT' in source]
AID1079940Granulomatous liver disease, proven histopathologically. Value is number of references indexed. [column 'GRAN' in source]
AID1079937Severe hepatitis, defined as possibly life-threatening liver failure or through clinical observations. Value is number of references indexed. [column 'MASS' in source]
AID1079943Malignant tumor, proven histopathologically. Value is number of references indexed. [column 'T.MAL' in source]
AID625281Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cholelithiasis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625290Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver fatty2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625280Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cholecystitis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1079931Moderate liver toxicity, defined via clinical-chemistry results: ALT or AST serum activity 6 times the normal upper limit (N) or alkaline phosphatase serum activity of 1.7 N. Value is number of references indexed. [column 'BIOL' in source]
AID625283Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for elevated liver function tests2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625279Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for bilirubinemia2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (12)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (8.33)29.6817
2010's5 (41.67)24.3611
2020's6 (50.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 32.66

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index32.66 (24.57)
Research Supply Index2.64 (2.92)
Research Growth Index5.63 (4.65)
Search Engine Demand Index39.34 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (32.66)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (7.69%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other12 (92.31%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]