Page last updated: 2024-11-11

sulindac sulfone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

sulindac sulfone: inhibits K-ras-dependent cyclooxygenase-2; sulfated analog of indomethacin;; CP248 is an antineoplastic agent that fosters microtubule depolymerization; structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

sulindac sulfone : A sulfone metabolite of sulindac that inhibits cell growth by inducing apoptosis independently of cyclooxygenase inhibition. It inhibits the development and induces regression of premalignant adenomatous polyps. Lipoxygenase and Cox-2 inhibitor. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID5472495
CHEMBL ID488025
CHEBI ID64212
SCHEMBL ID1651133
SCHEMBL ID4776597
MeSH IDM0084838

Synonyms (75)

Synonym
nsc-719619
exisulind
sulindac sulfone
LOPAC0_001115
59973-80-7
[(1z)-5-fluoro-2-methyl-1-{[4-(methylsulfonyl)phenyl]methylidene}-1h-inden-3-yl]acetic acid
EU-0101115
CURATOR_000028
lopac-s-1438
NCGC00015928-01
nsc719619
fgn-1
5-fluoro-2-methyl-1-((z)-p-(methylsulfonyl)benzylidene)indene-3-acetic acid
cis-5-fluoro-2-methyl-1-(p-methylsulfonylbenzylidenyl)indene-3-acetic acid
aptosyn
ccris 7242
fgn 1
prevatec
5-fluoro-2-methy l-1-((4-(methylsulfonyl)phenyl)methylene)-1h-indene-3-acetic acid
1h-indene-3-acetic acid, 5-fluoro-2-methyl-1-((4-(methylsulfonyl)phenyl)methylene)-, (1z)-
1h-indene-3-acetic acid, 5-fluoro-2-methy l-1-((4-(methylsulfonyl)phenyl)methylene)-
NCGC00162346-01
NCGC00094385-01
SLO ,
59864-04-9
NCGC00015928-02
(z)-5-fluoro-2-methyl-1-[p-(methylsulfonyl)benzylidene]indene-3-acetic acid
S 1438
NCGC00015928-04
2-[(3z)-6-fluoro-2-methyl-3-[(4-methylsulfonylphenyl)methylidene]inden-1-yl]acetic acid
2-[(3z)-6-fluoranyl-2-methyl-3-[(4-methylsulfonylphenyl)methylidene]inden-1-yl]ethanoic acid
HMS3263O12
dtxsid6040246 ,
tox21_113524
dtxcid4020246
cas-59973-80-7
CCG-205191
unii-k619iig2r9
exisulind [inn]
k619iig2r9 ,
CHEMBL488025
NCGC00015928-03
CHEBI:64212 ,
{(1z)-5-fluoro-2-methyl-1-[4-(methylsulfonyl)benzylidene]-1h-inden-3-yl}acetic acid
LP01115
5-fluoro-2-methyl-1-[[4-(methylsulfonyl)phenyl]methylene]-1h-indene-3-acetic acid
1h-indene-3-acetic acid, 5-fluoro-2-methyl-1-[[4-(methylsulfonyl)phenyl]methylene]-, (1z)-
exisulind [who-dd]
exisulind [mart.]
sulindac impurity b [ep impurity]
exisulind [mi]
exisulind [usan]
NCGC00015928-05
tox21_113524_1
(z)-5-fluoro-2-methyl-1-(p-methylsulfonylbenzylidene)-3-indenylacetic acid
SCHEMBL1651133
NCGC00261800-01
tox21_501115
SCHEMBL4776597
A1-00155
1h-indene-3-acetic acid, 5-fluoro-2-methyl-1-[[4-(methylsulfonyl)phenyl]methylene]-
SR-01000076119-2
sr-01000076119
(z)-[5-fluoro-2-methyl-1-[4-(methylsulfonyl)benzylidene]-1h-inden-3-yl]acetic acid (sulindac sulfone)
Q5420370
1h-indene-3-acetic acid,5-fluoro-2-methyl-1-[[4-(methylsulfonyl)phenyl]methylene]-, (1z)-
(z)-5-fluoro-2-methyl-1-[4-(methylsulfonyl)benzylidene]-1h-indene-3-acetic acid
DB06246
BS-17193
SDCCGSBI-0051084.P002
D81283
(z)-2-(5-fluoro-2-methyl-1-(4-(methylsulfonyl)benzylidene)-1h-inden-3-yl)acetic acid.
sulindacsulfone
AKOS037649206
(z)-sulindac sulfone

Research Excerpts

Overview

Sulindac sulfone is a metabolite of sulindac, a non-steroidal anti-inflammatory drug (NSAID), without anti- inflammatory ability. It is a promising anticancer agent because of its ability to induce apoptosis in a variety of malignant cell types and its minimal toxicity to normal cells.

ExcerptReferenceRelevance
"Sulindac sulfone is a metabolite of sulindac, a non-steroidal anti-inflammatory drug (NSAID), without anti-inflammatory ability. "( Sulindac sulfone inhibits the mTORC1 pathway in colon cancer cells by directly targeting voltage-dependent anion channel 1 and 2.
Aono, Y; Horinaka, M; Iizumi, Y; Sakai, T; Taniguchi, T; Watanabe, M; Yasuda, S, 2018
)
3.37
"Sulindac sulfone (exisulind), is a promising anticancer agent because of its ability to induce apoptosis in a variety of malignant cell types and its minimal toxicity to normal cells. "( p38MAPK inhibitor SB203580 sensitizes human SNU-C4 colon cancer cells to exisulind-induced apoptosis.
Lee, E; Lee, YJ; Lim, SJ, 2006
)
1.78
"Sulindac sulfone is a new class of targeted and pro-apoptotic drugs."( Sulindac sulfone modulates beta-catenin in human cholesteatoma cell culture.
Braun, T; Hormann, K; Matharu, R; Naim, R; Sadick, H; Sauter, A; Schultz, J, 2007
)
2.5

Effects

ExcerptReferenceRelevance
"Sulindac sulfone has been shown to induce apoptosis in several different tumours."( Sulindac sulfone induces a decrease of beta-catenin in HNSCC.
Hormann, K; Naim, R; Sauter, A; Soulsby, H, 2010
)
2.52

Pharmacokinetics

ExcerptReferenceRelevance
" A pharmacokinetic model for reversible metabolism was used to characterize the kinetic parameters for sulindac----sulfide interconversion system."( Effect of uremia and anephric state on the pharmacokinetics of sulindac and its metabolites in rats. I. An application of pharmacokinetic model for reversible metabolism.
Duggan, DE; Lin, JH; Yeh, KC,
)
0.13
" Sulindac sulfone half-life was highly variable and longer in the patient group."( Pharmacokinetics and dialyzability of sulindac and metabolites in patients with end-stage renal failure.
Campagna, KD; Clark, CR; Diskin, CJ; McMillian, CL; Ravis, WR, 1993
)
1.2
" Pharmacokinetic analysis did not demonstrate a clear effect of exisulind on docetaxel pharmacokinetics and vice versa."( A phase I and pharmacokinetic study of exisulind and docetaxel in patients with advanced solid tumors.
Baron, A; Basche, M; Bunn, PA; Chan, DC; Eckhardt, SG; Gibbs, A; Gustafson, DL; Holden, SN; Kelly, K; Long, ME; Menter, A; O'Bryant, CL; Pallansch, P; Persky, M; Pierson, AS; Witta, SE; Zeng, C, 2004
)
0.32
" Correspondence in pharmacokinetic and pharmacodynamic profiles between the two dosing approaches cannot be assumed a priori."( Effects of oral dosing paradigms (gavage versus diet) on pharmacokinetics and pharmacodynamics.
Kapetanovic, IM; Krishnaraj, R; Lyubimov, A; Martin-Jimenez, T; van Breemen, RB; Yuan, L, 2006
)
0.33
" To further current understanding of sulindac bioavailability, metabolism, and disposition, we developed a population pharmacokinetic model for the parent compound and its active metabolites, sulindac sulfide, and exisulind."( Population pharmacokinetic model for cancer chemoprevention with sulindac in healthy subjects.
Ames, MM; Berg, AK; Boring, D; Carlson, EC; Limburg, PJ; Mandrekar, SJ; Reid, JM; Szabo, E; Ziegler, KL, 2013
)
0.39

Compound-Compound Interactions

ExcerptReferenceRelevance
" In this report, we evaluated the effects of exisulind, a novel proapoptotic agent that is a sulfone metabolite of sulindac, in combination with docetaxel on the growth of the human non-small cell lung cancer cell line A549 in vitro and in vivo."( Exisulind in combination with docetaxel inhibits growth and metastasis of human lung cancer and prolongs survival in athymic nude rats with orthotopic lung tumors.
Alila, H; Baron, A; Bunn, PA; Chan, DC; Earle, KA; Helfrich, B; Nelson, P; Pamukcu, R; Piazza, G; Thompson, WJ; Whitehead, CM; Zeng, C; Zhao, TL, 2002
)
0.31
"We studied the safety and clinical activity of exisulind in combination with capecitabine in 35 patients with metastatic breast cancer (MBC)."( Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer.
Arun, B; Booser, D; Esteva, FJ; Gibbs, A; Hortobagyi, GN; Murray, JL; Nealy, KM; Pusztai, L; Rivera, E; Smith, TL; Symmans, WF; Thompson, WJ; Valero, V; Whitehead, C; Zhen, JH, 2003
)
0.32
"Exisulind (125 mg orally bid) in combination with capecitabine is well tolerated and the combination has anticancer activity similar to that of capecitabine alone in heavily pretreated patients with MBC."( Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer.
Arun, B; Booser, D; Esteva, FJ; Gibbs, A; Hortobagyi, GN; Murray, JL; Nealy, KM; Pusztai, L; Rivera, E; Smith, TL; Symmans, WF; Thompson, WJ; Valero, V; Whitehead, C; Zhen, JH, 2003
)
0.32
"0) in combination with exisulind (125-250 mg orally twice daily)."( A phase I/II study of exisulind in combination with docetaxel/carboplatin in patients with metastatic non-small-cell lung cancer.
Burris, HA; Dickson, NR; Greco, FA; Hainsworth, JD; Jones, SF; Kuhn, JG; Raefsky, EL; Thompson, DS; White, MB; Willcutt, NT, 2005
)
0.33
"The rats that received celecoxib in combination with exisulind at low doses showed a significant decrease in prostatic intraepithelial neoplasia and adenocarcinomas as well as an enhanced rate of apoptosis."( Exisulind in combination with celecoxib modulates epidermal growth factor receptor, cyclooxygenase-2, and cyclin D1 against prostate carcinogenesis: in vivo evidence.
Bosland, MC; Horton, L; Narayanan, BA; Narayanan, NK; Nargi, D; Randolph, C; Reddy, BS, 2007
)
0.34
"The purpose of the study was to characterize the involvement of reactive oxygen species (ROS) in mediating the cytotoxic effects of arsenic trioxide (ATO) in combination with sulindac or its metabolites: sulfide (SS) and sulfone (SF) on human leukemic cell lines."( Assessment of the involvement of oxidative stress and Mitogen-Activated Protein Kinase signaling pathways in the cytotoxic effects of arsenic trioxide and its combination with sulindac or its metabolites: sulindac sulfide and sulindac sulfone on human leu
Arkusz, J; Ferlińska, M; Gradecka-Meesters, D; Smok-Pieniążek, A; Stańczyk, M; Stępnik, M, 2012
)
0.56

Bioavailability

ExcerptReferenceRelevance
" Moreover, the model quantifies the relative bioavailability of the sulindac formulations and illustrates the utility of population pharmacokinetics in bioequivalence assessment."( Population pharmacokinetic model for cancer chemoprevention with sulindac in healthy subjects.
Ames, MM; Berg, AK; Boring, D; Carlson, EC; Limburg, PJ; Mandrekar, SJ; Reid, JM; Szabo, E; Ziegler, KL, 2013
)
0.39
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

ExcerptRelevanceReference
" Chronic sulindac dosing resulted in accumulation of the drug and its sulfone and sulfide metabolites in plasma to a greater extent than previously reported for young subjects."( Effects of age and disease on the pharmacokinetics and pharmacodynamics of sulindac.
Hunter, T; MacDougall, B; Mitenko, PA; Owen, JA; Sitar, DS, 1985
)
0.27
" Based on the decreased plasma concentration of the active sulindac sulfide metabolite in the patient group, dosage adjustments may be required in patients with end-stage renal failure."( Pharmacokinetics and dialyzability of sulindac and metabolites in patients with end-stage renal failure.
Campagna, KD; Clark, CR; Diskin, CJ; McMillian, CL; Ravis, WR, 1993
)
0.29
" Sulfone-treated rats also showed a dose-response relationship for inhibiting all tumor parameters."( Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels.
Ahnen, DJ; Alberts, DS; Bogert, C; Brendel, K; Burt, RW; Ellsworth, L; Finn, T; Gross, PH; Guillen, JM; Hixson, LJ; Li, H; Pamukcu, R; Paranka, NS; Piazza, GA; Ritchie, J; Sperl, G, 1997
)
1.74
"A 12 month, multicentre, randomised, double blind, placebo controlled, phase 3, dose-response study was carried out."( Sporadic adenomatous polyp regression with exisulind is effective but toxic: a randomised, double blind, placebo controlled, dose-response study.
Arber, N; Hultcrantz, R; Kuwada, S; Leshno, M; Rex, D; Sjodahl, R, 2006
)
0.33
" Correspondence in pharmacokinetic and pharmacodynamic profiles between the two dosing approaches cannot be assumed a priori."( Effects of oral dosing paradigms (gavage versus diet) on pharmacokinetics and pharmacodynamics.
Kapetanovic, IM; Krishnaraj, R; Lyubimov, A; Martin-Jimenez, T; van Breemen, RB; Yuan, L, 2006
)
0.33
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (3)

RoleDescription
cyclooxygenase 2 inhibitorA cyclooxygenase inhibitor that interferes with the action of cyclooxygenase 2.
EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitorA lipoxygenase inhibitor that interferes with the action of arachidonate 5-lipoxygenase (EC 1.13.11.34).
apoptosis inducerAny substance that induces the process of apoptosis (programmed cell death) in multi-celled organisms.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (3)

ClassDescription
sulfoneAn organosulfur compound having the structure RS(=O)2R (R =/= H).
monocarboxylic acidAn oxoacid containing a single carboxy group.
organofluorine compoundAn organofluorine compound is a compound containing at least one carbon-fluorine bond.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (57)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, TYROSYL-DNA PHOSPHODIESTERASEHomo sapiens (human)Potency0.25120.004023.8416100.0000AID485290
Chain A, HADH2 proteinHomo sapiens (human)Potency31.62280.025120.237639.8107AID886
Chain B, HADH2 proteinHomo sapiens (human)Potency31.62280.025120.237639.8107AID886
thioredoxin reductaseRattus norvegicus (Norway rat)Potency9.06880.100020.879379.4328AID588453
hypoxia-inducible factor 1 alpha subunitHomo sapiens (human)Potency16.93013.189029.884159.4836AID1224846
RAR-related orphan receptor gammaMus musculus (house mouse)Potency0.18830.006038.004119,952.5996AID1159521
SMAD family member 2Homo sapiens (human)Potency10.75310.173734.304761.8120AID1346859; AID1346924
ATAD5 protein, partialHomo sapiens (human)Potency0.51710.004110.890331.5287AID493107
SMAD family member 3Homo sapiens (human)Potency10.75310.173734.304761.8120AID1346859; AID1346924
GLI family zinc finger 3Homo sapiens (human)Potency8.20450.000714.592883.7951AID1259369; AID1259392
Microtubule-associated protein tauHomo sapiens (human)Potency8.91250.180013.557439.8107AID1460
AR proteinHomo sapiens (human)Potency4.89860.000221.22318,912.5098AID743036; AID743053
hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)Homo sapiens (human)Potency15.84890.00137.762544.6684AID914; AID915
thyroid stimulating hormone receptorHomo sapiens (human)Potency3.98110.001318.074339.8107AID926; AID938
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency28.60080.001022.650876.6163AID1224838; AID1224893
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency13.80290.01237.983543.2770AID1645841
retinoid X nuclear receptor alphaHomo sapiens (human)Potency16.93010.000817.505159.3239AID1159527
estrogen nuclear receptor alphaHomo sapiens (human)Potency2.83800.000229.305416,493.5996AID743069; AID743075; AID743079
GVesicular stomatitis virusPotency34.67130.01238.964839.8107AID1645842
peroxisome proliferator-activated receptor deltaHomo sapiens (human)Potency19.72210.001024.504861.6448AID743212; AID743215
vitamin D (1,25- dihydroxyvitamin D3) receptorHomo sapiens (human)Potency8.51220.023723.228263.5986AID743222; AID743223
arylsulfatase AHomo sapiens (human)Potency23.93411.069113.955137.9330AID720538
alpha-galactosidaseHomo sapiens (human)Potency10.00004.466818.391635.4813AID2107
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency19.02030.035520.977089.1251AID504332
peripheral myelin protein 22 isoform 1Homo sapiens (human)Potency95.283423.934123.934123.9341AID1967
chromobox protein homolog 1Homo sapiens (human)Potency0.00600.006026.168889.1251AID488953
mitogen-activated protein kinase 1Homo sapiens (human)Potency39.81070.039816.784239.8107AID995
nuclear factor erythroid 2-related factor 2 isoform 1Homo sapiens (human)Potency25.61850.000627.21521,122.0200AID743202; AID743219
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency37.93300.425612.059128.1838AID504536
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency19.95260.031610.279239.8107AID884; AID885
M-phase phosphoprotein 8Homo sapiens (human)Potency17.78280.177824.735279.4328AID488949
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency11.22020.00419.962528.1838AID2675
muscarinic acetylcholine receptor M1Rattus norvegicus (Norway rat)Potency0.08910.00106.000935.4813AID943
neuropeptide S receptor isoform AHomo sapiens (human)Potency15.84890.015812.3113615.5000AID1461
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Interferon betaHomo sapiens (human)Potency34.67130.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency34.67130.01238.964839.8107AID1645842
Cellular tumor antigen p53Homo sapiens (human)Potency16.78550.002319.595674.0614AID651631
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
GABA theta subunitRattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency34.67130.01238.964839.8107AID1645842
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency19.95261.000012.224831.6228AID885
cytochrome P450 2C9, partialHomo sapiens (human)Potency34.67130.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Endothelin-1 receptorHomo sapiens (human)IC50 (µMol)9.85300.00000.76479.9000AID625257
Endothelin-1 receptorHomo sapiens (human)Ki6.06400.00000.430010.0000AID625257
Mitogen-activated protein kinase 1Homo sapiens (human)IC50 (µMol)13.82500.00031.68789.2000AID625181
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (294)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic cell cycleEndothelin-1 receptorHomo sapiens (human)
branching involved in blood vessel morphogenesisEndothelin-1 receptorHomo sapiens (human)
response to hypoxiaEndothelin-1 receptorHomo sapiens (human)
in utero embryonic developmentEndothelin-1 receptorHomo sapiens (human)
blood vessel remodelingEndothelin-1 receptorHomo sapiens (human)
response to amphetamineEndothelin-1 receptorHomo sapiens (human)
regulation of heart rateEndothelin-1 receptorHomo sapiens (human)
glomerular filtrationEndothelin-1 receptorHomo sapiens (human)
cardiac chamber formationEndothelin-1 receptorHomo sapiens (human)
left ventricular cardiac muscle tissue morphogenesisEndothelin-1 receptorHomo sapiens (human)
atrial cardiac muscle tissue developmentEndothelin-1 receptorHomo sapiens (human)
cardiac neural crest cell migration involved in outflow tract morphogenesisEndothelin-1 receptorHomo sapiens (human)
noradrenergic neuron differentiationEndothelin-1 receptorHomo sapiens (human)
intracellular calcium ion homeostasisEndothelin-1 receptorHomo sapiens (human)
smooth muscle contractionEndothelin-1 receptorHomo sapiens (human)
mitochondrion organizationEndothelin-1 receptorHomo sapiens (human)
signal transductionEndothelin-1 receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayEndothelin-1 receptorHomo sapiens (human)
activation of adenylate cyclase activityEndothelin-1 receptorHomo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled receptor signaling pathwayEndothelin-1 receptorHomo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwayEndothelin-1 receptorHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationEndothelin-1 receptorHomo sapiens (human)
respiratory gaseous exchange by respiratory systemEndothelin-1 receptorHomo sapiens (human)
regulation of blood pressureEndothelin-1 receptorHomo sapiens (human)
cell population proliferationEndothelin-1 receptorHomo sapiens (human)
response to woundingEndothelin-1 receptorHomo sapiens (human)
gene expressionEndothelin-1 receptorHomo sapiens (human)
protein kinase A signalingEndothelin-1 receptorHomo sapiens (human)
regulation of glucose transmembrane transportEndothelin-1 receptorHomo sapiens (human)
neural crest cell fate commitmentEndothelin-1 receptorHomo sapiens (human)
artery smooth muscle contractionEndothelin-1 receptorHomo sapiens (human)
neuron remodelingEndothelin-1 receptorHomo sapiens (human)
heparin metabolic processEndothelin-1 receptorHomo sapiens (human)
thyroid gland developmentEndothelin-1 receptorHomo sapiens (human)
cellular response to oxidative stressEndothelin-1 receptorHomo sapiens (human)
embryonic heart tube developmentEndothelin-1 receptorHomo sapiens (human)
aorta developmentEndothelin-1 receptorHomo sapiens (human)
vasoconstrictionEndothelin-1 receptorHomo sapiens (human)
norepinephrine metabolic processEndothelin-1 receptorHomo sapiens (human)
middle ear morphogenesisEndothelin-1 receptorHomo sapiens (human)
positive regulation of canonical NF-kappaB signal transductionEndothelin-1 receptorHomo sapiens (human)
cellular response to human chorionic gonadotropin stimulusEndothelin-1 receptorHomo sapiens (human)
enteric nervous system developmentEndothelin-1 receptorHomo sapiens (human)
sympathetic nervous system developmentEndothelin-1 receptorHomo sapiens (human)
axon extensionEndothelin-1 receptorHomo sapiens (human)
embryonic skeletal system developmentEndothelin-1 receptorHomo sapiens (human)
neuromuscular processEndothelin-1 receptorHomo sapiens (human)
sodium ion homeostasisEndothelin-1 receptorHomo sapiens (human)
canonical Wnt signaling pathwayEndothelin-1 receptorHomo sapiens (human)
face developmentEndothelin-1 receptorHomo sapiens (human)
axonogenesis involved in innervationEndothelin-1 receptorHomo sapiens (human)
establishment of endothelial barrierEndothelin-1 receptorHomo sapiens (human)
pharyngeal arch artery morphogenesisEndothelin-1 receptorHomo sapiens (human)
renal sodium ion absorptionEndothelin-1 receptorHomo sapiens (human)
calcium ion transmembrane transportEndothelin-1 receptorHomo sapiens (human)
cellular response to follicle-stimulating hormone stimulusEndothelin-1 receptorHomo sapiens (human)
cellular response to luteinizing hormone stimulusEndothelin-1 receptorHomo sapiens (human)
protein transmembrane transportEndothelin-1 receptorHomo sapiens (human)
glomerular endothelium developmentEndothelin-1 receptorHomo sapiens (human)
podocyte differentiationEndothelin-1 receptorHomo sapiens (human)
endothelin receptor signaling pathway involved in heart processEndothelin-1 receptorHomo sapiens (human)
renal albumin absorptionEndothelin-1 receptorHomo sapiens (human)
vascular associated smooth muscle cell developmentEndothelin-1 receptorHomo sapiens (human)
mesenchymal cell apoptotic processEndothelin-1 receptorHomo sapiens (human)
sympathetic neuron axon guidanceEndothelin-1 receptorHomo sapiens (human)
semaphorin-plexin signaling pathway involved in axon guidanceEndothelin-1 receptorHomo sapiens (human)
podocyte apoptotic processEndothelin-1 receptorHomo sapiens (human)
meiotic cell cycle process involved in oocyte maturationEndothelin-1 receptorHomo sapiens (human)
cranial skeletal system developmentEndothelin-1 receptorHomo sapiens (human)
response to acetylcholineEndothelin-1 receptorHomo sapiens (human)
regulation of protein localization to cell leading edgeEndothelin-1 receptorHomo sapiens (human)
positive regulation of cation channel activityEndothelin-1 receptorHomo sapiens (human)
endothelin receptor signaling pathwayEndothelin-1 receptorHomo sapiens (human)
developmental pigmentationEndothelin-1 receptorHomo sapiens (human)
positive regulation of macrophage chemotaxisMitogen-activated protein kinase 1Homo sapiens (human)
positive regulation of macrophage proliferationMitogen-activated protein kinase 1Homo sapiens (human)
regulation of transcription by RNA polymerase IIMitogen-activated protein kinase 1Homo sapiens (human)
protein phosphorylationMitogen-activated protein kinase 1Homo sapiens (human)
apoptotic processMitogen-activated protein kinase 1Homo sapiens (human)
chemotaxisMitogen-activated protein kinase 1Homo sapiens (human)
DNA damage responseMitogen-activated protein kinase 1Homo sapiens (human)
signal transductionMitogen-activated protein kinase 1Homo sapiens (human)
chemical synaptic transmissionMitogen-activated protein kinase 1Homo sapiens (human)
learning or memoryMitogen-activated protein kinase 1Homo sapiens (human)
insulin receptor signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
positive regulation of peptidyl-threonine phosphorylationMitogen-activated protein kinase 1Homo sapiens (human)
Schwann cell developmentMitogen-activated protein kinase 1Homo sapiens (human)
peptidyl-serine phosphorylationMitogen-activated protein kinase 1Homo sapiens (human)
peptidyl-threonine phosphorylationMitogen-activated protein kinase 1Homo sapiens (human)
cytosine metabolic processMitogen-activated protein kinase 1Homo sapiens (human)
regulation of ossificationMitogen-activated protein kinase 1Homo sapiens (human)
androgen receptor signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
regulation of cellular pHMitogen-activated protein kinase 1Homo sapiens (human)
thyroid gland developmentMitogen-activated protein kinase 1Homo sapiens (human)
regulation of protein stabilityMitogen-activated protein kinase 1Homo sapiens (human)
lipopolysaccharide-mediated signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
positive regulation of telomere maintenance via telomeraseMitogen-activated protein kinase 1Homo sapiens (human)
regulation of stress-activated MAPK cascadeMitogen-activated protein kinase 1Homo sapiens (human)
mammary gland epithelial cell proliferationMitogen-activated protein kinase 1Homo sapiens (human)
cellular response to amino acid starvationMitogen-activated protein kinase 1Homo sapiens (human)
cellular response to reactive oxygen speciesMitogen-activated protein kinase 1Homo sapiens (human)
response to nicotineMitogen-activated protein kinase 1Homo sapiens (human)
ERBB signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
ERBB2-ERBB3 signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
outer ear morphogenesisMitogen-activated protein kinase 1Homo sapiens (human)
myelinationMitogen-activated protein kinase 1Homo sapiens (human)
response to exogenous dsRNAMitogen-activated protein kinase 1Homo sapiens (human)
steroid hormone mediated signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
negative regulation of cell differentiationMitogen-activated protein kinase 1Homo sapiens (human)
insulin-like growth factor receptor signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
thymus developmentMitogen-activated protein kinase 1Homo sapiens (human)
progesterone receptor signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
T cell receptor signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
B cell receptor signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
stress-activated MAPK cascadeMitogen-activated protein kinase 1Homo sapiens (human)
regulation of cytoskeleton organizationMitogen-activated protein kinase 1Homo sapiens (human)
positive regulation of telomerase activityMitogen-activated protein kinase 1Homo sapiens (human)
Bergmann glial cell differentiationMitogen-activated protein kinase 1Homo sapiens (human)
long-term synaptic potentiationMitogen-activated protein kinase 1Homo sapiens (human)
face developmentMitogen-activated protein kinase 1Homo sapiens (human)
lung morphogenesisMitogen-activated protein kinase 1Homo sapiens (human)
trachea formationMitogen-activated protein kinase 1Homo sapiens (human)
labyrinthine layer blood vessel developmentMitogen-activated protein kinase 1Homo sapiens (human)
cardiac neural crest cell development involved in heart developmentMitogen-activated protein kinase 1Homo sapiens (human)
ERK1 and ERK2 cascadeMitogen-activated protein kinase 1Homo sapiens (human)
response to epidermal growth factorMitogen-activated protein kinase 1Homo sapiens (human)
cellular response to cadmium ionMitogen-activated protein kinase 1Homo sapiens (human)
cellular response to tumor necrosis factorMitogen-activated protein kinase 1Homo sapiens (human)
caveolin-mediated endocytosisMitogen-activated protein kinase 1Homo sapiens (human)
regulation of Golgi inheritanceMitogen-activated protein kinase 1Homo sapiens (human)
positive regulation of telomere cappingMitogen-activated protein kinase 1Homo sapiens (human)
regulation of early endosome to late endosome transportMitogen-activated protein kinase 1Homo sapiens (human)
cell surface receptor signaling pathwayMitogen-activated protein kinase 1Homo sapiens (human)
intracellular signal transductionMitogen-activated protein kinase 1Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (58)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
phosphatidylinositol phospholipase C activityEndothelin-1 receptorHomo sapiens (human)
endothelin receptor activityEndothelin-1 receptorHomo sapiens (human)
protein bindingEndothelin-1 receptorHomo sapiens (human)
phosphotyrosine residue bindingMitogen-activated protein kinase 1Homo sapiens (human)
DNA bindingMitogen-activated protein kinase 1Homo sapiens (human)
protein serine/threonine kinase activityMitogen-activated protein kinase 1Homo sapiens (human)
MAP kinase activityMitogen-activated protein kinase 1Homo sapiens (human)
protein bindingMitogen-activated protein kinase 1Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 1Homo sapiens (human)
RNA polymerase II CTD heptapeptide repeat kinase activityMitogen-activated protein kinase 1Homo sapiens (human)
phosphatase bindingMitogen-activated protein kinase 1Homo sapiens (human)
identical protein bindingMitogen-activated protein kinase 1Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 1Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (47)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
plasma membraneEndothelin-1 receptorHomo sapiens (human)
plasma membraneEndothelin-1 receptorHomo sapiens (human)
extracellular regionMitogen-activated protein kinase 1Homo sapiens (human)
nucleusMitogen-activated protein kinase 1Homo sapiens (human)
nucleoplasmMitogen-activated protein kinase 1Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 1Homo sapiens (human)
mitochondrionMitogen-activated protein kinase 1Homo sapiens (human)
early endosomeMitogen-activated protein kinase 1Homo sapiens (human)
late endosomeMitogen-activated protein kinase 1Homo sapiens (human)
endoplasmic reticulum lumenMitogen-activated protein kinase 1Homo sapiens (human)
Golgi apparatusMitogen-activated protein kinase 1Homo sapiens (human)
centrosomeMitogen-activated protein kinase 1Homo sapiens (human)
cytosolMitogen-activated protein kinase 1Homo sapiens (human)
cytoskeletonMitogen-activated protein kinase 1Homo sapiens (human)
plasma membraneMitogen-activated protein kinase 1Homo sapiens (human)
caveolaMitogen-activated protein kinase 1Homo sapiens (human)
focal adhesionMitogen-activated protein kinase 1Homo sapiens (human)
pseudopodiumMitogen-activated protein kinase 1Homo sapiens (human)
azurophil granule lumenMitogen-activated protein kinase 1Homo sapiens (human)
synapseMitogen-activated protein kinase 1Homo sapiens (human)
mitotic spindleMitogen-activated protein kinase 1Homo sapiens (human)
ficolin-1-rich granule lumenMitogen-activated protein kinase 1Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 1Homo sapiens (human)
nucleusMitogen-activated protein kinase 1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (80)

Assay IDTitleYearJournalArticle
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347058CD47-SIRPalpha protein protein interaction - HTRF assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347049Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot screen2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347410qHTS for inhibitors of adenylyl cyclases using a fission yeast platform: a pilot screen against the NCATS LOPAC library2019Cellular signalling, 08, Volume: 60A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347405qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS LOPAC collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347057CD47-SIRPalpha protein protein interaction - LANCE assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347059CD47-SIRPalpha protein protein interaction - Alpha assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347050Natriuretic polypeptide receptor (hNpr2) antagonism - Pilot subtype selectivity assay2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347045Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot counterscreen GloSensor control cell line2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID420789Analgesic activity in Albino mouse assessed as inhibition of acetic acid-induced writhing at 300 umol/kg, po administered 1 hr before acetic acid challenge and measured 10 mins after acetic acid challenge2009European journal of medicinal chemistry, May, Volume: 44, Issue:5
Synthesis, pharmacological evaluation and docking studies of new sulindac analogues.
AID263721Inhibition of beta amyloid protein 42 in HEK cell lines overexpressing APP695 at 40 uM2006Bioorganic & medicinal chemistry letters, Apr-15, Volume: 16, Issue:8
The geminal dimethyl analogue of Flurbiprofen as a novel Abeta42 inhibitor and potential Alzheimer's disease modifying agent.
AID588211Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in humans2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID420791Gastrointestinal toxicity in Albino mouse assessed ulcer index at 300 mg/kg, po2009European journal of medicinal chemistry, May, Volume: 44, Issue:5
Synthesis, pharmacological evaluation and docking studies of new sulindac analogues.
AID535985Antiangiogenic activity in HUVEC assessed as inhibition of bFGF-induced cell proliferation at 0.1 uM after 96 hrs by haemocytometry2010European journal of medicinal chemistry, Nov, Volume: 45, Issue:11
Therapeutic potential of sulindac hydroxamic acid against human pancreatic and colonic cancer cells.
AID1216990Drug metabolism in Sprague-Dawley rat liver treated with (S)-Sulindac at 20 mg, ip after 0.5 to 4 hrs by HPLC analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID1064299Cytotoxicity against human PC3 cells assessed as cell viability at 50 uM after 24 hrs by crystal violet method (Rvb = 99.09 +/- 9.87%)2014Bioorganic & medicinal chemistry, Jan-15, Volume: 22, Issue:2
Synthesis and biological evaluation of nitric oxide-donating analogues of sulindac for prostate cancer treatment.
AID364312Activity at PPARgamma in human Caco-2 cells assessed as luciferase activity at 400 uM relative to control2008European journal of medicinal chemistry, Sep, Volume: 43, Issue:9
NSAIDs revisited: putative molecular basis of their interactions with peroxisome proliferator-activated gamma receptor (PPARgamma).
AID1216988Drug metabolism in Sprague-Dawley rat plasma treated with (S)-Sulindac at 20 mg, ip after 0.5 to 4 hrs by HPLC analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID404304Effect on human MRP2-mediated estradiol-17-beta-glucuronide transport in Sf9 cells inverted membrane vesicles relative to control2008Journal of medicinal chemistry, Jun-12, Volume: 51, Issue:11
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
AID536074Antiangiogenic activity in HUVEC assessed as inhibition of VEGF-induced cell proliferation at 0.1 uM after 96 hrs by haemocytometry2010European journal of medicinal chemistry, Nov, Volume: 45, Issue:11
Therapeutic potential of sulindac hydroxamic acid against human pancreatic and colonic cancer cells.
AID535977Cytotoxicity against human COLO320 cells after 72 hrs by WST-1 assay2010European journal of medicinal chemistry, Nov, Volume: 45, Issue:11
Therapeutic potential of sulindac hydroxamic acid against human pancreatic and colonic cancer cells.
AID535976Cytotoxicity against human MIAPaCa2 cells after 72 hrs by WST-1 assay2010European journal of medicinal chemistry, Nov, Volume: 45, Issue:11
Therapeutic potential of sulindac hydroxamic acid against human pancreatic and colonic cancer cells.
AID1064297Cytotoxicity against human PC3 cells assessed as cell viability at 50 uM after 72 hrs by crystal violet method (Rvb = 95.69 +/- 7.66%)2014Bioorganic & medicinal chemistry, Jan-15, Volume: 22, Issue:2
Synthesis and biological evaluation of nitric oxide-donating analogues of sulindac for prostate cancer treatment.
AID1216996Drug metabolism in rat liver microsomes at 20 nM after 60 mins by HPLC analysis in presence of NADPH2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID521220Inhibition of neurosphere proliferation of mouse neural precursor cells by MTT assay2007Nature chemical biology, May, Volume: 3, Issue:5
Chemical genetics reveals a complex functional ground state of neural stem cells.
AID1216993Drug metabolism in Sprague-Dawley rat brain treated with (R)-Sulindac at 20 mg, ip after 0.5 to 4 hrs by HPLC analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID263717Inhibition of beta amyloid protein 42 in SH-SY5Y cell lines overexpressing SPA4CT at 30 uM2006Bioorganic & medicinal chemistry letters, Apr-15, Volume: 16, Issue:8
The geminal dimethyl analogue of Flurbiprofen as a novel Abeta42 inhibitor and potential Alzheimer's disease modifying agent.
AID535979Induction of apoptosis in human COLO320 cells assessed as DNA internucleosomal fragmentation at 200 uM after 48 hrs relative to control2010European journal of medicinal chemistry, Nov, Volume: 45, Issue:11
Therapeutic potential of sulindac hydroxamic acid against human pancreatic and colonic cancer cells.
AID1216992Drug metabolism in Sprague-Dawley rat skin treated with (S)-Sulindac at 20 mg, ip after 0.5 to 4 hrs by HPLC analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID1216991Drug metabolism in Sprague-Dawley rat skin treated with (R)-Sulindac at 20 mg, ip after 0.5 to 4 hrs by HPLC analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID1064298Cytotoxicity against human PC3 cells assessed as cell viability at 50 uM after 48 hrs by crystal violet method (Rvb = 100.87 +/- 4.87%)2014Bioorganic & medicinal chemistry, Jan-15, Volume: 22, Issue:2
Synthesis and biological evaluation of nitric oxide-donating analogues of sulindac for prostate cancer treatment.
AID1216978Retention time in rat plasma measured after 4 hrs ip injection of sulindac2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID1216987Drug metabolism in Sprague-Dawley rat plasma treated with (R)-Sulindac at 20 mg, ip after 0.5 to 4 hrs by HPLC analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID535978Induction of apoptosis in human MIAPaCa2 cells assessed as DNA internucleosomal fragmentation at 200 uM after 48 hrs relative to control2010European journal of medicinal chemistry, Nov, Volume: 45, Issue:11
Therapeutic potential of sulindac hydroxamic acid against human pancreatic and colonic cancer cells.
AID420790Antiinflammatory activity in Albino mouse assessed as inhibition of carrageenan-induced paw edema at 300 umol/kg, po administered 1 hr before carrageenan challenge and measured 3 hrs after carrageenan challenge2009European journal of medicinal chemistry, May, Volume: 44, Issue:5
Synthesis, pharmacological evaluation and docking studies of new sulindac analogues.
AID588212Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID1216994Drug metabolism in Sprague-Dawley rat brain treated with (S)-Sulindac at 20 mg, ip after 0.5 to 4 hrs by HPLC analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID1216989Drug metabolism in Sprague-Dawley rat liver treated with (R)-Sulindac at 20 mg, ip after 0.5 to 4 hrs by HPLC analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jun, Volume: 39, Issue:6
Studies on the metabolism and biological activity of the epimers of sulindac.
AID588213Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in non-rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504836Inducers of the Endoplasmic Reticulum Stress Response (ERSR) in human glioma: Validation2002The Journal of biological chemistry, Apr-19, Volume: 277, Issue:16
Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588349qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay
AID588378qHTS for Inhibitors of ATXN expression: Validation
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (161)

TimeframeStudies, This Drug (%)All Drugs %
pre-199010 (6.21)18.7374
1990's22 (13.66)18.2507
2000's86 (53.42)29.6817
2010's34 (21.12)24.3611
2020's9 (5.59)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 18.96

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index18.96 (24.57)
Research Supply Index5.26 (2.92)
Research Growth Index4.92 (4.65)
Search Engine Demand Index18.60 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (18.96)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials21 (12.28%)5.53%
Reviews13 (7.60%)6.00%
Case Studies2 (1.17%)4.05%
Observational0 (0.00%)0.25%
Other135 (78.95%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Clinical Trials (11)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
A Phase II Trial Of Carboplatin And Gemcitabine With Exisulind In Patients With Advanced Non-Small Cell Lung Cancer [NCT00041314]Phase 20 participants Interventional2002-10-04Completed
"Evaluation of the Effect of Exisulind on the Duration of the Off-Treatment Interval on Patients With Biochemical Relapse of Prostate Cancer Who Are Treated With Intermittent Androgen Suppression (ADT)" [NCT00283803]Phase 232 participants (Actual)Interventional2002-03-12Completed
A Prospective Controlled Phase II Study of Preoperative Exisulind Therapy Initiated Prior to Radical Prostatectomy: Effect on Apoptosis [NCT00166478]Phase 2130 participants (Actual)Interventional2002-04-30Completed
A Phase III, Randomized, Double-Blind, Multi-Center Study of the Efficacy of Taxotere (Docetaxel) in Combination With Aptosyn (Exisulind) Versus Taxotere (Docetaxel) and Placebo in Non-Small Cell Lung Cancer (NSCLC) Patients After Failure of Prior Platinu [NCT00085826]Phase 3600 participants Interventional2001-04-30Completed
Phase I-II Study to Evaluate Safety, Efficacy and Pharmacokinetic Interactions Between Capecitabine (XELODA) and Exisulind (APTOSYN) in Patients With Metastatic Breast Cancer [NCT00037609]Phase 1/Phase 235 participants (Actual)Interventional2001-01-31Completed
A Prospective Phase II Study of Preoperative, Controlled Exisulind Therapy Initiated Prior to Radical Prostatectomy: Effect on Apoptosis [NCT00078910]Phase 2130 participants (Anticipated)Interventional2003-08-31Completed
A Phase II Study Of Estramustine, Docetaxel, And Exisulind (IND #64733) In Men With Hormone Refractory Prostate Cancer [NCT00052845]Phase 280 participants (Actual)Interventional2002-11-30Completed
Chemoprevention of Duodenal Polyps in Familial Adenomatous Polyposis [NCT00026468]Phase 2/Phase 30 participants (Actual)Interventional1999-07-31Withdrawn(stopped due to Principle Investigator has left the University.)
A Phase I/II Multi-Center Study of Weekly Taxotere (Docetaxel) in Combination With Aptosyn (Exisulind) in Non-Small Cell Lung Cancer (NSCLC) Patients Who Have Failed a Prior Platinum-Containing Regimen [NCT00072618]Phase 1/Phase 252 participants Interventional2001-10-31Completed
A Phase II Study of Carboplatin, Etoposide, and Exisulind in Patients With Extensive Small Cell Lung Cancer [NCT00041054]Phase 241 participants (Actual)Interventional2002-06-30Completed
Prospective, Randomized, Double-Blind Trial of Adjuvant Exisulind Versus Placebo for Patients at Risk for Prostate Cancer Recurrence After Radical Prostatectomy [NCT00166426]Phase 2240 participants (Anticipated)Interventional2003-02-28Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Trial Outcomes

TrialOutcome
NCT00283803 (3) [back to overview]"Duration of the First Off-treatment Cycle in Patients Who Have Completed One Cycle of Intermittent Androgen Suppression With the Addition of Exisulind."
NCT00283803 (3) [back to overview]Time to Hormone-refractory Diseases in Patients Treated With Intermittent Androgen Suppression and Exisulind
NCT00283803 (3) [back to overview]Number of Participants With Dose Hold, Dose Reduction, or Treatment Withdrawal for Toxicity.

"Duration of the First Off-treatment Cycle in Patients Who Have Completed One Cycle of Intermittent Androgen Suppression With the Addition of Exisulind."

Patients were monitored for the amount of time (number of weeks) that passed between the completion of a cycle of Intermittent Androgen Suppression with Exisulind and the need to re-initiate treatment with Intermittent Androgen Suppression. It was hoped that adding Exisulind to standard Androgen Suppression would extend the amount time before disease progression. (NCT00283803)
Timeframe: From date of first treatment until the date of first documented progression or study withdrawal, whichever came first, assessed up to 10 years.

InterventionWeeks (Mean)
IAS and Exisulind39

[back to top]

Time to Hormone-refractory Diseases in Patients Treated With Intermittent Androgen Suppression and Exisulind

Patients were monitored for continued hormonal sensitivity of their disease from the time of the first treatment with Intermittent Androgen Suppression and Exisulind and the time at which point they were considered hormone-refractory (castrate resistant). The development of hormone-refractory disease was one of the criteria for withdraw from study treatment. For this protocol, hormone-refractory was defined as 2 consecutive rising PSAs at least 2 weeks apart while on an LHRH agonist (with or without an anti-androgen). (NCT00283803)
Timeframe: From date of first treatment until the date of first documented progression or study withdrawal, whichever came first, assessed up to 10 years.

InterventionWeeks (Median)
IAS and Exisulind286

[back to top]

Number of Participants With Dose Hold, Dose Reduction, or Treatment Withdrawal for Toxicity.

Patients were monitored for toxicity related treatment modifications from the start of Exisulind through the time that there were withdrawn from study. (NCT00283803)
Timeframe: From date of first treatment until study withdrawal, assessed up to 10 years.

InterventionParticipants (Count of Participants)
Dose Hold for ToxicityDose Reduction for ToxicityTreatment Withdrawn for Toxicity
IAS and Exisulind697

[back to top]