Page last updated: 2024-12-11

tiotropium

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

tiotropium : A quaternary ammonium ion obtained by methylation of the tertiary amino group of (1alpha,2beta,4beta,5alpha,7beta)-7-[(hydroxydi-2-thienylacetyl)oxy]-9-methyl-3-oxa-9-azoniatricyclo[3.3.1.0(2,4)]nonane. Used (in the form of the bromide hydrate) for maintenance treatment of airflow obstruction in patients with chronic obstructive pulmonary disease. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID5487427
CHEMBL ID1900528
CHEMBL ID3305968
CHEMBL ID4650755
CHEBI ID90960
SCHEMBL ID4662461
MeSH IDM0213717

Synonyms (32)

Synonym
AB01274813-02
AB01274813-01
gtpl367
(1r,2r,4s,5s)-7-{[2-hydroxy-2,2-bis(thiophen-2-yl)acetyl]oxy}-9,9-dimethyl-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonan-9-ium
tiotropium
DB01409
186691-13-4
0eb439235f ,
unii-0eb439235f
(1r,2r,4s,5s,7s)-7-{[hydroxy(dithiophen-2-yl)acetyl]oxy}-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.0~2,4~]nonane
0hk ,
tiotropium cation
tiotropium [who-dd]
tiotropium ion
tiotropium [vandf]
3-oxa-9-azoniatricyclo(3.3.1.02,4)nonane, 7-((2-hydroxy-2,2-di-2-thienylacetyl)oxy)-9,9-dimethyl-, (1.alpha.,2.beta.,4.beta.,5.alpha.,7.beta.)-
AB01274813-03
7-((hydroxybis(2-thienyl)acetyl)oxy)-9,9-dimethyl-3-oxa-9-azoniatricyclo(3.3.1.0(2,4))nonane
CHEBI:90960 ,
(1alpha,2beta,4beta,5alpha,7beta)-7-[(hydroxydi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.0(2,4)]nonane
SCHEMBL4662461
CHEMBL1900528
CHEMBL3305968
gtpl8592
[3h]tiotropium
bdbm50066861
LERNTVKEWCAPOY-DZZGSBJMSA-N
[(1s,2s,4r,5r)-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.02,4]nonan-7-yl] 2-hydroxy-2,2-dithiophen-2-ylacetate
Q424316
Q27088996
CHEMBL4650755 ,
bdbm50581209

Research Excerpts

Dosage Studied

ExcerptRelevanceReference
" In a phase 2b trial, batefenterol produced statistical and clinically significant differences compared to placebo and numerically greater improvements in the primary end point of trough FEV1 compared to salmeterol after 4 weeks of dosing in patients with moderate to severe chronic obstructive pulmonary disease (COPD)."( Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
Chen, Y; Hegde, SS; Hughes, AD; Jasper, JR; Jaw-Tsai, S; Lee, TW; Mammen, M; McNamara, A; Pulido-Rios, MT; Steinfeld, T, 2015
)
0.42
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (4)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Bile salt export pumpHomo sapiens (human)IC50 (µMol)1,000.00000.11007.190310.0000AID1449628
Muscarinic acetylcholine receptor M2Homo sapiens (human)Ki0.00020.00000.690210.0000AID1812131
Muscarinic acetylcholine receptor M3Homo sapiens (human)Ki0.00010.00000.54057.7600AID1204924; AID1812117
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Beta-2 adrenergic receptorHomo sapiens (human)EC50 (µMol)10.00000.00000.311110.0000AID1204925
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (77)

Processvia Protein(s)Taxonomy
fatty acid metabolic processBile salt export pumpHomo sapiens (human)
bile acid biosynthetic processBile salt export pumpHomo sapiens (human)
xenobiotic metabolic processBile salt export pumpHomo sapiens (human)
xenobiotic transmembrane transportBile salt export pumpHomo sapiens (human)
response to oxidative stressBile salt export pumpHomo sapiens (human)
bile acid metabolic processBile salt export pumpHomo sapiens (human)
response to organic cyclic compoundBile salt export pumpHomo sapiens (human)
bile acid and bile salt transportBile salt export pumpHomo sapiens (human)
canalicular bile acid transportBile salt export pumpHomo sapiens (human)
protein ubiquitinationBile salt export pumpHomo sapiens (human)
regulation of fatty acid beta-oxidationBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transportBile salt export pumpHomo sapiens (human)
bile acid signaling pathwayBile salt export pumpHomo sapiens (human)
cholesterol homeostasisBile salt export pumpHomo sapiens (human)
response to estrogenBile salt export pumpHomo sapiens (human)
response to ethanolBile salt export pumpHomo sapiens (human)
xenobiotic export from cellBile salt export pumpHomo sapiens (human)
lipid homeostasisBile salt export pumpHomo sapiens (human)
phospholipid homeostasisBile salt export pumpHomo sapiens (human)
positive regulation of bile acid secretionBile salt export pumpHomo sapiens (human)
regulation of bile acid metabolic processBile salt export pumpHomo sapiens (human)
transmembrane transportBile salt export pumpHomo sapiens (human)
diet induced thermogenesisBeta-2 adrenergic receptorHomo sapiens (human)
regulation of sodium ion transportBeta-2 adrenergic receptorHomo sapiens (human)
transcription by RNA polymerase IIBeta-2 adrenergic receptorHomo sapiens (human)
receptor-mediated endocytosisBeta-2 adrenergic receptorHomo sapiens (human)
smooth muscle contractionBeta-2 adrenergic receptorHomo sapiens (human)
cell surface receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
activation of transmembrane receptor protein tyrosine kinase activityBeta-2 adrenergic receptorHomo sapiens (human)
adenylate cyclase-modulating G protein-coupled receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
endosome to lysosome transportBeta-2 adrenergic receptorHomo sapiens (human)
response to coldBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of protein kinase A signalingBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of bone mineralizationBeta-2 adrenergic receptorHomo sapiens (human)
heat generationBeta-2 adrenergic receptorHomo sapiens (human)
negative regulation of multicellular organism growthBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of MAPK cascadeBeta-2 adrenergic receptorHomo sapiens (human)
bone resorptionBeta-2 adrenergic receptorHomo sapiens (human)
negative regulation of G protein-coupled receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIBeta-2 adrenergic receptorHomo sapiens (human)
negative regulation of smooth muscle contractionBeta-2 adrenergic receptorHomo sapiens (human)
brown fat cell differentiationBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of mini excitatory postsynaptic potentialBeta-2 adrenergic receptorHomo sapiens (human)
adrenergic receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of protein serine/threonine kinase activityBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of cold-induced thermogenesisBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of autophagosome maturationBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of lipophagyBeta-2 adrenergic receptorHomo sapiens (human)
cellular response to amyloid-betaBeta-2 adrenergic receptorHomo sapiens (human)
response to psychosocial stressBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of cAMP-dependent protein kinase activityBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of AMPA receptor activityBeta-2 adrenergic receptorHomo sapiens (human)
norepinephrine-epinephrine-mediated vasodilation involved in regulation of systemic arterial blood pressureBeta-2 adrenergic receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayMuscarinic acetylcholine receptor M2Homo sapiens (human)
adenylate cyclase-modulating G protein-coupled receptor signaling pathwayMuscarinic acetylcholine receptor M2Homo sapiens (human)
phospholipase C-activating G protein-coupled acetylcholine receptor signaling pathwayMuscarinic acetylcholine receptor M2Homo sapiens (human)
G protein-coupled acetylcholine receptor signaling pathwayMuscarinic acetylcholine receptor M2Homo sapiens (human)
nervous system developmentMuscarinic acetylcholine receptor M2Homo sapiens (human)
regulation of heart contractionMuscarinic acetylcholine receptor M2Homo sapiens (human)
response to virusMuscarinic acetylcholine receptor M2Homo sapiens (human)
G protein-coupled serotonin receptor signaling pathwayMuscarinic acetylcholine receptor M2Homo sapiens (human)
presynaptic modulation of chemical synaptic transmissionMuscarinic acetylcholine receptor M2Homo sapiens (human)
regulation of smooth muscle contractionMuscarinic acetylcholine receptor M2Homo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled acetylcholine receptor signaling pathwayMuscarinic acetylcholine receptor M2Homo sapiens (human)
G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second messengerMuscarinic acetylcholine receptor M2Homo sapiens (human)
chemical synaptic transmissionMuscarinic acetylcholine receptor M2Homo sapiens (human)
calcium-mediated signalingMuscarinic acetylcholine receptor M3Homo sapiens (human)
regulation of monoatomic ion transmembrane transporter activityMuscarinic acetylcholine receptor M3Homo sapiens (human)
smooth muscle contractionMuscarinic acetylcholine receptor M3Homo sapiens (human)
signal transductionMuscarinic acetylcholine receptor M3Homo sapiens (human)
G protein-coupled receptor signaling pathwayMuscarinic acetylcholine receptor M3Homo sapiens (human)
phospholipase C-activating G protein-coupled acetylcholine receptor signaling pathwayMuscarinic acetylcholine receptor M3Homo sapiens (human)
G protein-coupled acetylcholine receptor signaling pathwayMuscarinic acetylcholine receptor M3Homo sapiens (human)
synaptic transmission, cholinergicMuscarinic acetylcholine receptor M3Homo sapiens (human)
nervous system developmentMuscarinic acetylcholine receptor M3Homo sapiens (human)
positive regulation of insulin secretionMuscarinic acetylcholine receptor M3Homo sapiens (human)
protein modification processMuscarinic acetylcholine receptor M3Homo sapiens (human)
positive regulation of smooth muscle contractionMuscarinic acetylcholine receptor M3Homo sapiens (human)
saliva secretionMuscarinic acetylcholine receptor M3Homo sapiens (human)
acetylcholine receptor signaling pathwayMuscarinic acetylcholine receptor M3Homo sapiens (human)
G protein-coupled serotonin receptor signaling pathwayMuscarinic acetylcholine receptor M3Homo sapiens (human)
ion channel modulating, G protein-coupled receptor signaling pathwayMuscarinic acetylcholine receptor M3Homo sapiens (human)
ligand-gated ion channel signaling pathwayMuscarinic acetylcholine receptor M3Homo sapiens (human)
regulation of smooth muscle contractionMuscarinic acetylcholine receptor M3Homo sapiens (human)
G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second messengerMuscarinic acetylcholine receptor M3Homo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled acetylcholine receptor signaling pathwayMuscarinic acetylcholine receptor M3Homo sapiens (human)
chemical synaptic transmissionMuscarinic acetylcholine receptor M3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (22)

Processvia Protein(s)Taxonomy
protein bindingBile salt export pumpHomo sapiens (human)
ATP bindingBile salt export pumpHomo sapiens (human)
ABC-type xenobiotic transporter activityBile salt export pumpHomo sapiens (human)
bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
canalicular bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transporter activityBile salt export pumpHomo sapiens (human)
ABC-type bile acid transporter activityBile salt export pumpHomo sapiens (human)
ATP hydrolysis activityBile salt export pumpHomo sapiens (human)
amyloid-beta bindingBeta-2 adrenergic receptorHomo sapiens (human)
beta2-adrenergic receptor activityBeta-2 adrenergic receptorHomo sapiens (human)
protein bindingBeta-2 adrenergic receptorHomo sapiens (human)
adenylate cyclase bindingBeta-2 adrenergic receptorHomo sapiens (human)
potassium channel regulator activityBeta-2 adrenergic receptorHomo sapiens (human)
identical protein bindingBeta-2 adrenergic receptorHomo sapiens (human)
protein homodimerization activityBeta-2 adrenergic receptorHomo sapiens (human)
protein-containing complex bindingBeta-2 adrenergic receptorHomo sapiens (human)
norepinephrine bindingBeta-2 adrenergic receptorHomo sapiens (human)
G protein-coupled acetylcholine receptor activityMuscarinic acetylcholine receptor M2Homo sapiens (human)
arrestin family protein bindingMuscarinic acetylcholine receptor M2Homo sapiens (human)
G protein-coupled serotonin receptor activityMuscarinic acetylcholine receptor M2Homo sapiens (human)
phosphatidylinositol phospholipase C activityMuscarinic acetylcholine receptor M3Homo sapiens (human)
protein bindingMuscarinic acetylcholine receptor M3Homo sapiens (human)
G protein-coupled acetylcholine receptor activityMuscarinic acetylcholine receptor M3Homo sapiens (human)
signaling receptor activityMuscarinic acetylcholine receptor M3Homo sapiens (human)
acetylcholine bindingMuscarinic acetylcholine receptor M3Homo sapiens (human)
G protein-coupled serotonin receptor activityMuscarinic acetylcholine receptor M3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (32)

Processvia Protein(s)Taxonomy
basolateral plasma membraneBile salt export pumpHomo sapiens (human)
Golgi membraneBile salt export pumpHomo sapiens (human)
endosomeBile salt export pumpHomo sapiens (human)
plasma membraneBile salt export pumpHomo sapiens (human)
cell surfaceBile salt export pumpHomo sapiens (human)
apical plasma membraneBile salt export pumpHomo sapiens (human)
intercellular canaliculusBile salt export pumpHomo sapiens (human)
intracellular canaliculusBile salt export pumpHomo sapiens (human)
recycling endosomeBile salt export pumpHomo sapiens (human)
recycling endosome membraneBile salt export pumpHomo sapiens (human)
extracellular exosomeBile salt export pumpHomo sapiens (human)
membraneBile salt export pumpHomo sapiens (human)
nucleusBeta-2 adrenergic receptorHomo sapiens (human)
lysosomeBeta-2 adrenergic receptorHomo sapiens (human)
endosomeBeta-2 adrenergic receptorHomo sapiens (human)
early endosomeBeta-2 adrenergic receptorHomo sapiens (human)
Golgi apparatusBeta-2 adrenergic receptorHomo sapiens (human)
plasma membraneBeta-2 adrenergic receptorHomo sapiens (human)
endosome membraneBeta-2 adrenergic receptorHomo sapiens (human)
membraneBeta-2 adrenergic receptorHomo sapiens (human)
apical plasma membraneBeta-2 adrenergic receptorHomo sapiens (human)
clathrin-coated endocytic vesicle membraneBeta-2 adrenergic receptorHomo sapiens (human)
neuronal dense core vesicleBeta-2 adrenergic receptorHomo sapiens (human)
receptor complexBeta-2 adrenergic receptorHomo sapiens (human)
plasma membraneBeta-2 adrenergic receptorHomo sapiens (human)
plasma membraneMuscarinic acetylcholine receptor M2Homo sapiens (human)
membraneMuscarinic acetylcholine receptor M2Homo sapiens (human)
clathrin-coated endocytic vesicle membraneMuscarinic acetylcholine receptor M2Homo sapiens (human)
asymmetric synapseMuscarinic acetylcholine receptor M2Homo sapiens (human)
symmetric synapseMuscarinic acetylcholine receptor M2Homo sapiens (human)
presynaptic membraneMuscarinic acetylcholine receptor M2Homo sapiens (human)
neuronal cell bodyMuscarinic acetylcholine receptor M2Homo sapiens (human)
axon terminusMuscarinic acetylcholine receptor M2Homo sapiens (human)
postsynaptic membraneMuscarinic acetylcholine receptor M2Homo sapiens (human)
glutamatergic synapseMuscarinic acetylcholine receptor M2Homo sapiens (human)
cholinergic synapseMuscarinic acetylcholine receptor M2Homo sapiens (human)
plasma membraneMuscarinic acetylcholine receptor M2Homo sapiens (human)
synapseMuscarinic acetylcholine receptor M2Homo sapiens (human)
dendriteMuscarinic acetylcholine receptor M2Homo sapiens (human)
endoplasmic reticulum membraneMuscarinic acetylcholine receptor M3Homo sapiens (human)
plasma membraneMuscarinic acetylcholine receptor M3Homo sapiens (human)
basal plasma membraneMuscarinic acetylcholine receptor M3Homo sapiens (human)
basolateral plasma membraneMuscarinic acetylcholine receptor M3Homo sapiens (human)
postsynaptic membraneMuscarinic acetylcholine receptor M3Homo sapiens (human)
synapseMuscarinic acetylcholine receptor M3Homo sapiens (human)
plasma membraneMuscarinic acetylcholine receptor M3Homo sapiens (human)
dendriteMuscarinic acetylcholine receptor M3Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (43)

Assay IDTitleYearJournalArticle
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID1345343Human M3 receptor (Acetylcholine receptors (muscarinic))2006British journal of pharmacology, Aug, Volume: 148, Issue:7
Quantifying the association and dissociation rates of unlabelled antagonists at the muscarinic M3 receptor.
AID1345286Human M1 receptor (Acetylcholine receptors (muscarinic))1993Life sciences, , Volume: 52, Issue:5-6
Ba 679 BR, a novel long-acting anticholinergic bronchodilator.
AID1345343Human M3 receptor (Acetylcholine receptors (muscarinic))1993Life sciences, , Volume: 52, Issue:5-6
Ba 679 BR, a novel long-acting anticholinergic bronchodilator.
AID1345326Human M2 receptor (Acetylcholine receptors (muscarinic))1993Life sciences, , Volume: 52, Issue:5-6
Ba 679 BR, a novel long-acting anticholinergic bronchodilator.
AID625282Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cirrhosis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1204924Displacement of [3H]NMS from human muscarinic M3 receptor expressing CHO-K1 cells incubated for 60 mins or 6 hrs by liquid scintillation counting2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID1204956Bronchoprotection in male Duncan Hartley guinea pig bronchoconstriction einthoven model assessed as inhibition of methacholine-induced bronchoconstriction at 10 microg/ml, inhalation after 1.5 hrs by in vivo muscarinic antagonist and beta2 agonist activit2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID1204925Agonist activity at human beta2 adrenergic receptor expressed in HEK293 cells assessed as cAMP accumulation using [125I]cAMP by scintillation counting2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID1204958Antisialagogue activity in guinea pig assessed as inhibition of pilocarpine-induced sialagogue response at 10 ug/ml, inhalation after 1.5 hrs2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID1204952Bronchoprotection in male Duncan Hartley guinea pig bronchoconstriction einthoven model assessed as inhibition of methacholine-induced bronchoconstriction at 10 microg/ml, inhalation after 1.5 hrs by in vivo muscarinic acetylcholine receptor antagonist ac2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID625288Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for jaundice2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625284Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatic failure2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625280Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cholecystitis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625292Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) combined score2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1253950Displacement of [3H]N-methyl scopolamine from human cloned muscarinic M3 receptor assessed as compound dissociation half life by dilution method2015Bioorganic & medicinal chemistry letters, Nov-15, Volume: 25, Issue:22
Molecular hybridization yields triazole bronchodilators for the treatment of COPD.
AID625290Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver fatty2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID771317Cellular uptake in human HEK293 cells assessed as human OCT1-mediated drug transport at 2.5 uM after 4 mins by LC-MS/MS analysis2013Journal of medicinal chemistry, Sep-26, Volume: 56, Issue:18
Identification of novel substrates and structure-activity relationship of cellular uptake mediated by human organic cation transporters 1 and 2.
AID1204950Bronchoprotection in male Duncan Hartley guinea pig bronchoconstriction einthoven model assessed as inhibition of methacholine-induced bronchoconstriction at 10 microg/ml, inhalation after 24 hrs by in vivo muscarinic antagonist and beta2 agonist activity2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID625291Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver function tests abnormal2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID771314Cellular uptake in human HEK293 cells assessed as human OCT2-mediated drug transport at 2.5 uM after 4 mins by LC-MS/MS analysis relative to passive uptake2013Journal of medicinal chemistry, Sep-26, Volume: 56, Issue:18
Identification of novel substrates and structure-activity relationship of cellular uptake mediated by human organic cation transporters 1 and 2.
AID1204926Selectivity ratio of EC50 for human beta1 adrenergic receptor to EC50 for human beta2 adrenergic receptor2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID625281Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for cholelithiasis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1449628Inhibition of human BSEP expressed in baculovirus transfected fall armyworm Sf21 cell membranes vesicles assessed as reduction in ATP-dependent [3H]-taurocholate transport into vesicles incubated for 5 mins by Topcount based rapid filtration method2012Drug metabolism and disposition: the biological fate of chemicals, Dec, Volume: 40, Issue:12
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
AID771315Cellular uptake in human HEK293 cells assessed as human OCT1-mediated drug transport at 2.5 uM after 4 mins by LC-MS/MS analysis relative to passive uptake2013Journal of medicinal chemistry, Sep-26, Volume: 56, Issue:18
Identification of novel substrates and structure-activity relationship of cellular uptake mediated by human organic cation transporters 1 and 2.
AID625287Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatomegaly2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1204948Bronchoprotection in male Duncan Hartley guinea pig bronchoconstriction einthoven model assessed as inhibition of methacholine-induced bronchoconstriction at 10 microg/ml, inhalation after 24 hrs by in vivo beta2 adrenergic receptor agonist activity assay2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID625283Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for elevated liver function tests2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625286Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatitis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID1204954Bronchoprotection in male Duncan Hartley guinea pig bronchoconstriction einthoven model assessed as inhibition of methacholine-induced bronchoconstriction at 10 microg/ml, inhalation after 1.5 hrs by in vivo beta2 adrenergic receptor agonist activity assa2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID1204946Bronchoprotection in male Duncan Hartley guinea pig bronchoconstriction einthoven model assessed as inhibition of methacholine-induced bronchoconstriction at 10 microg/ml, inhalation after 24 hrs by in vivo muscarinic acetylcholine receptor antagonist act2015Journal of medicinal chemistry, Mar-26, Volume: 58, Issue:6
Discovery of (R)-1-(3-((2-chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1'-biphenyl]-2-ylcarbamate (TD-5959, GSK961081, batefenterol): first-in-class dual pharmac
AID625289Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for liver disease2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625279Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for bilirubinemia2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID625285Drug Induced Liver Injury Prediction System (DILIps) training set; hepatic side effect (HepSE) score for hepatic necrosis2011PLoS computational biology, Dec, Volume: 7, Issue:12
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
AID771316Cellular uptake in human HEK293 cells assessed as human OCT2-mediated drug transport at 2.5 uM after 4 mins by LC-MS/MS analysis2013Journal of medicinal chemistry, Sep-26, Volume: 56, Issue:18
Identification of novel substrates and structure-activity relationship of cellular uptake mediated by human organic cation transporters 1 and 2.
AID640615Clearance in human liver microsomes at 1 uM measured after 60 mins by HPLC analysis2012Bioorganic & medicinal chemistry letters, Jan-15, Volume: 22, Issue:2
Capture hydrolysis signals in the microsomal stability assay: molecular mechanisms of the alkyl ester drug and prodrug metabolism.
AID1812131Displacement of [3H]-N-methyl Scopolamine Chloride from human M2 receptor membranes incubated for 2 hrs by scintillation counting analysis2021Journal of medicinal chemistry, 07-08, Volume: 64, Issue:13
Discovery of M
AID1812133Binding affinity to human M3 receptor membranes assessed as dissociation half life by liquid scintillation counting analysis2021Journal of medicinal chemistry, 07-08, Volume: 64, Issue:13
Discovery of M
AID1812132Binding affinity to human M3 receptor membranes assessed as association half life by liquid scintillation counting analysis2021Journal of medicinal chemistry, 07-08, Volume: 64, Issue:13
Discovery of M
AID1864493Substrate activity at human OCT3 overexpressed in HEK293 cells assessed as uptake ratio incubated for 2 mins by LC-MS/MS analysis2022Journal of medicinal chemistry, 09-22, Volume: 65, Issue:18
Substrates and Inhibitors of the Organic Cation Transporter 3 and Comparison with OCT1 and OCT2.
AID1812117Displacement of [3H]-N-methyl Scopolamine Chloride from human M3 receptor membranes incubated for 2 hrs by scintillation counting analysis2021Journal of medicinal chemistry, 07-08, Volume: 64, Issue:13
Discovery of M
AID1345326Human M2 receptor (Acetylcholine receptors (muscarinic))2013The Journal of pharmacology and experimental therapeutics, May, Volume: 345, Issue:2
Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases.
AID1345343Human M3 receptor (Acetylcholine receptors (muscarinic))2013The Journal of pharmacology and experimental therapeutics, May, Volume: 345, Issue:2
Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (12)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's1 (8.33)18.2507
2000's1 (8.33)29.6817
2010's8 (66.67)24.3611
2020's2 (16.67)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 98.83

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be very strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index98.83 (24.57)
Research Supply Index2.56 (2.92)
Research Growth Index5.56 (4.65)
Search Engine Demand Index170.58 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (98.83)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other12 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]