Page last updated: 2024-09-20

bendazac

Description

bendazac : A monocarboxylic acid that is glycolic acid in which the hydrogen attached to the 2-hydroxy group is replaced by a 1-benzyl-1H-indazol-3-yl group. Although it has anti-inflammatory, antinecrotic, choleretic and antilipidaemic properties and has been used for the treatment of various inflammatory skin disorders, its principal effect is to inhibit the denaturation of proteins. Its lysine salt is used in the management of cataracts. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID2313
CHEMBL ID1089221
CHEBI ID31257
SCHEMBL ID25979
MeSH IDM0040128
PubMed CID23662369
CHEMBL ID3189046
SCHEMBL ID1649722
MeSH IDM0040128

Synonyms (117)

Synonym
AC-6789
((1-benzyl-1h-indazol-3-yl)oxy)acetic acid
bendazacum [inn-latin]
brn 0893958
einecs 243-569-2
((1-(phenylmethyl)-1h-indazol-3-yl)oxy)acetic acid
1-benzylindazole-3-oxyacetic acid
acetic acid, ((1-(phenylmethyl)-1h-indazol-3-yl)oxy)-
bendazac
((1-benzyl-1h-indazol-3-yl)oxy)essigsaeure
acetic acid, ((1-benzyl-1h-indazol-3-yl)oxy)-
versus
af 983
bendazolic acid
zildasac
bindazac
bendazaco [inn-spanish]
bendazac (jan/usan/inn)
20187-55-7
iwazac (tn)
D01594
AKOS000279916
FT-0656910
chebi:31257 ,
af 1934 [lysine]
CHEMBL1089221
iwazac
2-(1-benzylindazol-3-yl)oxyacetic acid
2-(1-benzylindazol-3-yl)oxyacetic acid;2-(1-benzyl-1h-indazol-3-yloxy)acetic acid
A814317
5-23-11-00246 (beilstein handbook reference)
bendazac [usan:inn:ban:jan]
unii-g4ag71204o
bendazaco
bendazacum
g4ag71204o ,
[[1-(phenylmethyl)-1h-indazol-3-yl]oxy]acetic acid
dogalina
[(1-benzyl-1h-indazol-3-yl)oxy]acetic acid
2-(1-benzyl-1h-indazol-3-yloxy)acetic acid
AB07517
af 1934 free acid
bendazac [inn]
bendazac [mi]
bendazac [who-dd]
bendazac [usan]
acetic acid, ((1-(phenylmethyl)-1h-indazol-3-yl)oxy)- (2) ((1-benzyl-1h-indazol-3-yl)oxy)acetic acid.
af-1934 lysine
af-1934 free acid
bendazac [mart.]
bendazac [jan]
S5361
2-((1-benzyl-1h-indazol-3-yl)oxy)acetic acid
SCHEMBL25979
KS-1230
[(1-benzyl-1h-indazol-3-yl)-oxy]acetic acid
DTXSID1048334
mfcd00866158
SY014542
af 1934 (salt/mix)
bendaline (salt/mix)
acetic acid, [[1-(phenylmethyl)-1h-indazol-3-yl]oxy]-
bendazac lysine (salt/mix)
B4223
[(1-benzyl-3-indazolyl)oxy]acetic acid
1-benzyl-3-[1-(carboxy)methoxy]indazole
HY-17480
CS-0009216
bendazac, >=98% (hplc)
J-013103
2-[(1-benzyl-1h-indazol-3-yl)oxy]acetic acid
BCP15554
DB13501
(1-benzyl-1h-indazol-3-yloxy)-aceticacid
Q862414
acetic acid, 2-[[1-(phenylmethyl)-1h-indazol-3-yl]oxy]-
af-983
CCG-267264
bindazac; dogalina; zildasac; zildazac
BB166154
EN300-7361933
NCGC00167461-01
sodium [[1-(phenylmethyl)-1h-indazol-3-yl]oxy]acetate
FT-0655445
einecs 245-528-4
sodium ((1-(phenylmethyl)-1h-indazol-3-yl)oxy)acetate
4sw243q44z ,
ec 245-528-4
bendazac sodium salt
1-benzyl-3-indazoleoxyacetic acid sodium salt
unii-4sw243q44z
dtxcid8026644
bendazac sodium
tox21_112465
cas-23255-99-4
dtxsid0046644 ,
A816645
sodium 2-(1-benzylindazol-3-yl)oxyacetate
23255-99-4
1h-benzimidazole, 2-(phenylmethyl)-, sodium salt (1:1)
sodium bendazolate
22199-35-5
AKOS015888782
acetic acid, ((1-(phenylmethyl)-1h-indazol-3-yl)oxy)- sodium
((1-benzyl-1h-indazol-3-yl)oxy)acetic acid sodium
bendazac sodium [who-dd]
bendazac sodium salt [mi]
af-1934 sodium
tox21_112465_1
NCGC00263571-01
SCHEMBL1649722
bendazacsodiumsalt
W-107413
CHEMBL3189046
sodium;2-(1-benzylindazol-3-yl)oxyacetate
Q27260446
acetic acid, 2-[[1-(phenylmethyl)-1h-indazol-3-yl]oxy]-, sodium salt (1:1)

Research Excerpts

Overview

ExcerptReference
"Bendazac is a non-steroidal anti-inflammatory drug able to delay the cataractogenic process."( Capezzone De Joannon, A; Cavallo, G; Cazzolla, N; Guglielmotti, A; Marchetti, M; Pinza, M; Soldo, L, 1995)
"Bendazac is a drug previously reported to prevent protein denaturation produced by various agents, including free radicals. "( Ciancarelli-Tozzi, MG; Finazzi-Agro, A; Silvestrini, B, 1989)

Effects

ExcerptReference
"Bendazac has been used as an anti-cataractogenic drug. "( Marques, C; Mota, MC; Pereira, P; Ramalho, JS, 1995)
"Bendazac has been shown to be a strong reacting substrate in a chemical oxidizing system, which mimics a physiological pathway of hydroxy radical generation."( Capezzone De Joannon, A; Cavallo, G; Cazzolla, N; Guglielmotti, A; Marchetti, M; Pinza, M; Soldo, L, 1995)

Actions

ExcerptReference
"Bendazac did not inhibit the reduction of ferricytochrome c due to the superoxide flux in the above system nor did it possess a significant antioxidant activity on Fe(II) or Fe(III)-induced peroxidation of lecithin liposomes."( Musci, G; Silvestrini, B, 1987)

Roles (2)

RoleDescription
radical scavengerA role played by a substance that can react readily with, and thereby eliminate, radicals.
non-steroidal anti-inflammatory drugAn anti-inflammatory drug that is not a steroid. In addition to anti-inflammatory actions, non-steroidal anti-inflammatory drugs have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
indazoles
monocarboxylic acidAn oxoacid containing a single carboxy group.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (9)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
SMAD family member 2Homo sapiens (human)Potency15.08900.173734.304761.8120AID1346859
SMAD family member 3Homo sapiens (human)Potency15.08900.173734.304761.8120AID1346859
AR proteinHomo sapiens (human)Potency17.89400.000221.22318,912.5098AID1259243; AID1259247; AID1259381; AID743036; AID743053
estrogen nuclear receptor alphaHomo sapiens (human)Potency2.68320.000229.305416,493.5996AID743075
GVesicular stomatitis virusPotency27.54040.01238.964839.8107AID1645842
Interferon betaHomo sapiens (human)Potency27.54040.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency27.54040.01238.964839.8107AID1645842
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency27.54040.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency27.54040.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (45)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (18)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (22)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (60)

Assay IDTitleYearJournalArticle
AID1079933Acute liver toxicity defined via clinical observations and clear clinical-chemistry results: serum ALT or AST activity > 6 N or serum alkaline phosphatases activity > 1.7 N. This category includes cytolytic, choleostatic and mixed liver toxicity. Value is
AID1079936Choleostatic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is < 2 (see ACUTE). Value is number of references indexed. [column 'CHOLE' in source]
AID1079935Cytolytic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is > 5 (see ACUTE). Value is number of references indexed. [column 'CYTOL' in source]
AID588211Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in humans2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID588212Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID1079947Comments (NB not yet translated). [column 'COMMENTAIRES' in source]
AID1079949Proposed mechanism(s) of liver damage. [column 'MEC' in source]
AID1474167Liver toxicity in human assessed as induction of drug-induced liver injury by measuring verified drug-induced liver injury concern status2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID1079941Liver damage due to vascular disease: peliosis hepatitis, hepatic veno-occlusive disease, Budd-Chiari syndrome. Value is number of references indexed. [column 'VASC' in source]
AID1079943Malignant tumor, proven histopathologically. Value is number of references indexed. [column 'T.MAL' in source]
AID1079939Cirrhosis, proven histopathologically. Value is number of references indexed. [column 'CIRRH' in source]
AID473530Aqueous solubility of the compound2010Bioorganic & medicinal chemistry letters, Apr-01, Volume: 20, Issue:7
Synthesis and biological evaluations of novel bendazac lysine analogues as potent anticataract agents.
AID1079932Highest frequency of moderate liver toxicity observed during clinical trials, expressed as a percentage. [column '% BIOL' in source]
AID588213Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in non-rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID1079934Highest frequency of acute liver toxicity observed during clinical trials, expressed as a percentage. [column '% AIGUE' in source]
AID1079942Steatosis, proven histopathologically. Value is number of references indexed. [column 'STEAT' in source]
AID1079931Moderate liver toxicity, defined via clinical-chemistry results: ALT or AST serum activity 6 times the normal upper limit (N) or alkaline phosphatase serum activity of 1.7 N. Value is number of references indexed. [column 'BIOL' in source]
AID625276FDA Liver Toxicity Knowledge Base Benchmark Dataset (LTKB-BD) drugs of most concern for DILI2011Drug discovery today, Aug, Volume: 16, Issue:15-16
FDA-approved drug labeling for the study of drug-induced liver injury.
AID1079945Animal toxicity known. [column 'TOXIC' in source]
AID1474166Liver toxicity in human assessed as induction of drug-induced liver injury by measuring severity class index2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID1079944Benign tumor, proven histopathologically. Value is number of references indexed. [column 'T.BEN' in source]
AID1079938Chronic liver disease either proven histopathologically, or through a chonic elevation of serum amino-transferase activity after 6 months. Value is number of references indexed. [column 'CHRON' in source]
AID625293Drug Induced Liver Injury Prediction System (DILIps) validation dataset; compound DILI positive/negative as observed in LTKB-BD2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1079937Severe hepatitis, defined as possibly life-threatening liver failure or through clinical observations. Value is number of references indexed. [column 'MASS' in source]
AID1079948Times to onset, minimal and maximal, observed in the indexed observations. [column 'DELAI' in source]
AID1079946Presence of at least one case with successful reintroduction. [column 'REINT' in source]
AID1079940Granulomatous liver disease, proven histopathologically. Value is number of references indexed. [column 'GRAN' in source]
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (53)

TimeframeStudies, This Drug (%)All Drugs %
pre-199021 (39.62)18.7374
1990's17 (32.08)18.2507
2000's0 (0.00)29.6817
2010's9 (16.98)24.3611
2020's6 (11.32)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials1 (2.08%)5.53%
Trials0 (0.00%)5.53%
Reviews5 (10.42%)6.00%
Reviews0 (0.00%)6.00%
Case Studies6 (12.50%)4.05%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Observational0 (0.00%)0.25%
Other36 (75.00%)84.16%
Other9 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research Highlights

Safety/Toxicity (1)

ArticleYear
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
PLoS computational biology, Volume: 7, Issue: 12
2011
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Pharmacokinetics (1)

ArticleYear
Investigations on the ocular pharmacokinetics of bendazac in rabbits.
Experimental and molecular pathology, Volume: 43, Issue: 3
1985
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Bioavailability (2)

ArticleYear
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology, Volume: 96, Issue: 5
2019
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
The Journal of biological chemistry, 11-15, Volume: 294, Issue: 46
2019
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Dosage (2)

ArticleYear
FDA-approved drug labeling for the study of drug-induced liver injury.
Drug discovery today, Volume: 16, Issue: 15-16
2011
Bendazac and benzydamine for treatment of cataract: individualized therapy by the "BLOA test".
Journal of ocular pharmacology,Summer, Volume: 2, Issue: 3
1986
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]