Page last updated: 2024-12-04

acetarsol

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID1985
CHEMBL ID1330792
CHEBI ID135135
SCHEMBL ID156373
MeSH IDM0046726

Synonyms (146)

Synonym
acetarsol [inn:ban]
osarsolum
3-acetamido-4-hydroxy-phenylarsonic acid
sanogyl
ai3-16141
nsc 13160
brn 2941984
acetarsolum [inn-latin]
acetamino-hydroxyphenyl-arsonsaeure
3-acetamido-4-hydroxyphenylarsonsaeure
einecs 202-582-3
acetarsolo [dcit]
MLS001148100
disparicida
arsonine
osarsal
pallicid
oralcid
arsonic acid, [3-(acetylamino)-4-hydroxyphenyl]-
190 f
osarsol
nsc3247
amoebal
3-acetylamino-4-hydroxyphenylarsonic acid
acetarsone
vagoflor
[3-(acetylamino)-4-hydroxyphenyl]arsonic acid
chrlich 594
stovarsol
amarsan
ginarsol
stovarsal
kharophen
acetarsol
goyl
s.v.c.
osarsole
wln: q-as-qo&r dq cmv1
m-arsanilic acid, n-acetyl-4-hydroxy-
ehrlich 594
monargan
mexyl
3-acetamido-4-hydroxybenzenearsonic acid
fourneau 190
3-acetamido-4-hydroxyphenylarsonic acid
spirozid
devegan
acetphenarsine
svc
orarsan
osvarsan
stovarsolan
mls000736495 ,
spirocid
wln: q-as-qo & r dq cmv1
kubarsol
vagisept
paroxyl
nsc-3247
dynarsan
97-44-9
osvarson
nilacid
malagride
gynoplix
limarsol
n-acetyl-4-hydroxy-m-arsanilic acid
f 190
arsaphen
MLS000028389 ,
smr000058626
KBIO1_000002
DIVK1C_000002
NCI60_002818
SPECTRUM_000588
IDI1_000002
nsc-13160
nsc13160
BSPBIO_002070
acetarsol (inn)
D07110
(3-acetamido-4-hydroxy-phenyl)arsonic acid
arsonic acid, (3-(acetylamino)-4-hydroxyphenyl)-
SPECTRUM5_000640
acetarsone, >=99%
NCGC00094812-02
NCGC00094812-01
KBIOGR_000907
KBIOSS_001068
KBIO2_006204
KBIO2_003636
KBIO2_001068
KBIO3_001570
SPECTRUM2_000104
SPECTRUM3_000595
SPECTRUM4_000384
NINDS_000002
SPBIO_000088
SPECTRUM1500616
NCGC00094812-03
CHEBI:135135
HMS2092E06
HMS500A04
HMS1921K13
(3-acetamido-4-hydroxyphenyl)arsonic acid
806529yu1n ,
3-16-00-01132 (beilstein handbook reference)
acetarsone [inn:nf]
unii-806529yu1n
CHEMBL1330792
nsc-757386
pharmakon1600-01500616
nsc757386
dtxcid7025847
dtxsid9045847 ,
cas-97-44-9
tox21_111336
acetarsolo
acetarsolum
HMS2235C23
CCG-39708
FT-0621732
AKOS015894435
HMS3371H07
SCHEMBL156373
NCGC00094812-05
tox21_111336_1
KS-1320
acetarsol (acetarsone)
acetarsol [who-dd]
acetarsone [mi]
acetarsol [mart.]
acetarsol [inn]
W-204159
OPERA_ID_176
AB00052127_13
AB00052127_12
sr-01000695452
SR-01000695452-3
SBI-0051558.P002
SW220055-1
Q584079
DB13268
EN300-23050906
CS-0013141
HY-B1437

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" The only side-effect was of transient thrombocytosis in a single patient."( Safety and efficacy of acetarsol suppositories in unresponsive proctitis.
Britton, TC; Forbes, A; Gazzard, BG; House, IM, 1989
)
0.59

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (2)

ClassDescription
acetamidesCompounds with the general formula RNHC(=O)CH3.
anilideAny aromatic amide obtained by acylation of aniline.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (16)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
RAR-related orphan receptor gammaMus musculus (house mouse)Potency33.49150.006038.004119,952.5996AID1159521
ATAD5 protein, partialHomo sapiens (human)Potency2.59180.004110.890331.5287AID504467
thioredoxin glutathione reductaseSchistosoma mansoniPotency25.87400.100022.9075100.0000AID485364
heat shock protein beta-1Homo sapiens (human)Potency33.48890.042027.378961.6448AID743210
importin subunit beta-1 isoform 1Homo sapiens (human)Potency112.20205.804836.130665.1308AID540263
DNA polymerase betaHomo sapiens (human)Potency79.43280.022421.010289.1251AID485314
eyes absent homolog 2 isoform aHomo sapiens (human)Potency5,623.41021.199814.641950.1187AID488837
snurportin-1Homo sapiens (human)Potency112.20205.804836.130665.1308AID540263
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency39.81070.050127.073689.1251AID588590
gemininHomo sapiens (human)Potency23.10930.004611.374133.4983AID624297
survival motor neuron protein isoform dHomo sapiens (human)Potency0.50120.125912.234435.4813AID1458
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency125.89200.00419.962528.1838AID2675
lamin isoform A-delta10Homo sapiens (human)Potency5.62340.891312.067628.1838AID1487
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency22.19890.060110.745337.9330AID485367; AID504636; AID504637
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Bile salt export pumpHomo sapiens (human)IC50 (µMol)1,000.00000.11007.190310.0000AID1449628
14 kDa phosphohistidine phosphataseHomo sapiens (human)IC50 (µMol)100.00007.90007.90007.9000AID1870205
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (30)

Processvia Protein(s)Taxonomy
fatty acid metabolic processBile salt export pumpHomo sapiens (human)
bile acid biosynthetic processBile salt export pumpHomo sapiens (human)
xenobiotic metabolic processBile salt export pumpHomo sapiens (human)
xenobiotic transmembrane transportBile salt export pumpHomo sapiens (human)
response to oxidative stressBile salt export pumpHomo sapiens (human)
bile acid metabolic processBile salt export pumpHomo sapiens (human)
response to organic cyclic compoundBile salt export pumpHomo sapiens (human)
bile acid and bile salt transportBile salt export pumpHomo sapiens (human)
canalicular bile acid transportBile salt export pumpHomo sapiens (human)
protein ubiquitinationBile salt export pumpHomo sapiens (human)
regulation of fatty acid beta-oxidationBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transportBile salt export pumpHomo sapiens (human)
bile acid signaling pathwayBile salt export pumpHomo sapiens (human)
cholesterol homeostasisBile salt export pumpHomo sapiens (human)
response to estrogenBile salt export pumpHomo sapiens (human)
response to ethanolBile salt export pumpHomo sapiens (human)
xenobiotic export from cellBile salt export pumpHomo sapiens (human)
lipid homeostasisBile salt export pumpHomo sapiens (human)
phospholipid homeostasisBile salt export pumpHomo sapiens (human)
positive regulation of bile acid secretionBile salt export pumpHomo sapiens (human)
regulation of bile acid metabolic processBile salt export pumpHomo sapiens (human)
transmembrane transportBile salt export pumpHomo sapiens (human)
protein dephosphorylation14 kDa phosphohistidine phosphataseHomo sapiens (human)
actin cytoskeleton organization14 kDa phosphohistidine phosphataseHomo sapiens (human)
peptidyl-histidine dephosphorylation14 kDa phosphohistidine phosphataseHomo sapiens (human)
negative regulation of T cell receptor signaling pathway14 kDa phosphohistidine phosphataseHomo sapiens (human)
negative regulation of lyase activity14 kDa phosphohistidine phosphataseHomo sapiens (human)
lamellipodium organization14 kDa phosphohistidine phosphataseHomo sapiens (human)
positive regulation of cell motility14 kDa phosphohistidine phosphataseHomo sapiens (human)
negative regulation of ATP citrate synthase activity14 kDa phosphohistidine phosphataseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (12)

Processvia Protein(s)Taxonomy
protein bindingBile salt export pumpHomo sapiens (human)
ATP bindingBile salt export pumpHomo sapiens (human)
ABC-type xenobiotic transporter activityBile salt export pumpHomo sapiens (human)
bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
canalicular bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transporter activityBile salt export pumpHomo sapiens (human)
ABC-type bile acid transporter activityBile salt export pumpHomo sapiens (human)
ATP hydrolysis activityBile salt export pumpHomo sapiens (human)
protein binding14 kDa phosphohistidine phosphataseHomo sapiens (human)
calcium channel inhibitor activity14 kDa phosphohistidine phosphataseHomo sapiens (human)
transmembrane transporter binding14 kDa phosphohistidine phosphataseHomo sapiens (human)
actin filament binding14 kDa phosphohistidine phosphataseHomo sapiens (human)
protein histidine phosphatase activity14 kDa phosphohistidine phosphataseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (16)

Processvia Protein(s)Taxonomy
basolateral plasma membraneBile salt export pumpHomo sapiens (human)
Golgi membraneBile salt export pumpHomo sapiens (human)
endosomeBile salt export pumpHomo sapiens (human)
plasma membraneBile salt export pumpHomo sapiens (human)
cell surfaceBile salt export pumpHomo sapiens (human)
apical plasma membraneBile salt export pumpHomo sapiens (human)
intercellular canaliculusBile salt export pumpHomo sapiens (human)
intracellular canaliculusBile salt export pumpHomo sapiens (human)
recycling endosomeBile salt export pumpHomo sapiens (human)
recycling endosome membraneBile salt export pumpHomo sapiens (human)
extracellular exosomeBile salt export pumpHomo sapiens (human)
membraneBile salt export pumpHomo sapiens (human)
nucleoplasm14 kDa phosphohistidine phosphataseHomo sapiens (human)
cytosol14 kDa phosphohistidine phosphataseHomo sapiens (human)
plasma membrane14 kDa phosphohistidine phosphataseHomo sapiens (human)
nuclear body14 kDa phosphohistidine phosphataseHomo sapiens (human)
leading edge of lamellipodium14 kDa phosphohistidine phosphataseHomo sapiens (human)
extracellular exosome14 kDa phosphohistidine phosphataseHomo sapiens (human)
cytosol14 kDa phosphohistidine phosphataseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (87)

Assay IDTitleYearJournalArticle
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588459High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588460High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, Validation Compound Set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588461High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, Validation compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1870213Reversible inhibition of PHPT1 (unknown origin) at 1 mM using DiFMUP as fluorogenic substrate preincubated for 30 mins followed by substrate addition by dialysis method2022ACS medicinal chemistry letters, Jul-14, Volume: 13, Issue:7
Inhibitor Screen Identifies Covalent Inhibitors of the Protein Histidine Phosphatase PHPT1.
AID1079945Animal toxicity known. [column 'TOXIC' in source]
AID1079948Times to onset, minimal and maximal, observed in the indexed observations. [column 'DELAI' in source]
AID1079947Comments (NB not yet translated). [column 'COMMENTAIRES' in source]
AID1079942Steatosis, proven histopathologically. Value is number of references indexed. [column 'STEAT' in source]
AID1079949Proposed mechanism(s) of liver damage. [column 'MEC' in source]
AID1079939Cirrhosis, proven histopathologically. Value is number of references indexed. [column 'CIRRH' in source]
AID1079932Highest frequency of moderate liver toxicity observed during clinical trials, expressed as a percentage. [column '% BIOL' in source]
AID1079937Severe hepatitis, defined as possibly life-threatening liver failure or through clinical observations. Value is number of references indexed. [column 'MASS' in source]
AID1079940Granulomatous liver disease, proven histopathologically. Value is number of references indexed. [column 'GRAN' in source]
AID1449628Inhibition of human BSEP expressed in baculovirus transfected fall armyworm Sf21 cell membranes vesicles assessed as reduction in ATP-dependent [3H]-taurocholate transport into vesicles incubated for 5 mins by Topcount based rapid filtration method2012Drug metabolism and disposition: the biological fate of chemicals, Dec, Volume: 40, Issue:12
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
AID1079931Moderate liver toxicity, defined via clinical-chemistry results: ALT or AST serum activity 6 times the normal upper limit (N) or alkaline phosphatase serum activity of 1.7 N. Value is number of references indexed. [column 'BIOL' in source]
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1079941Liver damage due to vascular disease: peliosis hepatitis, hepatic veno-occlusive disease, Budd-Chiari syndrome. Value is number of references indexed. [column 'VASC' in source]
AID1870206Competitive inhibition of PHPT1 (unknown origin) assessed as change in Km and Vmax at below 150 uM using DifMUP as substrate by Michaelis-Menten based analysis2022ACS medicinal chemistry letters, Jul-14, Volume: 13, Issue:7
Inhibitor Screen Identifies Covalent Inhibitors of the Protein Histidine Phosphatase PHPT1.
AID1079944Benign tumor, proven histopathologically. Value is number of references indexed. [column 'T.BEN' in source]
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1079934Highest frequency of acute liver toxicity observed during clinical trials, expressed as a percentage. [column '% AIGUE' in source]
AID1079936Choleostatic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is < 2 (see ACUTE). Value is number of references indexed. [column 'CHOLE' in source]
AID1870216Inhibition of LHPP (unknown origin) using pyrophosphate as substrate incubated for 30 mins followed by substrate addition and measured after 30 mins by fluorogenic assay2022ACS medicinal chemistry letters, Jul-14, Volume: 13, Issue:7
Inhibitor Screen Identifies Covalent Inhibitors of the Protein Histidine Phosphatase PHPT1.
AID1079938Chronic liver disease either proven histopathologically, or through a chonic elevation of serum amino-transferase activity after 6 months. Value is number of references indexed. [column 'CHRON' in source]
AID1079933Acute liver toxicity defined via clinical observations and clear clinical-chemistry results: serum ALT or AST activity > 6 N or serum alkaline phosphatases activity > 1.7 N. This category includes cytolytic, choleostatic and mixed liver toxicity. Value is
AID1870205Inhibition of PHPT1 (unknown origin) using DiFMUP as fluorogenic substrate incubated for 30 mins followed by substrate addition and measured every 60 seconds for 30 mins by fluorogenic assay2022ACS medicinal chemistry letters, Jul-14, Volume: 13, Issue:7
Inhibitor Screen Identifies Covalent Inhibitors of the Protein Histidine Phosphatase PHPT1.
AID1870204Mixed inhibition of PHPT1 (unknown origin) assessed as change in Km and Vmax at above 150 uM using DifMUP as substrate by Michaelis-Menten based analysis2022ACS medicinal chemistry letters, Jul-14, Volume: 13, Issue:7
Inhibitor Screen Identifies Covalent Inhibitors of the Protein Histidine Phosphatase PHPT1.
AID1870209Time dependent inhibition of PHPT1 (unknown origin) at 150 uM using DiFMUP as fluorogenic substrate preincubated for 15 to 120 mins followed by substrate addition and measured for 30 mins by fluorogenic assay2022ACS medicinal chemistry letters, Jul-14, Volume: 13, Issue:7
Inhibitor Screen Identifies Covalent Inhibitors of the Protein Histidine Phosphatase PHPT1.
AID1079935Cytolytic liver toxicity, either proven histopathologically or where the ratio of maximal ALT or AST activity above normal to that of Alkaline Phosphatase is > 5 (see ACUTE). Value is number of references indexed. [column 'CYTOL' in source]
AID1079943Malignant tumor, proven histopathologically. Value is number of references indexed. [column 'T.MAL' in source]
AID1079946Presence of at least one case with successful reintroduction. [column 'REINT' in source]
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID1224864HCS microscopy assay (F508del-CFTR)2016PloS one, , Volume: 11, Issue:10
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID1159550Human Phosphogluconate dehydrogenase (6PGD) Inhibitor Screening2015Nature cell biology, Nov, Volume: 17, Issue:11
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (76)

TimeframeStudies, This Drug (%)All Drugs %
pre-199045 (59.21)18.7374
1990's4 (5.26)18.2507
2000's1 (1.32)29.6817
2010's19 (25.00)24.3611
2020's7 (9.21)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 32.17

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index32.17 (24.57)
Research Supply Index4.48 (2.92)
Research Growth Index4.83 (4.65)
Search Engine Demand Index40.31 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (32.17)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (1.15%)6.00%
Case Studies7 (8.05%)4.05%
Observational0 (0.00%)0.25%
Other79 (90.80%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]