Page last updated: 2024-11-13

naproxen sodium

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

naproxen sodium : An organic sodium salt consisting of equimolar amounts of naproxen(1-) anions and sodium anions. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID23681059
CHEMBL ID1200806
CHEBI ID7477
SCHEMBL ID7361
MeSH IDM0582735

Synonyms (226)

Synonym
MLS001076076
HMS3269J19
smr000058746
EU-0100792
causalon pro
anapran
monarit
tandax
(-)-sodium (s)-6-methoxy-alpha-methyl-2-naphthaleneacetate
2-naphthaleneacetic acid, 6-methoxy-alpha-methyl-, sodium salt, l-(-)-
l-(-)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid sodium salt
nixal
floginex
naprelan
einecs 247-486-2
synflex
kapnax
anaprox ds
flogen
flogogin
naprodil
sodimax
floneks
natrioxen
pactens
gibinap
naproxen sodium [usan]
naprux gesic
sodium (-)-2-(6-methoxy-2-naphthyl)propionate
axer alfa
opraks
leniartril
primeral
gibixen
karoksen
naprovite
a-nox
aprowell
miranax
anaprotab
2-naphthaleneacetic acid, 6-methoxy-alpha-methyl-, sodium salt, (s)-
floxalin
rs 3650
naprodol
aprol
naproxen natrium
cas-26159-34-2
NCGC00017097-01
lopac-m-1275
NCGC00016166-01
BIM-0050769.0001
naproxen sodium, meets usp testing specifications
D00970
naproxen sodium (usp)
26159-34-2
anaprox (tn)
MLS000069555 ,
naproxen sodium
(-)-naproxen sodium
NCGC00094127-01
naproxenate, sodium
sodium naproxenate
sodium, naproxen
naproxen sodium, 98.0-102.0%
NCGC00017097-02
M 1275
(s)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid sodium
HMS2052G05
UNM-0000306098 ,
bay-117031
naproxen sodium anhydrous
rs-3650
CHEMBL1200806
naproxen sodium salt
bay117031
bayh6689
sodium (2s)-2-(6-methoxy-2-naphthyl)propanoate
CHEBI:7477 ,
HMS1570O04
HMS3262O06
A818221
sodium (s)-2-(6-methoxynaphthalen-2-yl)propanoate
MLS001424214
tox21_110774
dtxcid5025576
dtxsid7045576 ,
HMS2230D08
AKOS015994759
CCG-101082
naproxen sodium [usan:usp]
unii-9tn87s3a3c
flanax
sodium naproxen
bay h6689
9tn87s3a3c ,
sunprox
topcare all day pain relief
BCP9000977
naproxen (aleve)
BCP0726000300
(s)-naproxen sodium salt
LP00792
S1626
AKOS015895696
naproxen sodium [mart.]
naproxen sodium [usp impurity]
naproxen sodium [ep monograph]
naproxen sodium [usp-rs]
naproxen sodium component of aleve-d
2-naphthaleneacetic acid, 6-methoxy-.alpha.-methyl-, sodium salt, (s)-
naproxen sodium [ep impurity]
treximet component naproxen sodium
aleve-d component naproxen sodium
naproxen sodium component of treximet
naproxen sodium [usp monograph]
naproxen sodium salt [mi]
naproxen sodium [vandf]
naproxen sodium [orange book]
naproxen sodium [who-dd]
naproxen (sodium)
HY-15030A
SCHEMBL7361
NCGC00016759-04
tox21_110774_1
KS-5141
tox21_500792
NCGC00261477-01
(2s)-2-(6-methoxy(2-naphthyl))propanoic acid sodium salt
CDBRNDSHEYLDJV-FVGYRXGTSA-M
sodium (s)-2-(6-methoxy-2-naphthyl)propionate
naproxensodium
W-107195
(2s)-2-(6-methoxy-2-naphthyl)propanoic acid sodium salt
sodium;(2s)-2-(6-methoxynaphthalen-2-yl)propanoate
OPERA_ID_1200
(s)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid sodium salt
naproxen sodium, united states pharmacopeia (usp) reference standard
naproxen sodium, pharmaceutical secondary standard; certified reference material
SW197105-3
M3406
naproxen sodium,(s)
Q27107504
HMS3413P03
HMS3884G04
sodium(s)-2-(6-methoxynaphthalen-2-yl)propanoate
2-naphthaleneacetic acid, 6-methoxy-.alpha.-methyl-, sodium salt, (.alpha.s)- (1:1)
naproxen sodium (usp monograph)
ana-dent pain relief
naproxen sodium (mart.)
equate naproxen sodium
betr headache pain relief
rapidol naproxen
members mark naproxen sodium
naproxen caplets
health mart naproxen sodium
naproxen pain relief
aleve headache pain
equate all day pain relief
naproxen sodium 220 mg
desinflamax-naproxen sodium
all day relief
naproxen sodium, coated tablets
naproxen sodium (ep monograph)
flanax menstrual pain reliever
careone naproxen sodium
naproxen sodiumback and muscle pain caplets
exchange select naproxen sodium
naproxen sodium back and muscle pain
naproxen sodium (nsaid)fever reducer/ pain reliever
anadent
naproxen sodiumheadache pain
leader all day pain relief
caring mill all day pain relief
medique at home mediproxen
lil drug store pain reliefall day
headache pain
kirkland signature naproxen sodium
naproxen headache pain
alevegelcaps
first aid direct naproxen sodium
signature care naproxen sodium
naproxen sodium headache pain
careall naproxen
alevecaplets-easy open arthritis cap
back and muscle pain
naproxen sodium tablets, 220 mg
aleve back and muscle pain
naproxen sodiumback and muscle pain
berkley and jensen naproxen sodium
naproxen sodium caplets
basic care naproxen sodium
bayer aleve
sound body naproxen sodium
all day pain relief
care one naproxen sodium
topcare back and muscle pain
all day back and muscle pain relief
lil drug store pain relief
clear choice naproxen sodium
naproxen sodium (usan:usp)
good sense all day pain relief
rugby all day relief
naproxen sodiumheadache pain caplets
naproxen sodium (usp impurity)
naproxen sodium ds
dg health naproxen sodium
naproxen sodium (ep impurity)
equaline naproxen sodium
naproxen sodium tablet, coated
naproxen sodium (nsaid)
naproxen sodium (usp-rs)
first aid direct all day pain relief
naproxen sodiumcaplets
naproxenall day relief for pain
medique mediproxen
belmora flanax
calmadol pain reliever
up and up naproxen sodium
naproxen capletsall day relief for pain
naproxen sodium tablet
naproxen back and muscle pain
naproxen sodium 220mg
sunmark naproxen sodium
alevecaplets
aleveeasy open arthritis cap
flanax pain reliever/fever reducer

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (5)

RoleDescription
non-narcotic analgesicA drug that has principally analgesic, antipyretic and anti-inflammatory actions. Non-narcotic analgesics do not bind to opioid receptors.
cyclooxygenase 2 inhibitorA cyclooxygenase inhibitor that interferes with the action of cyclooxygenase 2.
cyclooxygenase 1 inhibitorA cyclooxygenase inhibitor that interferes with the action of cyclooxygenase 1.
antipyreticA drug that prevents or reduces fever by lowering the body temperature from a raised state. An antipyretic will not affect the normal body temperature if one does not have fever. Antipyretics cause the hypothalamus to override an interleukin-induced increase in temperature. The body will then work to lower the temperature and the result is a reduction in fever.
non-steroidal anti-inflammatory drugAn anti-inflammatory drug that is not a steroid. In addition to anti-inflammatory actions, non-steroidal anti-inflammatory drugs have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (1)

ClassDescription
organic sodium salt
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (23)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
LuciferasePhotinus pyralis (common eastern firefly)Potency21.33130.007215.758889.3584AID588342
thioredoxin reductaseRattus norvegicus (Norway rat)Potency33.58750.100020.879379.4328AID588453
USP1 protein, partialHomo sapiens (human)Potency35.48130.031637.5844354.8130AID504865
Microtubule-associated protein tauHomo sapiens (human)Potency31.62280.180013.557439.8107AID1460
thyroid stimulating hormone receptorHomo sapiens (human)Potency19.95260.001318.074339.8107AID926; AID938
estrogen nuclear receptor alphaHomo sapiens (human)Potency5.33720.000229.305416,493.5996AID743069; AID743075
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency56.23410.707936.904389.1251AID504333
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency14.29090.035520.977089.1251AID504332
cytochrome P450 2C9 precursorHomo sapiens (human)Potency39.81070.00636.904339.8107AID883
potassium voltage-gated channel subfamily H member 2 isoform dHomo sapiens (human)Potency3.54810.01789.637444.6684AID588834
lethal factor (plasmid)Bacillus anthracis str. A2012Potency3.16230.020010.786931.6228AID912
lamin isoform A-delta10Homo sapiens (human)Potency1.77540.891312.067628.1838AID1487
Interferon betaHomo sapiens (human)Potency26.44630.00339.158239.8107AID1347407
Histamine H2 receptorCavia porcellus (domestic guinea pig)Potency39.81070.00638.235039.8107AID883
TAR DNA-binding protein 43Homo sapiens (human)Potency22.38721.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Reverse transcriptase/RNaseH Human immunodeficiency virus 1IC50 (µMol)6,700.00000.00011.076810.0000AID1575185
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
GTP-binding protein (rab7)Canis lupus familiaris (dog)EC50 (µMol)30.00000.02201.21466.4190AID2036
ras protein, partialHomo sapiens (human)EC50 (µMol)30.00000.02000.22371.9660AID2038; AID2043
Rac1 proteinHomo sapiens (human)EC50 (µMol)30.00000.02025.986029.5100AID2039; AID2040
cell division cycle 42 (GTP binding protein, 25kDa), partialHomo sapiens (human)EC50 (µMol)20.27200.05633.055413.5100AID2021; AID2022
Ras-related protein Rab-2ACanis lupus familiaris (dog)EC50 (µMol)30.00000.15800.37770.7042AID2046
Sigma non-opioid intracellular receptor 1Rattus norvegicus (Norway rat)EC50 (µMol)30.00000.10601.07651.7000AID2038; AID2043
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (55)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
Golgi organizationRas-related protein Rab-2ACanis lupus familiaris (dog)
protein transportRas-related protein Rab-2ACanis lupus familiaris (dog)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
lipid transportSigma non-opioid intracellular receptor 1Homo sapiens (human)
nervous system developmentSigma non-opioid intracellular receptor 1Homo sapiens (human)
G protein-coupled opioid receptor signaling pathwaySigma non-opioid intracellular receptor 1Homo sapiens (human)
regulation of neuron apoptotic processSigma non-opioid intracellular receptor 1Homo sapiens (human)
protein homotrimerizationSigma non-opioid intracellular receptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (18)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
GTPase activityRas-related protein Rab-2ACanis lupus familiaris (dog)
GTP bindingRas-related protein Rab-2ACanis lupus familiaris (dog)
GDP bindingRas-related protein Rab-2ACanis lupus familiaris (dog)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
G protein-coupled opioid receptor activitySigma non-opioid intracellular receptor 1Homo sapiens (human)
protein bindingSigma non-opioid intracellular receptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (28)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
autophagosome membraneRas-related protein Rab-2ACanis lupus familiaris (dog)
acrosomal vesicleRas-related protein Rab-2ACanis lupus familiaris (dog)
endoplasmic reticulum membraneRas-related protein Rab-2ACanis lupus familiaris (dog)
endoplasmic reticulum-Golgi intermediate compartment membraneRas-related protein Rab-2ACanis lupus familiaris (dog)
melanosomeRas-related protein Rab-2ACanis lupus familiaris (dog)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
nuclear envelopeSigma non-opioid intracellular receptor 1Homo sapiens (human)
nuclear inner membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
nuclear outer membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulumSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulum membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
lipid dropletSigma non-opioid intracellular receptor 1Homo sapiens (human)
cytosolSigma non-opioid intracellular receptor 1Homo sapiens (human)
postsynaptic densitySigma non-opioid intracellular receptor 1Homo sapiens (human)
membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
growth coneSigma non-opioid intracellular receptor 1Homo sapiens (human)
cytoplasmic vesicleSigma non-opioid intracellular receptor 1Homo sapiens (human)
anchoring junctionSigma non-opioid intracellular receptor 1Homo sapiens (human)
postsynaptic density membraneSigma non-opioid intracellular receptor 1Homo sapiens (human)
endoplasmic reticulumSigma non-opioid intracellular receptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (60)

Assay IDTitleYearJournalArticle
AID1575185Inhibition of HIV1 reverse transcriptase assessed as reduction in [3H]dTTP incorporation using poly(rA)/oligo(dT) as template/primer after 30 mins by scintillation counting method2019Bioorganic & medicinal chemistry letters, 02-01, Volume: 29, Issue:3
Multiple weak intercalation as a strategy for the inhibition of polymerases.
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1224864HCS microscopy assay (F508del-CFTR)2016PloS one, , Volume: 11, Issue:10
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (20)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (5.00)29.6817
2010's12 (60.00)24.3611
2020's7 (35.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 69.35

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be very strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index69.35 (24.57)
Research Supply Index3.04 (2.92)
Research Growth Index4.83 (4.65)
Search Engine Demand Index199.88 (26.88)
Search Engine Supply Index3.50 (0.95)

This Compound (69.35)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other20 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]