Page last updated: 2024-11-07

10-propargyl-10-deazaaminopterin

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

10-propargyl-10-deazaaminopterin: structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

pralatrexate : A pteridine that is the N-4-[1-(2,4-diaminopteridin-6-yl)pent-4-yn-2-yl]benzoyl derivative of L-glutamic acid. Used for treatment of Peripheral T-Cell Lymphoma, an aggressive form of non-Hodgkins lymphoma. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID148121
CHEMBL ID1201746
CHEBI ID71223
SCHEMBL ID21633
SCHEMBL ID15075302
MeSH IDM0377231

Synonyms (82)

Synonym
HY-10446
(2s)-2-(4-(1-(2,4-diaminopteridin-6-yl)pent-4-yn-2-yl)benzamido)pentanedioic acid
10-propargyl-10-deazaaminopterin
D05589
146464-95-1
pralatrexate (jan/usan/inn)
folotyn (tn)
PDX ,
pralatrexate
CHEMBL1201746
chebi:71223 ,
nsc-754230
(2s)-2-[[4-[1-(2,4-diaminopteridin-6-yl)pent-4-yn-2-yl]benzoyl]amino]pentanedioic acid
nsc754230
folotyn
NCGC00242596-01
n-(4-(1-((2,4-diamino-6-pteridinyl)methyl)-3-butynyl)benzoyl)-l-glutamic acid
(2s)-2-((4-((1rs)-1-((2,4-diaminopteridin-6-yl)methyl)but-3-ynyl)benzoyl)amino)pentanedioic acid
pralatrexate [usan:inn]
nsc 754230
hsdb 7786
unii-a8q8i19q20
l-glutamic acid, n-(4-(1-((2,4-diamino-6-pteridinyl)methyl)-3-butynyl)benzoyl)-
a8q8i19q20 ,
tox21_112906
dtxsid3048578 ,
cas-146464-95-1
dtxcid3028504
AKOS015966891
BCPP000101
AM84423
CS-0504
pralatrexatum
(2s)-2-({4-[1-(2,4-diaminopteridin-6-yl)pent-4-yn-2-yl]benzoyl}amino)pentanedioic acid
pralatrexato
n-{4-[1-(2,4-diaminopteridin-6-yl)pent-4-yn-2-yl]benzoyl}-l-glutamic acid
S11194
S1497
gtpl6840
DB06813
pralatrexate [orange book]
pralatrexate [mart.]
pralatrexate [inn]
pralatrexate [jan]
pralatrexate [hsdb]
(2s)-2-[[4-[(1rs)-1-[(2,4-diaminopteridin-6-yl)methyl]but-3-ynyl]benzoyl]amino]pentanedioic acid
pralatrexate [usan]
pralatrexate [vandf]
pralatrexate [who-dd]
pralatrexate [mi]
SCHEMBL21633
AB00443251-02
(2s)-2-[[4-[1-[(2,4-diaminopteridin-6-yl)methyl]but-3-ynyl]benzoyl]amino]pentanedioic acid
SCHEMBL15075302
AC-28388
AB00443251_04
sr-01000941578
SR-01000941578-1
J-008227
SW220187-1
pralatrexat
n -(4-{1-[(2,4-diaminopteridin-6-yl)methyl]but-3-yn-1-yl}benzoyl)-l-glutamic acid
146464-95-1 (racemic)
pralatrexate(folotyn)
EX-A2142
BS-15438
10-propargyl-10-deazaaminopterin, 95%
mfcd00920897
OGSBUKJUDHAQEA-WMCAAGNKSA-N
Q637059
CCG-269517
NCGC00386226-01
A884505
n-(4-(1-((2,4-diamino-6-pteridinyl)methyl)-3-butynyl)benzoyl)-l-glutamic acid;pralatrexate
l-glutamic acid, n-[4-[1-[(2,4-diamino-6-pteridinyl)methyl]-3-butyn-1-yl]benzoyl]-
bdbm50457437
pralatrexte
l01ba05
pralatrexate (mart.)
P2645
EN300-26509071
(2s)-2-({4-[1-(2,4-diaminopteridin-6-yl)pent-4-yn-2-yl]phenyl}formamido)pentanedioic acid

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" Outcomes measured included adverse events (AEs), pharmacokinetics, and radiologic response."( Pralatrexate with vitamin supplementation in patients with previously treated, advanced non-small cell lung cancer: safety and efficacy in a phase 1 trial.
Azzoli, CG; Dunne, M; Ginsberg, M; Huntington, M; James, L; Kris, MG; Krug, LM; May, J; Miller, V; Patel, JD; Saunders, M; Sirotnak, FM; Subzwari, S; Tyson, L, 2011
)
0.37
" In addition, the authors highlight pralatrexate-associated adverse effects and safety concerns."( Pralatrexate : evaluation of clinical efficacy and toxicity in T-cell lymphoma.
Dasanu, CA; Shimanovsky, A, 2013
)
0.39
"Balancing efficacy and safety of drugs is key for successful cancer therapy, as adverse reactions can prohibit the use of efficacious treatments."( Preemptive leucovorin administration minimizes pralatrexate toxicity without sacrificing efficacy.
Geskin, LJ; Koch, E; Story, SK, 2013
)
0.39

Pharmacokinetics

ExcerptReferenceRelevance
" Weight and methylmalonic acid (MMA) level were predictive of pharmacokinetic (PK) variability."( A population pharmacokinetic and pharmacodynamic evaluation of pralatrexate in patients with relapsed or refractory non-Hodgkin's or Hodgkin's lymphoma.
Duffull, SB; Fleisher, M; Hamlin, P; Horwitz, S; Mould, DR; Neylon, E; O'Connor, OA; Saunders, ME; Sirotnak, F; Sweeney, K, 2009
)
0.35

Compound-Compound Interactions

ExcerptReferenceRelevance
" The aim of this phase I study was to determine the maximum-tolerated dose of pralatrexate when combined with probenecid given every 2 weeks in humans."( A phase I clinical pharmacologic study of pralatrexate in combination with probenecid in adults with advanced solid tumors.
Azzoli, CG; Fury, MG; Kemeny, N; Kris, MG; Krug, LM; Rizvi, NA; Sharma, S; Wu, N, 2006
)
0.33
"For patients with advanced solid tumors, the maximum-tolerated dose of this drug combination was pralatrexate 40 mg/m(2) and probenecid 140 mg/m(2)."( A phase I clinical pharmacologic study of pralatrexate in combination with probenecid in adults with advanced solid tumors.
Azzoli, CG; Fury, MG; Kemeny, N; Kris, MG; Krug, LM; Rizvi, NA; Sharma, S; Wu, N, 2006
)
0.33
"This study aimed to assess the long-term tolerability of pralatrexate alone or in combination with oral bexarotene for relapsed or refractory mycosis fungoides (MF)."( Pralatrexate alone or in combination with bexarotene: long-term tolerability in relapsed/refractory mycosis fungoides.
Duvic, M; Gangar, P; Talpur, R; Thompson, A, 2014
)
0.4
" During a second phase I/II dose-ranging combination trial, participants were treated with pralatrexate at 15 mg/m(2)/wk for 3 of 4 weeks combined with 150 to 300 mg/m(2) of daily oral bexarotene."( Pralatrexate alone or in combination with bexarotene: long-term tolerability in relapsed/refractory mycosis fungoides.
Duvic, M; Gangar, P; Talpur, R; Thompson, A, 2014
)
0.4
"Pralatrexate alone or in combination with low-dose oral bexarotene is well tolerated and capable of providing long-term responses in patients of advanced age with advanced-stage MF."( Pralatrexate alone or in combination with bexarotene: long-term tolerability in relapsed/refractory mycosis fungoides.
Duvic, M; Gangar, P; Talpur, R; Thompson, A, 2014
)
0.4
" To our knowledge, we report the first case using an MTX serum assay as a surrogate for PDX concentrations to avoid a potential drug-drug interaction with pralatrexate."( Pralatrexate Monitoring Using a Commercially Available Methotrexate Assay to Avoid Potential Drug Interactions.
Gilreath, JA; Halwani, AS; McPherson, JP; Sedillo, C; Vrontikis, A, 2016
)
0.43
" This phase 1 study investigated the safety and efficacy of pralatrexate in combination with bortezomib in adults with relapsed or refractory multiple myeloma."( A phase 1, open-label, dose-escalation study of pralatrexate in combination with bortezomib in patients with relapsed/refractory multiple myeloma.
Berube, C; Coutré, SE; Dinner, S; Dunn, TJ; Gotlib, J; Hao, Y; Liedtke, M; Medeiros, BC; Price, E, 2016
)
0.43
" A recent study disclosed that pralatrexate has a synergistic effect in combination with bortezomib."( Pralatrexate in Combination with Bortezomib for Relapsed or Refractory Peripheral T Cell Lymphoma in 5 Elderly Patients.
Ahn, JS; Cho, MS; Jung, SH; Jung, SY; Kim, HJ; Kim, YK; Lee, JJ; Lee, SS; Yang, DH, 2016
)
0.43

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

ExcerptRelevanceReference
", weight or body surface area)-based dosing and that pretreatment with folic acid and vitamin B(12) might diminish the incidence and severity of mucositis."( A population pharmacokinetic and pharmacodynamic evaluation of pralatrexate in patients with relapsed or refractory non-Hodgkin's or Hodgkin's lymphoma.
Duffull, SB; Fleisher, M; Hamlin, P; Horwitz, S; Mould, DR; Neylon, E; O'Connor, OA; Saunders, ME; Sirotnak, F; Sweeney, K, 2009
)
0.35
" A dose de-escalation strategy identified recommended pralatrexate dosing for patients with CTCL that demonstrated high activity, good rates of disease control, and an acceptable toxicity profile for continuous long-term dosing."( Identification of an active, well-tolerated dose of pralatrexate in patients with relapsed or refractory cutaneous T-cell lymphoma.
Bartlett, NL; Delioukina, ML; Duvic, M; Fisher, DC; Foss, F; Horwitz, SM; Kim, YH; Koutsoukos, T; Lechowicz, MJ; Myskowski, PL; O'Connor, OA; Saunders, ME; Shustov, AR; Zain, JM, 2012
)
0.38
" The study was initiated with a dosing schedule of pralatrexate 190 mg/m(2) biweekly on a 4-week cycle with vitamin supplementation."( A phase II study of pralatrexate with vitamin B12 and folic acid supplementation for previously treated recurrent and/or metastatic head and neck squamous cell cancer.
Apollo, A; Cox, L; Fury, MG; Haque, S; Ho, AL; Lipson, BL; Lyo, JK; Pfister, DG; Sales, R; Seetharamu, N; Sherman, EJ; Sima, CS; Xiao, H, 2014
)
0.4
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (3)

RoleDescription
antineoplastic agentA substance that inhibits or prevents the proliferation of neoplasms.
antimetaboliteA substance which is structurally similar to a metabolite but which competes with it or replaces it, and so prevents or reduces its normal utilization.
EC 1.5.1.3 (dihydrofolate reductase) inhibitorAn EC 1.5.1.* (oxidoreductase acting on donor CH-NH group, NAD(+) or NADP(+) as acceptor) inhibitor that interferes with the action of dihydrofolate reductase (EC 1.5.1.3).
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (3)

ClassDescription
N-acyl-L-glutamic acidAny optically active N-acylglutamic acid having L-configuration.
pteridines
terminal acetylenic compoundAn acetylenic compound which a carbon of the C#C moiety is attached to a hydrogen atom.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (15)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Fumarate hydrataseHomo sapiens (human)Potency0.13210.00308.794948.0869AID1347053
TDP1 proteinHomo sapiens (human)Potency0.02860.000811.382244.6684AID686978; AID686979
AR proteinHomo sapiens (human)Potency4.77160.000221.22318,912.5098AID743036
EWS/FLI fusion proteinHomo sapiens (human)Potency0.03620.001310.157742.8575AID1259252; AID1259253; AID1259255; AID1259256
estrogen nuclear receptor alphaHomo sapiens (human)Potency2.15060.000229.305416,493.5996AID743069; AID743079
polyproteinZika virusPotency0.13210.00308.794948.0869AID1347053
thyroid hormone receptor beta isoform 2Rattus norvegicus (Norway rat)Potency0.69640.000323.4451159.6830AID743065; AID743067
Cellular tumor antigen p53Homo sapiens (human)Potency0.30050.002319.595674.0614AID651631; AID720552
Spike glycoproteinSevere acute respiratory syndrome-related coronavirusPotency0.70790.009610.525035.4813AID1479145
ATPase family AAA domain-containing protein 5Homo sapiens (human)Potency14.15710.011917.942071.5630AID651632; AID720516
Ataxin-2Homo sapiens (human)Potency0.13330.011912.222168.7989AID651632
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Dihydrofolate reductaseHomo sapiens (human)Ki0.00000.00000.37564.9000AID1894187
Folate receptor alphaHomo sapiens (human)IC50 (µMol)0.58400.01500.19640.8940AID1380197; AID1380198
Reduced folate transporterHomo sapiens (human)IC50 (µMol)0.00070.00070.05010.1380AID1380195
Proton-coupled folate transporterHomo sapiens (human)IC50 (µMol)0.05700.00830.06120.1210AID1380200
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (181)

Processvia Protein(s)Taxonomy
tetrahydrobiopterin biosynthetic processDihydrofolate reductaseHomo sapiens (human)
one-carbon metabolic processDihydrofolate reductaseHomo sapiens (human)
negative regulation of translationDihydrofolate reductaseHomo sapiens (human)
axon regenerationDihydrofolate reductaseHomo sapiens (human)
response to methotrexateDihydrofolate reductaseHomo sapiens (human)
dihydrofolate metabolic processDihydrofolate reductaseHomo sapiens (human)
tetrahydrofolate metabolic processDihydrofolate reductaseHomo sapiens (human)
tetrahydrofolate biosynthetic processDihydrofolate reductaseHomo sapiens (human)
folic acid metabolic processDihydrofolate reductaseHomo sapiens (human)
positive regulation of nitric-oxide synthase activityDihydrofolate reductaseHomo sapiens (human)
regulation of removal of superoxide radicalsDihydrofolate reductaseHomo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
heart loopingFolate receptor alphaHomo sapiens (human)
neural crest cell migration involved in heart formationFolate receptor alphaHomo sapiens (human)
cardiac neural crest cell migration involved in outflow tract morphogenesisFolate receptor alphaHomo sapiens (human)
receptor-mediated endocytosisFolate receptor alphaHomo sapiens (human)
folic acid transportFolate receptor alphaHomo sapiens (human)
regulation of transforming growth factor beta receptor signaling pathwayFolate receptor alphaHomo sapiens (human)
axon regenerationFolate receptor alphaHomo sapiens (human)
folic acid metabolic processFolate receptor alphaHomo sapiens (human)
regulation of canonical Wnt signaling pathwayFolate receptor alphaHomo sapiens (human)
pharyngeal arch artery morphogenesisFolate receptor alphaHomo sapiens (human)
anterior neural tube closureFolate receptor alphaHomo sapiens (human)
cellular response to folic acidFolate receptor alphaHomo sapiens (human)
cell adhesionFolate receptor alphaHomo sapiens (human)
fusion of sperm to egg plasma membrane involved in single fertilizationFolate receptor alphaHomo sapiens (human)
sperm-egg recognitionFolate receptor alphaHomo sapiens (human)
xenobiotic transmembrane transportReduced folate transporterHomo sapiens (human)
female pregnancyReduced folate transporterHomo sapiens (human)
organic anion transportReduced folate transporterHomo sapiens (human)
folic acid transportReduced folate transporterHomo sapiens (human)
folic acid metabolic processReduced folate transporterHomo sapiens (human)
methotrexate transportReduced folate transporterHomo sapiens (human)
monoatomic anion transmembrane transportReduced folate transporterHomo sapiens (human)
folate transmembrane transportReduced folate transporterHomo sapiens (human)
cyclic-GMP-AMP transmembrane import across plasma membraneReduced folate transporterHomo sapiens (human)
positive regulation of cGAS/STING signaling pathwayReduced folate transporterHomo sapiens (human)
transport across blood-brain barrierReduced folate transporterHomo sapiens (human)
folate import across plasma membraneReduced folate transporterHomo sapiens (human)
intracellular iron ion homeostasisProton-coupled folate transporterHomo sapiens (human)
folic acid transportProton-coupled folate transporterHomo sapiens (human)
heme transportProton-coupled folate transporterHomo sapiens (human)
heme metabolic processProton-coupled folate transporterHomo sapiens (human)
folic acid metabolic processProton-coupled folate transporterHomo sapiens (human)
methotrexate transportProton-coupled folate transporterHomo sapiens (human)
intestinal folate absorptionProton-coupled folate transporterHomo sapiens (human)
folate transmembrane transportProton-coupled folate transporterHomo sapiens (human)
proton transmembrane transportProton-coupled folate transporterHomo sapiens (human)
folate import across plasma membraneProton-coupled folate transporterHomo sapiens (human)
transmembrane transportProton-coupled folate transporterHomo sapiens (human)
cell population proliferationATPase family AAA domain-containing protein 5Homo sapiens (human)
positive regulation of B cell proliferationATPase family AAA domain-containing protein 5Homo sapiens (human)
nuclear DNA replicationATPase family AAA domain-containing protein 5Homo sapiens (human)
signal transduction in response to DNA damageATPase family AAA domain-containing protein 5Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorATPase family AAA domain-containing protein 5Homo sapiens (human)
isotype switchingATPase family AAA domain-containing protein 5Homo sapiens (human)
positive regulation of DNA replicationATPase family AAA domain-containing protein 5Homo sapiens (human)
positive regulation of isotype switching to IgG isotypesATPase family AAA domain-containing protein 5Homo sapiens (human)
DNA clamp unloadingATPase family AAA domain-containing protein 5Homo sapiens (human)
regulation of mitotic cell cycle phase transitionATPase family AAA domain-containing protein 5Homo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorATPase family AAA domain-containing protein 5Homo sapiens (human)
positive regulation of cell cycle G2/M phase transitionATPase family AAA domain-containing protein 5Homo sapiens (human)
negative regulation of receptor internalizationAtaxin-2Homo sapiens (human)
regulation of translationAtaxin-2Homo sapiens (human)
RNA metabolic processAtaxin-2Homo sapiens (human)
P-body assemblyAtaxin-2Homo sapiens (human)
stress granule assemblyAtaxin-2Homo sapiens (human)
RNA transportAtaxin-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (61)

Processvia Protein(s)Taxonomy
mRNA regulatory element binding translation repressor activityDihydrofolate reductaseHomo sapiens (human)
mRNA bindingDihydrofolate reductaseHomo sapiens (human)
dihydrofolate reductase activityDihydrofolate reductaseHomo sapiens (human)
folic acid bindingDihydrofolate reductaseHomo sapiens (human)
NADPH bindingDihydrofolate reductaseHomo sapiens (human)
sequence-specific mRNA bindingDihydrofolate reductaseHomo sapiens (human)
NADP bindingDihydrofolate reductaseHomo sapiens (human)
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingFolate receptor alphaHomo sapiens (human)
folic acid bindingFolate receptor alphaHomo sapiens (human)
folic acid receptor activityFolate receptor alphaHomo sapiens (human)
signaling receptor activityFolate receptor alphaHomo sapiens (human)
organic anion transmembrane transporter activityReduced folate transporterHomo sapiens (human)
folic acid transmembrane transporter activityReduced folate transporterHomo sapiens (human)
folate:monoatomic anion antiporter activityReduced folate transporterHomo sapiens (human)
antiporter activityReduced folate transporterHomo sapiens (human)
methotrexate transmembrane transporter activityReduced folate transporterHomo sapiens (human)
xenobiotic transmembrane transporter activityReduced folate transporterHomo sapiens (human)
2',3'-cyclic GMP-AMP bindingReduced folate transporterHomo sapiens (human)
cyclic-GMP-AMP transmembrane transporter activityReduced folate transporterHomo sapiens (human)
folic acid bindingReduced folate transporterHomo sapiens (human)
heme transmembrane transporter activityProton-coupled folate transporterHomo sapiens (human)
folic acid bindingProton-coupled folate transporterHomo sapiens (human)
folic acid transmembrane transporter activityProton-coupled folate transporterHomo sapiens (human)
proton transmembrane transporter activityProton-coupled folate transporterHomo sapiens (human)
heme transmembrane transporter activityProton-coupled folate transporterHomo sapiens (human)
symporter activityProton-coupled folate transporterHomo sapiens (human)
methotrexate transmembrane transporter activityProton-coupled folate transporterHomo sapiens (human)
folic acid:proton symporter activityProton-coupled folate transporterHomo sapiens (human)
transmembrane transporter activityProton-coupled folate transporterHomo sapiens (human)
protein bindingATPase family AAA domain-containing protein 5Homo sapiens (human)
ATP bindingATPase family AAA domain-containing protein 5Homo sapiens (human)
ATP hydrolysis activityATPase family AAA domain-containing protein 5Homo sapiens (human)
DNA clamp unloader activityATPase family AAA domain-containing protein 5Homo sapiens (human)
DNA bindingATPase family AAA domain-containing protein 5Homo sapiens (human)
RNA bindingAtaxin-2Homo sapiens (human)
epidermal growth factor receptor bindingAtaxin-2Homo sapiens (human)
protein bindingAtaxin-2Homo sapiens (human)
mRNA bindingAtaxin-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (42)

Processvia Protein(s)Taxonomy
mitochondrionDihydrofolate reductaseHomo sapiens (human)
cytosolDihydrofolate reductaseHomo sapiens (human)
mitochondrionDihydrofolate reductaseHomo sapiens (human)
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
Golgi membraneFolate receptor alphaHomo sapiens (human)
endosomeFolate receptor alphaHomo sapiens (human)
endoplasmic reticulum membraneFolate receptor alphaHomo sapiens (human)
plasma membraneFolate receptor alphaHomo sapiens (human)
external side of plasma membraneFolate receptor alphaHomo sapiens (human)
cell surfaceFolate receptor alphaHomo sapiens (human)
ER to Golgi transport vesicle membraneFolate receptor alphaHomo sapiens (human)
membraneFolate receptor alphaHomo sapiens (human)
basolateral plasma membraneFolate receptor alphaHomo sapiens (human)
apical plasma membraneFolate receptor alphaHomo sapiens (human)
transport vesicleFolate receptor alphaHomo sapiens (human)
clathrin-coated vesicleFolate receptor alphaHomo sapiens (human)
brush border membraneFolate receptor alphaHomo sapiens (human)
endoplasmic reticulum-Golgi intermediate compartment membraneFolate receptor alphaHomo sapiens (human)
extracellular exosomeFolate receptor alphaHomo sapiens (human)
nucleusFolate receptor alphaHomo sapiens (human)
external side of plasma membraneFolate receptor alphaHomo sapiens (human)
plasma membraneReduced folate transporterHomo sapiens (human)
basolateral plasma membraneReduced folate transporterHomo sapiens (human)
apical plasma membraneReduced folate transporterHomo sapiens (human)
brush border membraneReduced folate transporterHomo sapiens (human)
basolateral plasma membraneReduced folate transporterHomo sapiens (human)
plasma membraneReduced folate transporterHomo sapiens (human)
apical plasma membraneReduced folate transporterHomo sapiens (human)
virion membraneSpike glycoproteinSevere acute respiratory syndrome-related coronavirus
plasma membraneProton-coupled folate transporterHomo sapiens (human)
basolateral plasma membraneProton-coupled folate transporterHomo sapiens (human)
cytoplasmProton-coupled folate transporterHomo sapiens (human)
endosomeProton-coupled folate transporterHomo sapiens (human)
plasma membraneProton-coupled folate transporterHomo sapiens (human)
cell surfaceProton-coupled folate transporterHomo sapiens (human)
endosome membraneProton-coupled folate transporterHomo sapiens (human)
basolateral plasma membraneProton-coupled folate transporterHomo sapiens (human)
apical plasma membraneProton-coupled folate transporterHomo sapiens (human)
brush border membraneProton-coupled folate transporterHomo sapiens (human)
Elg1 RFC-like complexATPase family AAA domain-containing protein 5Homo sapiens (human)
nucleusATPase family AAA domain-containing protein 5Homo sapiens (human)
cytoplasmAtaxin-2Homo sapiens (human)
Golgi apparatusAtaxin-2Homo sapiens (human)
trans-Golgi networkAtaxin-2Homo sapiens (human)
cytosolAtaxin-2Homo sapiens (human)
cytoplasmic stress granuleAtaxin-2Homo sapiens (human)
membraneAtaxin-2Homo sapiens (human)
perinuclear region of cytoplasmAtaxin-2Homo sapiens (human)
ribonucleoprotein complexAtaxin-2Homo sapiens (human)
cytoplasmic stress granuleAtaxin-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (75)

Assay IDTitleYearJournalArticle
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347111qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347113qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347110qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for A673 cells)2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347116qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347123qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347127qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347128qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347122qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347121qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347112qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347124qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347118qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347114qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347119qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347109qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347129qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347117qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347126qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347115qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347125qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1474167Liver toxicity in human assessed as induction of drug-induced liver injury by measuring verified drug-induced liver injury concern status2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID1053453Growth inhibition of Chinese hamster RT16 cells after 96 hrs by CellTiter-blue assay2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1053448Growth inhibition of Chinese hamster R2(VC) cells after 96 hrs by CellTiter-blue assay2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1380199Binding affinity to human FR-beta receptor expressed in Chinese hamster D4 cells assessed as antiproliferative activity measured as reduction in cell viability after 96 hrs by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1380194Binding affinity to human FR-beta receptor expressed in Chinese hamster D4 cells assessed as antiproliferative activity measured as reduction in cell viability after 96 hrs in presence of folic acid by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1380197Binding affinity to human FR-alpha receptor expressed in Chinese hamster RT16 cells assessed as antiproliferative activity measured as reduction in cell viability after 96 hrs by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1474166Liver toxicity in human assessed as induction of drug-induced liver injury by measuring severity class index2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID1053446Growth inhibition of human KB cells expressing human RFC/FRalpha/PCFT after 96 hrs by CellTiter-blue assay in presence of folic acid2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1053455Growth inhibition of Chinese hamster PC43-10 cells after 96 hrs by CellTiter-blue assay2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1053454Growth inhibition of Chinese hamster MTXRII-OuaR2-4 cells after 96 hrs by CellTiter-blue assay2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1380203Antiproliferative activity against human KB cells expressing human RFC/FR-alpha/PCFT assessed as reduction in cell viability measured after 96 hrs in presence of folic acid by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1380201Growth inhibition of Chinese hamster R2(VC) cells after 96 hrs celltiter-blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1053452Growth inhibition of Chinese hamster RT16 cells after 96 hrs by CellTiter-blue assay in presence of folic acid2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1380202Antiproliferative activity against human KB cells expressing human RFC/FR-alpha/PCFT assessed as reduction in cell viability measured after 96 hrs by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1053450Growth inhibition of Chinese hamster D4 cells after 96 hrs by CellTiter-blue assay in presence of folic acid2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1894187Inhibition of DHFR (unknown origin) at pH 6.72021European journal of medicinal chemistry, Mar-15, Volume: 214FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application.
AID1053447Growth inhibition of human KB cells expressing human RFC/FRalpha/PCFT after 96 hrs by CellTiter-blue assay2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1380200Binding affinity to human PCFT expressed in Chinese hamster R2/PCFT4 cells assessed as antiproliferative activity measured as reduction in cell viability after 96 hrs by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1380196Cytotoxicity in RFC-null Chinese hamster R2 cells assessed as reduction in cell viability measured after 96 hrs by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1053449Growth inhibition of Chinese hamster R2 cells expressing human PCFT4 after 96 hrs by CellTiter-blue assay2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1380198Binding affinity to human FR-alpha receptor expressed in Chinese hamster RT16 cells assessed as antiproliferative activity measured as reduction in cell viability after 96 hrs in presence of folic acid by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1053451Growth inhibition of Chinese hamster D4 cells after 96 hrs by CellTiter-blue assay2013Journal of medicinal chemistry, Nov-14, Volume: 56, Issue:21
Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
AID1380195Binding affinity to human RFC expressed in Chinese hamster PC43-10 cells assessed as antiproliferative activity measured as reduction in cell viability after 96 hrs by Cell-Titer Blue assay2018Journal of medicinal chemistry, 03-08, Volume: 61, Issue:5
Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis.
AID1346101Human dihydrofolate reductase (Nucleoside synthesis and metabolism)2009Cancer chemotherapy and pharmacology, Oct, Volume: 64, Issue:5
Distinct mechanistic activity profile of pralatrexate in comparison to other antifolates in in vitro and in vivo models of human cancers.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (116)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's23 (19.83)29.6817
2010's67 (57.76)24.3611
2020's26 (22.41)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 11.38

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index11.38 (24.57)
Research Supply Index4.95 (2.92)
Research Growth Index6.33 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (11.38)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials21 (17.65%)5.53%
Reviews29 (24.37%)6.00%
Case Studies19 (15.97%)4.05%
Observational0 (0.00%)0.25%
Other50 (42.02%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]