Page last updated: 2024-09-20

flunitrazepam

Description

Flunitrazepam: A benzodiazepine with pharmacologic actions similar to those of DIAZEPAM that can cause ANTEROGRADE AMNESIA. Some reports indicate that it is used as a date rape drug and suggest that it may precipitate violent behavior. The United States Government has banned the importation of this drug. [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

flunitrazepam : A 1,4-benzodiazepinone that is nitrazepam substituted by a methyl group at position 1 and by a fluoro group at position 2'. It is a potent hypnotic, sedative, and amnestic drug used to treat chronic insomnia. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID3380
CHEMBL ID13280
CHEBI ID31622
SCHEMBL ID44169
MeSH IDM0008590

Synonyms (89)

Synonym
flunipam
flunitrazepamum
620x0222fq ,
5-24-04-00350 (beilstein handbook reference)
roipnol
silece
unii-620x0222fq
nsc708829
nsc-708829
DIVK1C_000981
KBIO1_000981
5-(2-fluorophenyl)-1-methyl-7-nitro-1,3-dihydro-2h-1,4-benzodiazepin-2-one
rohypnol
narcozep
1,3-dihydro-5-(o-fluorophenyl)-1-methyl-7-nitro-2h-1,4-benzodiazepin-2-one
dea no. 2763
brn 0702691
1-methyl-7-nitro-5-(2-fluorophenyl)-3h-1,4-benzodiazepin-2(1h)-one
primun
hsdb 6960
ccris 5287
flunitrazepam [usan:inn:ban:jan]
einecs 216-597-8
flunitrazepamum [inn-latin]
ro 5-4200
ro-5-4200
flunitrazepam
2h-1,4-benzodiazepin-2-one, 1,3-dihydro-5-(2-fluorophenyl)-1-methyl-7-nitro-
2h-1,4-benzodiazepin-2-one, 5-(2-fluorophenyl)-1,3-dihydro-1-methyl-7-nitro-
ro54200
fluninoc
fluridrazepam
IDI1_000981
5-(2-fluorophenyl)-1-methyl-7-nitro-2,3-dihydro-1h-1,4-benzodiazepin-2-one
[3h]rohypnol
bdbm25878
chembl13280 ,
[3h]flunitrazepam
DB01544
5-(o-fluorophenyl)-1,3-dihydro-1-methyl-7-nitro-2h-1,4-benzodiazepin-2-one
rohypnol (tn)
D01230
flunitrazepam (jp17/usan/inn)
1622-62-4
NINDS_000981
n05cd03
ro-54200
HMS503E03
AKOS005066009
5-(2-fluorophenyl)-1-methyl-7-nitro-3h-1,4-benzodiazepin-2-one
A810363
5-(2-fluorophenyl)-1-methyl-7-nitro-1h-benzo[e][1,4]diazepin-2(3h)-one
flunitrazepan
MLS003899224
smr000058981
5-(2-fluorophenyl)-1,3-dihydro-1-methyl-7-nitro-2h-1,4-benzodiazepin-2-one
gtpl4193
gtpl4360
flunitrazepam [ep monograph]
flunitrazepam [who-dd]
flunitrazepam [hsdb]
flunitrazepam [inn]
flunitrazepam [usan]
flunitrazepam [jan]
flunitrazepam [mi]
flunitrazepam [mart.]
SCHEMBL44169
1,3-dihydro-5-(2-fluorophenyl)-1-methyl-7-nitro-2h-1,4-benzodiazepin-2-one
5-(2-fluorophenyl)-1-methyl-7-nitro-3h-1,4-benzodiazepin-2(1h)-one
W-107962
flunidazepam
5-(2-fluorophenyl)-1-methyl-7-nitro-1,3-dihydrobenzo[e][1,4]diazepin-2-one
5-(2-fluorophenyl)-1-methyl-7-nitro-1,3-dihydro-2h-1,4-benzodiazepin-2-one #
DTXSID7023065
fluscand
CHEBI:31622
hipnosedon
valsera
flunita
hypnor
hypnodorm
primum
flunitrazepam, european pharmacopoeia (ep) reference standard
flunitrazepam-13c6, 100 mug/ml in methanol, certified reference material
flunitrazepam 0.1 mg/ml in methanol
flunitrazepam 1.0 mg/ml in methanol
(e)-5-(2-fluorophenyl)-1-methyl-7-nitro-1h-benzo[e][1,4]diazepin-2(3h)-one
Q62947
flunitrazepam, 1mg/ml in methanol

Research Excerpts

Overview

ExcerptReference
"Flunitrazepam is an extremely potent benzodiazepine sedative which is associated with "drug-facilitated sexual assault" when administered within an alcoholic drink. "( Diamanteas, K; Economou, A; Kokkinos, C; Papadopoulos, F, 2020)
"Flunitrazepam is a newer benzodiazepine that is preferentially used recreationally and to facilitate sexual assault."( Doyno, CR; White, CM, 2021)
"Flunitrazepam (FNZ) is a potent hypnotic, sedative, and amnestic drug used to treat insomnia and as a pre-anesthetic agent. "( Dinis-Oliveira, RJ, 2017)
"Flunitrazepam (FNZ) is a potent hypnotic, sedative, and amnestic drug used to treat severe insomnia. "( Liu, Y; Lu, J; Qiao, J; Qin, S; Wang, Y; Xin, G; Xu, D; Xu, Z; Zhang, W; Zhang, Y, 2019)
"Flunitrazepam is a potent benzodiazepine that is subject to abuse and malicious use. "( Forrester, MB, 2006)
"Flunitrazepam is a benzodiazepine derivative whose hypnotic effect predominates over the sedative, anxiolytic, muscle-relaxing and anticonvulsant effects characteristic of benzodiazepines. "( Larni, HM; Mattila, MA, 1980)
"Flunitrazepam appears to be a useful alternative anesthesia-induction agent that prevents some of the side effects of succinylcholine without reducing its efficiency."( Aronson, HB; Vatashsky, E, 1982)
"Flunitrazepam appears to be a narcohypnotic of choice in ophthalmological surgery on these inherently debilitated patients."( Deligne, P; Forest, A; Girard, P; Maillet, J; Perier, JF, 1982)
"The flunitrazepam is a benzodiazepine with hypnotic, ansiolytic and miorelaxant properties, which has been used as an anaesthetic in major and minor surgery."( Birkner, R; Durán, E; Ercilla, R; Schilkrut, R, 1980)
"Flunitrazepam is a benzodiazepine that fulfills all these criteria."( Barnas, C; Fleischhacker, WW; Hummer, M; Miller, C; Pycha, R; Stuppäck, C; Whitworth, A, 1993)
"Flunitrazepam is a benzodiazepine of long half-life with sedative, anxiolytic, muscle relaxant and anticonvulsant properties. "( Sanders, HG; Smales, EA; Smales, OR, 1993)
"Flunitrazepam is an hypnotic benzodiazepine marketed in different European countries. "( Camí, J; Farré, M; Terán, MT, 1996)
"Flunitrazepam (Rohypnol) is a benzodiazepine used in the treatment of insomnia as a sedative hypnotic and as preanesthetic medication in European countries and Mexico. "( Deitermann, D; Feeley, B; Kaleciak, K; Kronstrand, R; Lewis, D; Moore, C; Negrusz, A; Niedbala, RS, 1999)
"Flunitrazepam is a potent benzodiazepine."( Larive, LL; Romanelli, F; Smith, KM, 2002)
"Flunitrazepam is a new oral premedicant with prominent sedative and anxiolytic actions."( Kangas, L; Kanto, J; Mansikka, M, 1979)
"3H-Flunitrazepam is a very suitable ligand for affinity binding and it binds to the same class of binding sites as 3H-diazepam."( Braestrup, C; Squires, RF, 1978)
"Flunitrazepam is a benzodiazepine with pronounced hypnotic effects in the usual dosage."( Eldor, J, 1992)
"Flunitrazepam is a well-known hypnotic, binding to both the benzodiazepine 1 and 2 receptor subtypes."( Declerck, AC; O'Hanlon, JF; Ruwe, F; Vermeeren, A; Wauquier, A, 1992)

Effects

ExcerptReference
"Flunitrazepam has a faster and more extensive tissue distribution and a more rapid elimination (half-life about 12 h) in children than in adults."( Aaltonen, L; Iisalo, E; Kanto, J; Mäkelä, J, 1984)
"Flunitrazepam has greater potency and higher affinity for the type A GABA receptor than most benzodiazepines."( Doyno, CR; White, CM, 2021)
"Flunitrazepam has been reported to trigger cases of extreme violence in man and recently it was shown to heighten aggression in experimental rats. "( Svensson, AI, 2009)
"[3H]flunitrazepam has been used as a photoaffinity label for the specific, clonazepam-displaceable 1,4-benzodiazepine binding sites in sections of normal C57BL6J mouse brain and spinal cord. "( Biscoe, TJ; Fry, JP; Rickets, C, 1984)
"Flunitrazepam has a faster and more extensive tissue distribution and a more rapid elimination (half-life about 12 h) in children than in adults."( Aaltonen, L; Iisalo, E; Kanto, J; Mäkelä, J, 1984)
"Flunitrazepam has no therapeutic advantage over benzodiazepines presently marketed in the US."( Cupp, MJ; Simmons, MM, 1998)
"Flunitrazepam (Ro 5-4200) has been studied as an induction agent in 220 volunteers or patients. "( Clarke, RS; Dundee, JW; Gaston, JH; Varadarajan, CR, 1976)

Actions

ExcerptReference
"4. Flunitrazepam-induced increase on wet dog shake frequency was partially reduced by flumazenil, and strongly antagonized by ritanserine and Ro 15-4513."( Gibert-Rahola, J; Maldonado, R; Micó, JA; Valverde, O, 1995)

Treatment

ExcerptReference
"With flunitrazepam pretreatment, there were no deaths after lidocaine and only one after bupivacaine."( Aronson, HB; Vatashsky, E; Zaroura, S, 1983)
"Flunitrazepam treatment reduced (p < 0.05) the maximal GABA-stimulated increase in extracellular acidification rate (Emax) (16.5 +/- 1.2% and 11.3 +/- 1.0%, 2-day control and treated cells, respectively; 17.4 +/- 1.0% and 9.9 +/- 0.7%, 7-day control and treated cells, respectively; best-fit Emax +/- SEM, n = 7), without affecting the GABA concentration required to elicit 50% of maximal response (EC50) (1.2 +/- 1.7 and 2.3 +/- 1.8 microM, 2-day control and treated cells, respectively; 1.7 +/- 1.5 and 1.5 +/- 1.5 microM, 7-day control and treated cells, respectively; best-fit EC50 +/- SEM, n = 7)."( Bristow, DR; Brown, MJ; Coldwell, MC; Wood, MD, 1998)

Roles (3)

RoleDescription
sedativeA central nervous system depressant used to induce drowsiness or sleep or to reduce psychological excitement or anxiety.
GABAA receptor agonistA GABA receptor agonist specific for GABAA receptors, ligand-gated ion channels (also known as ionotropic receptors).
anxiolytic drugAnxiolytic drugs are agents that alleviate anxiety, tension, and anxiety disorders, promote sedation, and have a calming effect without affecting clarity of consciousness or neurologic conditions.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (3)

ClassDescription
1,4-benzodiazepinone
C-nitro compoundA nitro compound having the nitro group (-NO2) attached to a carbon atom.
monofluorobenzenesAny member of the class of fluorobenzenes containing a mono- or poly-substituted benzene ring carrying a single fluorine substitutent.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Pathways (1)

flunitrazepam is involved in 1 pathway(s), involving a total of 19 unique proteins and 30 unique compounds

PathwayProteinsCompounds
Citrate Cycle1930

Protein Targets (35)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Gamma-aminobutyric acid receptor subunit piHomo sapiens (human)IC50 (µMol)263,027.00000.00011.02016.0000AID40995
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)IC50 (µMol)263,027.00000.00011.02016.0000AID40995
Gamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)IC50 (µMol)263,027.00000.00011.14948.0000AID40995
Gamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)Ki0.00260.00000.21085.6234AID1889906; AID219791; AID72640; AID72927
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)IC50 (µMol)263,027.00000.00011.03936.0000AID40995
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)IC50 (µMol)263,027.00000.00011.29158.0000AID40995
Gamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)Ki0.23790.00000.18819.0000AID1889906; AID1889907; AID1889908; AID1889909; AID219791; AID219938; AID219953; AID71266; AID71267; AID72640; AID72927; AID73077; AID73089; AID73232; AID73244; AID73523; AID73529
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.505710.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.497310.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.498810.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.504610.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)IC50 (µMol)263,027.00000.00011.30188.0000AID40995
Gamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)Ki0.33580.00010.20769.0000AID219791; AID219938; AID219953; AID71266; AID71267; AID72927; AID73077; AID73089; AID73232; AID73244; AID73523; AID73529
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Translocator proteinHomo sapiens (human)IC50 (µMol)263,027.00000.00030.13020.4900AID40987
Cholecystokinin receptor type ARattus norvegicus (Norway rat)IC50 (µMol)100.00000.00000.43624.3000AID52410; AID52413
Gastrin/cholecystokinin type B receptorRattus norvegicus (Norway rat)IC50 (µMol)100.00000.00010.24801.4000AID52410
Gamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)IC50 (µMol)263,027.00000.00010.98006.0000AID40995
Gamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)Ki0.00210.00010.24425.6234AID1889909; AID73523; AID73529
Gamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)IC50 (µMol)263,027.00000.00011.19936.0000AID40995
Gamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)Ki0.00480.00010.25155.6234AID1889908; AID219953; AID73232; AID73244
Gamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)IC50 (µMol)263,027.00000.00011.02016.0000AID40995
Gamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)Ki0.00210.00010.24015.6234AID1889907; AID219938; AID73077; AID73089
Gamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)IC50 (µMol)263,027.00000.00010.93746.0000AID40995
Gamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)Ki0.00300.00000.28325.6234AID1889906; AID1889907; AID1889908; AID1889909; AID72640
Gamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)IC50 (µMol)263,027.00000.00011.01936.0000AID40995
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.506510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.505710.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)IC50 (µMol)263,027.00000.00011.02016.0000AID40995
Gamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)IC50 (µMol)263,027.00000.00011.02016.0000AID40995
Gamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)Ki2.00000.00020.41199.0000AID71266; AID71267
Gamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)IC50 (µMol)263,027.00000.00011.02016.0000AID40995
GABA theta subunitRattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)IC50 (µMol)263,027.00000.00011.02016.0000AID40995
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)IC50 (µMol)0.00160.00010.507510.0000AID40817; AID40826; AID42335
Gamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)IC50 (µMol)263,027.00000.00011.02016.0000AID40995
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Gamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)EC50 (µMol)0.00140.00112.000910.0000AID385604
Gamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)Kd0.00450.00010.01020.0760AID343089
Gamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)EC50 (µMol)0.00140.00141.957810.0000AID385604
Gamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)Kd0.00300.00050.12830.8260AID343090
Gamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)EC50 (µMol)0.00140.00141.776810.0000AID385604
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (63)

Processvia Protein(s)Taxonomy
chloride transmembrane transportGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
signal transductionGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
monoatomic ion transportGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
signal transductionGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
response to toxic substanceGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
central nervous system neuron developmentGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
response to progesteroneGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
ovulation cycleGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
cellular response to histamineGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
post-embryonic developmentGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
adult behaviorGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
cellular response to histamineGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
signal transductionGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
roof of mouth developmentGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
cellular response to histamineGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
protein targeting to mitochondrionTranslocator proteinHomo sapiens (human)
C21-steroid hormone biosynthetic processTranslocator proteinHomo sapiens (human)
heme biosynthetic processTranslocator proteinHomo sapiens (human)
monoatomic anion transportTranslocator proteinHomo sapiens (human)
chloride transportTranslocator proteinHomo sapiens (human)
steroid metabolic processTranslocator proteinHomo sapiens (human)
glial cell migrationTranslocator proteinHomo sapiens (human)
response to xenobiotic stimulusTranslocator proteinHomo sapiens (human)
response to manganese ionTranslocator proteinHomo sapiens (human)
response to vitamin B1Translocator proteinHomo sapiens (human)
peripheral nervous system axon regenerationTranslocator proteinHomo sapiens (human)
sterol transportTranslocator proteinHomo sapiens (human)
adrenal gland developmentTranslocator proteinHomo sapiens (human)
negative regulation of protein ubiquitinationTranslocator proteinHomo sapiens (human)
regulation of cholesterol transportTranslocator proteinHomo sapiens (human)
response to progesteroneTranslocator proteinHomo sapiens (human)
negative regulation of tumor necrosis factor productionTranslocator proteinHomo sapiens (human)
response to testosteroneTranslocator proteinHomo sapiens (human)
regulation of cell population proliferationTranslocator proteinHomo sapiens (human)
cholesterol homeostasisTranslocator proteinHomo sapiens (human)
positive regulation of apoptotic processTranslocator proteinHomo sapiens (human)
negative regulation of nitric oxide biosynthetic processTranslocator proteinHomo sapiens (human)
behavioral response to painTranslocator proteinHomo sapiens (human)
regulation of steroid biosynthetic processTranslocator proteinHomo sapiens (human)
positive regulation of mitochondrial depolarizationTranslocator proteinHomo sapiens (human)
positive regulation of calcium ion transportTranslocator proteinHomo sapiens (human)
contact inhibitionTranslocator proteinHomo sapiens (human)
positive regulation of glial cell proliferationTranslocator proteinHomo sapiens (human)
negative regulation of glial cell proliferationTranslocator proteinHomo sapiens (human)
positive regulation of programmed necrotic cell deathTranslocator proteinHomo sapiens (human)
cellular response to lipopolysaccharideTranslocator proteinHomo sapiens (human)
cellular response to zinc ionTranslocator proteinHomo sapiens (human)
cellular hypotonic responseTranslocator proteinHomo sapiens (human)
maintenance of protein location in mitochondrionTranslocator proteinHomo sapiens (human)
negative regulation of mitophagyTranslocator proteinHomo sapiens (human)
negative regulation of ATP metabolic processTranslocator proteinHomo sapiens (human)
response to acetylcholineTranslocator proteinHomo sapiens (human)
positive regulation of reactive oxygen species metabolic processTranslocator proteinHomo sapiens (human)
negative regulation of corticosterone secretionTranslocator proteinHomo sapiens (human)
behavioral fear responseGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
signal transductionGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
associative learningGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
inner ear receptor cell developmentGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
innervationGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
cochlea developmentGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
inner ear receptor cell developmentGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
innervationGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
cellular response to histamineGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
cochlea developmentGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
negative regulation of chloride transportGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
signal transductionGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
response to xenobiotic stimulusGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
synaptic transmission, GABAergicGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
inhibitory synapse assemblyGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
neurotransmitter transportGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
signal transductionGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (20)

Processvia Protein(s)Taxonomy
GABA-A receptor activityGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
protein bindingGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
GABA receptor activityGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
ligand-gated monoatomic ion channel activityGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
GABA receptor bindingGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
G protein-coupled neurotransmitter receptor activity involved in regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
protein bindingGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
identical protein bindingGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
androgen bindingTranslocator proteinHomo sapiens (human)
protein bindingTranslocator proteinHomo sapiens (human)
benzodiazepine receptor activityTranslocator proteinHomo sapiens (human)
cholesterol bindingTranslocator proteinHomo sapiens (human)
transmembrane transporter bindingTranslocator proteinHomo sapiens (human)
cholesterol transfer activityTranslocator proteinHomo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
signaling receptor activityGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
GABA receptor bindingGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
protein bindingGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
protein bindingGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
GABA receptor activityGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
protein bindingGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
GABA receptor bindingGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
benzodiazepine receptor activityGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
transmembrane signaling receptor activityGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
neurotransmitter transmembrane transporter activityGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
protein bindingGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (36)

Processvia Protein(s)Taxonomy
plasma membraneGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
apical plasma membraneGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit piHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
axonGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
dendriteGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
neuronal cell bodyGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
postsynaptic membraneGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit deltaHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
cytoplasmic vesicle membraneGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
GABA receptor complexGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit alpha-1Homo sapiens (human)
nuclear envelopeGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
dendriteGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
presynaptic active zone membraneGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
Schaffer collateral - CA1 synapseGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit beta-1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
axonGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
cytoplasmic vesicle membraneGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit gamma-2Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
cytoplasmic vesicle membraneGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit beta-3Homo sapiens (human)
mitochondrionTranslocator proteinHomo sapiens (human)
mitochondrial outer membraneTranslocator proteinHomo sapiens (human)
cytosolTranslocator proteinHomo sapiens (human)
intracellular membrane-bounded organelleTranslocator proteinHomo sapiens (human)
extracellular exosomeTranslocator proteinHomo sapiens (human)
endoplasmic reticulumTranslocator proteinHomo sapiens (human)
membraneTranslocator proteinHomo sapiens (human)
nucleoplasmGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
cytosolGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
neuronal cell body membraneGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
presynaptic membraneGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-5Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
postsynaptic membraneGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit alpha-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
axonGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
synaptic vesicle membraneGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
neuronal cell bodyGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
inhibitory synapseGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit alpha-2Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
cytoplasmic vesicle membraneGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
extracellular exosomeGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit beta-2Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit alpha-4Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
postsynaptic membraneGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit epsilonHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
cerebellar Golgi cell to granule cell synapseGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
postsynaptic specialization membraneGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit alpha-6Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
postsynaptic membraneGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit gamma-1Homo sapiens (human)
nucleolusGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
microtubule cytoskeletonGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
postsynaptic membraneGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
dendrite membraneGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
postsynapseGamma-aminobutyric acid receptor subunit gamma-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
postsynaptic membraneGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
receptor complexGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit thetaHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (93)

Assay IDTitleYearJournalArticle
AID1301531Selectivity ratio, ratio of Ki for central-type benzodiazepine receptor in bovine cortical membrane to Ki for central-type benzodiazepine receptor in bovine cortical membrane in presence of 50 uM of GABA2016Journal of medicinal chemistry, Apr-14, Volume: 59, Issue:7
Design, Synthesis, and Biological Evaluation of Imidazo[1,5-a]quinoline as Highly Potent Ligands of Central Benzodiazepine Receptors.
AID540212Mean residence time in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID385604Activity at human GABAA alpha-1-beta-2-gamma-2S327 receptor in HEK293 cells expressing as-PKCepsilon cells assessed as evoked current response by whole cell patch clamp method2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID226385Displacement of [3H]flunitrazepam from GABA-A benzodiazepine receptor of rat cerebral cortex membrane1987Journal of medicinal chemistry, Jul, Volume: 30, Issue:7
Synthesis of beta-carboline-benzodiazepine hybrid molecules: use of the known structural requirements for benzodiazepine and beta-carboline binding in designing a novel, high-affinity ligand for the benzodiazepine receptor.
AID26304Partition coefficient (logD6.5)2000Journal of medicinal chemistry, Jun-29, Volume: 43, Issue:13
QSAR model for drug human oral bioavailability.
AID385594Activity at human GABAA alpha-1-beta-2-gamma-2 LS327A,S343A receptor in HEK293 cells expressing as-PKCepsilon assessed as evoked current response by whole cell patch clamp method2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID588211Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in humans2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID229422Selectivity of binding to pancreatic CCK and brain benzodiazepine receptors, ratio of IC501987Journal of medicinal chemistry, Jul, Volume: 30, Issue:7
Design of nonpeptidal ligands for a peptide receptor: cholecystokinin antagonists.
AID52280Half-maximal inhibition of [125I]-CCK-8(+) binding to cholecystokinin receptor from guinea pig brain tissue1988Journal of medicinal chemistry, Dec, Volume: 31, Issue:12
Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists.
AID1150164Anticonvulsion activity in mouse assessed as protection against pentylenetetrazole-induced convulsion1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID1889906Displacement of [3H]flunitrazepam from human recombinant alpha1beta2gamma2 GABAA receptor expressed in HEK cell membrane by competitive radioligand binding assay2022Bioorganic & medicinal chemistry letters, 04-15, Volume: 62Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies.
AID219791Binding affinity measured using LtK- cell membranes expressing GABA alpha-1-beta-3-gamma-2 receptor1998Journal of medicinal chemistry, Jul-02, Volume: 41, Issue:14
Synthesis and evaluation of analogues of the partial agonist 6-(propyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (6-PBC) and the full agonist 6-(benzyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (Zk 93423)
AID13306-Log C was determined by performing the incl screen test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID385595Activity at human GABAA alpha-1-beta-2-gamma-2 LS327A receptor in HEK293 cells expressing as-PKCepsilon assessed as evoked current response by whole cell patch clamp method2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID1150163Taming activity in mouse assessed as suppression of electrical current-induced aggressive behavior by foot-shock test1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID73244Binding affinity for human recombinant gamma-aminobutyric-acid (GABA) A receptor alpha-3-beta-3-gamma-22000Journal of medicinal chemistry, Jan-13, Volume: 43, Issue:1
Pharmacophore/receptor models for GABA(A)/BzR subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach.
AID40987Binding affinity of compound towards Benzodiazepine receptor in a competition assay1996Journal of medicinal chemistry, Dec-20, Volume: 39, Issue:26
Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors.
AID72640Binding affinity evaluated by ability to displace [3H]Ro-151788 from recombinant human Gamma-aminobutyric acid A receptor alpha-1-beta-2-gamma-2 expressed in L(tk-)cells2000Bioorganic & medicinal chemistry letters, Jun-19, Volume: 10, Issue:12
N-(indol-3-ylglyoxylyl)piperidines: high affinity agonists of human GABA-A receptors containing the alpha1 subunit.
AID71267Binding affinity measured using LtK- cell membranes expressing Gamma-aminobutyric acid A receptor alpha-6-beta-3-gamma-21998Journal of medicinal chemistry, Jul-02, Volume: 41, Issue:14
Synthesis and evaluation of analogues of the partial agonist 6-(propyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (6-PBC) and the full agonist 6-(benzyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (Zk 93423)
AID42335Displacement of [3H]diazepam from GABA-A Benzodiazepine receptor of rat forebrain1991Journal of medicinal chemistry, Jan, Volume: 34, Issue:1
Synthesis and benzodiazepine binding activity of a series of novel [1,2,4]triazolo[1,5-c]quinazolin-5(6H)-ones.
AID52413Half-maximal inhibition of [125I]CCK-33 binding to cholecystokinin A receptor from rat pancreatic tissue1988Journal of medicinal chemistry, Dec, Volume: 31, Issue:12
Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists.
AID73089Binding affinity to human recombinant gamma-aminobutyric-acid (GABA) A receptor alpha-2-beta-3-gamma-22000Journal of medicinal chemistry, Jan-13, Volume: 43, Issue:1
Pharmacophore/receptor models for GABA(A)/BzR subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach.
AID13304-Log C was determined by performing the electroshock minimum test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID701024Ratio of Ki for central benzodiazepine receptor in human cortical membrane to Ki for central benzodiazepine receptor in human cortical membrane in presence of 50 uM GABA2011Journal of medicinal chemistry, Aug-25, Volume: 54, Issue:16
New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds.
AID365608Displacement of [3H]flumazenil from CBR in bovine cortical membrane2008Journal of medicinal chemistry, Aug-14, Volume: 51, Issue:15
Ethyl 8-fluoro-6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate as novel, highly potent, and safe antianxiety agent.
AID385593Activity at human GABAA alpha1beta2 S410A-gamma-2-LS327A,S343A receptor in HEK293 cells expressing as-PKCepsilon assessed as evoked current response by whole cell patch clamp method2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID13308-Log C was determined by performing the pentylenetetrazole test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID701023Ratio of Ki for central benzodiazepine receptor in bovine cortical membrane to Ki for central benzodiazepine receptor in bovine cortical membrane in presence of 50 uM GABA2011Journal of medicinal chemistry, Aug-25, Volume: 54, Issue:16
New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds.
AID1889908Displacement of [3H]flunitrazepam from human recombinant alpha3beta2gamma2 GABAA receptor expressed in HEK cell membrane by competitive radioligand binding assay2022Bioorganic & medicinal chemistry letters, 04-15, Volume: 62Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies.
AID227698Evaluation for the Anti-pentylenetetrazole effect.1990Journal of medicinal chemistry, Sep, Volume: 33, Issue:9
Neural networks applied to quantitative structure-activity relationship analysis.
AID71266Binding affinity for human recombinant gamma-aminobutyric-acid (GABA) A receptor alpha-6-beta-3-gamma-22000Journal of medicinal chemistry, Jan-13, Volume: 43, Issue:1
Pharmacophore/receptor models for GABA(A)/BzR subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach.
AID40817Displacement of [3H]diazepam from rat brain GABA-A benzodiazepine receptor1987Journal of medicinal chemistry, Jul, Volume: 30, Issue:7
Design of nonpeptidal ligands for a peptide receptor: cholecystokinin antagonists.
AID385601Activity of human GABA alpha-1-beta-2-gamma-2 LS327A mutant in HEK293 cells assessed as activation of current at 300 nM2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID1889909Displacement of [3H]flunitrazepam from human recombinant alpha5beta2gamma2 GABAA receptor expressed in HEK cell membrane by competitive radioligand binding assay2022Bioorganic & medicinal chemistry letters, 04-15, Volume: 62Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies.
AID40827Displacement of [3H]beta-CCE from GABA-A benzodiazepine receptor of rat cerebral cortex membranes1987Journal of medicinal chemistry, Jul, Volume: 30, Issue:7
Synthesis of beta-carboline-benzodiazepine hybrid molecules: use of the known structural requirements for benzodiazepine and beta-carboline binding in designing a novel, high-affinity ligand for the benzodiazepine receptor.
AID40995Binding affinity towards benzodiazepine/GABA A receptor.1995Journal of medicinal chemistry, Feb-17, Volume: 38, Issue:4
Prediction of receptor properties and binding affinity of ligands to benzodiazepine/GABAA receptors using artificial neural networks.
AID13307-Log C was determined by performing the maximum electroshock test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID540213Half life in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID1150162Muscle relaxant activity in mouse1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID73232Binding affinity evaluated by ability to displace [3H]Ro-151788 from recombinant human Gamma-aminobutyric acid A receptor alpha-3-beta-3-gamma-2 expressed in L(tk-)cells2000Bioorganic & medicinal chemistry letters, Jun-19, Volume: 10, Issue:12
N-(indol-3-ylglyoxylyl)piperidines: high affinity agonists of human GABA-A receptors containing the alpha1 subunit.
AID139100Logarithm of effective dose evaluated using the foot-shock test in mice1983Journal of medicinal chemistry, Aug, Volume: 26, Issue:8
Quantitative structure-activity relationships employing independent quantum chemical indices.
AID343090Binding affinity to GABAA alpha-5-beta-2-gamma-2 receptor2008Journal of medicinal chemistry, Jul-10, Volume: 51, Issue:13
Selective influence on contextual memory: physiochemical properties associated with selectivity of benzodiazepine ligands at GABAA receptors containing the alpha5 subunit.
AID1849525Binding affinity to CBR (unknown origin)2021European journal of medicinal chemistry, Jan-01, Volume: 209An update into the medicinal chemistry of translocator protein (TSPO) ligands.
AID365610Ratio of Ki for bovine CBR in absence of GABA to Ki for bovine CBR in presence of 50 uM GABA2008Journal of medicinal chemistry, Aug-14, Volume: 51, Issue:15
Ethyl 8-fluoro-6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate as novel, highly potent, and safe antianxiety agent.
AID1889907Displacement of [3H]flunitrazepam from human recombinant alpha2beta2gamma2 GABAA receptor expressed in HEK cell membrane by competitive radioligand binding assay2022Bioorganic & medicinal chemistry letters, 04-15, Volume: 62Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies.
AID232605Ratio of IC50 CCK(pancreas)/ IC50BZD (brain)1988Journal of medicinal chemistry, Dec, Volume: 31, Issue:12
Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists.
AID73529Binding affinity measured using LtK- cell membranes expressing Gamma-aminobutyric acid A receptor alpha-5-beta-3-gamma-21998Journal of medicinal chemistry, Jul-02, Volume: 41, Issue:14
Synthesis and evaluation of analogues of the partial agonist 6-(propyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (6-PBC) and the full agonist 6-(benzyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (Zk 93423)
AID343089Binding affinity to GABAA alpha-1-beta-2-gamma-2 receptor2008Journal of medicinal chemistry, Jul-10, Volume: 51, Issue:13
Selective influence on contextual memory: physiochemical properties associated with selectivity of benzodiazepine ligands at GABAA receptors containing the alpha5 subunit.
AID1150165Muscle relaxant activity in cat suspended by scruff of neck assessed as relaxation of body and hind legs1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID1150161Sedative activity in mouse1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID385596Activity at human GABAA alpha-1-beta-2-S410A-gamma-2L receptor in HEK293 cells expressing as-PKCepsilon assessed as evoked current response by whole cell patch clamp method2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID1301538Partial inverse agonist activity at central-type benzodiazepine receptor in Sprague-Dawley rat cerebrocortical synaptoneurosomes assessed as decrease in 36Cl- flow after 10 secs by liquid-phase scintillation beta-counting method2016Journal of medicinal chemistry, Apr-14, Volume: 59, Issue:7
Design, Synthesis, and Biological Evaluation of Imidazo[1,5-a]quinoline as Highly Potent Ligands of Central Benzodiazepine Receptors.
AID540209Volume of distribution at steady state in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID232720Selectivity ratio of alpha1 beta-3 gamma2 GABA A / BzR and alpha5 beta-3 gamma2 GABA A / BzR2000Journal of medicinal chemistry, Jan-13, Volume: 43, Issue:1
Pharmacophore/receptor models for GABA(A)/BzR subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach.
AID72927Binding affinity for human recombinant gamma-aminobutyric-acid (GABA) A receptor alpha-1-beta-3-gamma-22000Journal of medicinal chemistry, Jan-13, Volume: 43, Issue:1
Pharmacophore/receptor models for GABA(A)/BzR subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach.
AID701026Agonist activity at central benzodiazepine receptor in Sprague-Dawley rat cerebrocortical synaptoneurosomes assessed as increase in GABA-induced [36]chloride ion flow after 10 seconds by beta liquid scintillation counting2011Journal of medicinal chemistry, Aug-25, Volume: 54, Issue:16
New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds.
AID13305-Log C was determined by performing the foot shock test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID73523Binding affinity for human recombinant gamma-aminobutyric-acid (GABA) A receptor alpha-5-beta-3-gamma-22000Journal of medicinal chemistry, Jan-13, Volume: 43, Issue:1
Pharmacophore/receptor models for GABA(A)/BzR subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach.
AID40826Inhibition of [3H]diazepam binding to GABA-A benzodiazepine receptor of rat brain1988Journal of medicinal chemistry, Dec, Volume: 31, Issue:12
Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists.
AID29360Ionization constant (pKa)2000Journal of medicinal chemistry, Jun-29, Volume: 43, Issue:13
QSAR model for drug human oral bioavailability.
AID1301535Selectivity ratio, ratio of Ki for central-type benzodiazepine receptor in human cortical membrane to Ki for central-type benzodiazepine receptor in human cortical membrane in presence of 50 uM of GABA2016Journal of medicinal chemistry, Apr-14, Volume: 59, Issue:7
Design, Synthesis, and Biological Evaluation of Imidazo[1,5-a]quinoline as Highly Potent Ligands of Central Benzodiazepine Receptors.
AID22293Delta logD (logD6.5 - logD7.4)2000Journal of medicinal chemistry, Jun-29, Volume: 43, Issue:13
QSAR model for drug human oral bioavailability.
AID701022Displacement of [3H]flumazenil from central benzodiazepine receptor in human cortical membrane after 90 mins by beta liquid scintillation counting2011Journal of medicinal chemistry, Aug-25, Volume: 54, Issue:16
New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds.
AID701021Displacement of [3H]flumazenil from central benzodiazepine receptor in bovine cortical membrane after 90 mins by beta liquid scintillation counting2011Journal of medicinal chemistry, Aug-25, Volume: 54, Issue:16
New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds.
AID52275Half-maximal inhibition of [125I]CCK-33 binding to guinea pig brain(cortex) cholecystokinin receptor1987Journal of medicinal chemistry, Jul, Volume: 30, Issue:7
Design of nonpeptidal ligands for a peptide receptor: cholecystokinin antagonists.
AID539464Solubility of the compound in 0.1 M phosphate buffer at 600 uM at pH 7.4 after 24 hrs by LC/MS/MS analysis2010Bioorganic & medicinal chemistry letters, Dec-15, Volume: 20, Issue:24
Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate.
AID29811Oral bioavailability in human2000Journal of medicinal chemistry, Jun-29, Volume: 43, Issue:13
QSAR model for drug human oral bioavailability.
AID385600Activity of human GABA alpha-1-beta-2-gamma-2L receptor in HEK293 cells assessed as activation of current at 300 nM2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID227697Compound was evaluated for the Anti-fighting behavior.1990Journal of medicinal chemistry, Sep, Volume: 33, Issue:9
Neural networks applied to quantitative structure-activity relationship analysis.
AID588213Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in non-rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID228469Evaluation of inclined screen test.1990Journal of medicinal chemistry, Sep, Volume: 33, Issue:9
Neural networks applied to quantitative structure-activity relationship analysis.
AID588212Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID52410Half-maximal inhibition of [125I]-CCK-33 binding to rat pancreas cholecystokinin receptor1987Journal of medicinal chemistry, Jul, Volume: 30, Issue:7
Design of nonpeptidal ligands for a peptide receptor: cholecystokinin antagonists.
AID365611Ratio of Ki for human CBR in absence of GABA to Ki for human CBR in presence of 50 uM GABA2008Journal of medicinal chemistry, Aug-14, Volume: 51, Issue:15
Ethyl 8-fluoro-6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate as novel, highly potent, and safe antianxiety agent.
AID540211Fraction unbound in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID72448Ability to affect GABA-induced chloride current in Xenopus oocytes transiently expressing human GABA-A alpha-1-beta-2-gamma-2 receptors using two-electrode voltage-clamp electrophysiology at test concentration of 1 uM2000Bioorganic & medicinal chemistry letters, Jun-19, Volume: 10, Issue:12
N-(indol-3-ylglyoxylyl)piperidines: high affinity agonists of human GABA-A receptors containing the alpha1 subunit.
AID385603Activity of human GABA alpha-1-beta-2-gamma-2 LS327A mutant in HEK293 cells assessed as inactivation of current at 300 nM2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID365609Displacement of [3H]flumazenil from CBR in human cortical membrane2008Journal of medicinal chemistry, Aug-14, Volume: 51, Issue:15
Ethyl 8-fluoro-6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate as novel, highly potent, and safe antianxiety agent.
AID243422log (1/Km) value for human liver microsome cytochrome P450 3A42005Bioorganic & medicinal chemistry letters, Sep-15, Volume: 15, Issue:18
Modeling K(m) values using electrotopological state: substrates for cytochrome P450 3A4-mediated metabolism.
AID624647Inhibition of AZT glucuronidation by human UGT enzymes from liver microsomes2005Pharmacology & therapeutics, Apr, Volume: 106, Issue:1
UDP-glucuronosyltransferases and clinical drug-drug interactions.
AID1301529Displacement of [3H]-flumazenil from central-type benzodiazepine receptor in bovine cortical membrane after 90 mins by liquid-phase scintillation beta-counting method2016Journal of medicinal chemistry, Apr-14, Volume: 59, Issue:7
Design, Synthesis, and Biological Evaluation of Imidazo[1,5-a]quinoline as Highly Potent Ligands of Central Benzodiazepine Receptors.
AID672795Displacement of [3H]flumazenil from central benzodiazepine receptor in rat cerebral cortex membranes at 10 uM after 90 mins by competitive binding assay2012Journal of medicinal chemistry, May-10, Volume: 55, Issue:9
Synthesis and biological evaluation of 4-phenylquinazoline-2-carboxamides designed as a novel class of potent ligands of the translocator protein.
AID219938Binding affinity measured using LtK- cell membranes expressing GABA alpha-2-beta-3-gamma-2 receptor1998Journal of medicinal chemistry, Jul-02, Volume: 41, Issue:14
Synthesis and evaluation of analogues of the partial agonist 6-(propyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (6-PBC) and the full agonist 6-(benzyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (Zk 93423)
AID219953Binding affinity measured using LtK- cell membranes expressing GABA alpha-3-beta-3-gamma-2 receptor1998Journal of medicinal chemistry, Jul-02, Volume: 41, Issue:14
Synthesis and evaluation of analogues of the partial agonist 6-(propyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (6-PBC) and the full agonist 6-(benzyloxy)-4-(methoxymethyl)-beta-carboline-3-carboxylic acid ethyl ester (Zk 93423)
AID1301534Displacement of [3H]-flumazenil from central-type benzodiazepine receptor in human cortical membrane after 90 mins by liquid-phase scintillation beta-counting method2016Journal of medicinal chemistry, Apr-14, Volume: 59, Issue:7
Design, Synthesis, and Biological Evaluation of Imidazo[1,5-a]quinoline as Highly Potent Ligands of Central Benzodiazepine Receptors.
AID73077Binding affinity evaluated by ability to displace [3H]-Ro-15-1788 from recombinant human Gamma-aminobutyric acid A receptor alpha-2-beta-3-gamma-2 expressed in L(tk-)cells2000Bioorganic & medicinal chemistry letters, Jun-19, Volume: 10, Issue:12
N-(indol-3-ylglyoxylyl)piperidines: high affinity agonists of human GABA-A receptors containing the alpha1 subunit.
AID385592Activity at human GABAA alpha-1-beta-2-gamma-2L receptor in HEK293 cells expressing as-PKCepsilon assessed as evoked current response by whole cell patch clamp method2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID540210Clearance in human after iv administration2008Drug metabolism and disposition: the biological fate of chemicals, Jul, Volume: 36, Issue:7
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
AID385602Activity of human GABA alpha-1-beta-2-gamma-2Lreceptor in HEK293 cells assessed as inactivation of current at 300 nM2007The Journal of biological chemistry, Nov-09, Volume: 282, Issue:45
Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits.
AID1346504Human GABAA receptor alpha2 subunit (GABAA receptors)1996Molecular pharmacology, Feb, Volume: 49, Issue:2
Cloning of cDNAs encoding the human gamma-aminobutyric acid type A receptor alpha 6 subunit and characterization of the pharmacology of alpha 6-containing receptors.
AID1346496Human GABAA receptor alpha3 subunit (GABAA receptors)1996Molecular pharmacology, Feb, Volume: 49, Issue:2
Cloning of cDNAs encoding the human gamma-aminobutyric acid type A receptor alpha 6 subunit and characterization of the pharmacology of alpha 6-containing receptors.
AID1346513Human GABAA receptor alpha5 subunit (GABAA receptors)1996Molecular pharmacology, Feb, Volume: 49, Issue:2
Cloning of cDNAs encoding the human gamma-aminobutyric acid type A receptor alpha 6 subunit and characterization of the pharmacology of alpha 6-containing receptors.
AID1346520Human GABAA receptor alpha1 subunit (GABAA receptors)1996Molecular pharmacology, Feb, Volume: 49, Issue:2
Cloning of cDNAs encoding the human gamma-aminobutyric acid type A receptor alpha 6 subunit and characterization of the pharmacology of alpha 6-containing receptors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (2,557)

TimeframeStudies, This Drug (%)All Drugs %
pre-19901287 (50.33)18.7374
1990's780 (30.50)18.2507
2000's341 (13.34)29.6817
2010's132 (5.16)24.3611
2020's17 (0.66)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials298 (11.05%)5.53%
Reviews69 (2.56%)6.00%
Case Studies96 (3.56%)4.05%
Observational0 (0.00%)0.25%
Other2,234 (82.83%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research Highlights

Safety/Toxicity (13)

ArticleYear
Buprenorphine alters desmethylflunitrazepam disposition and flunitrazepam toxicity in rats.
Toxicological sciences : an official journal of the Society of Toxicology, Volume: 106, Issue: 1
2008
Ethyl 8-fluoro-6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate as novel, highly potent, and safe antianxiety agent.
Journal of medicinal chemistry, Aug-14, Volume: 51, Issue: 15
2008
Efficacy, safety, and cost effectiveness of intravenous midazolam and flunitrazepam for primary insomnia in terminally ill patients with cancer: a retrospective multicenter audit study.
Journal of palliative medicine, Volume: 10, Issue: 5
2007
Acute toxic effects of club drugs.
Journal of psychoactive drugs, Volume: 36, Issue: 3
2004
Flunitrazepam: an evaluation of use, abuse and toxicity.
Forensic science international, Nov-01, Volume: 122, Issue: 2-3
2001
Single- and repeated-dose local toxicity in the nasal cavity of rabbits after intranasal administration of different glycols for formulations containing benzodiazepines.
The Journal of pharmacy and pharmacology, Volume: 51, Issue: 4
1999
Correlations among minimal neurotoxicity, anticonvulsant activity, and displacing potencies in [3H]flunitrazepam binding of benzodiazepines.
Epilepsia, Volume: 24, Issue: 6
1983
Intravenous flunitrazepam in the prevention of the side effects of succinylcholine.
Israel journal of medical sciences, Volume: 18, Issue: 5
1982
Efficacy and side effects of flunitrazepam and pentobarbital in severely insomniac patients.
Journal of clinical pharmacology, Volume: 22, Issue: 1
1982
[Efficacy and safety of the benzodiazepine antagonist RO 15-1788].
Der Anaesthesist, Volume: 37, Issue: 7
1988
Antagonism of flunitrazepam-induced sedative effects by flumazenil in patients after surgery under general anaesthesia. A double-blind placebo-controlled investigation of efficacy and safety.
Acta anaesthesiologica Scandinavica, Volume: 32, Issue: 4
1988
Effect of GABA agonists on the neurotoxicity and anticonvulsant activity of benzodiazepines.
Life sciences, Feb-25, Volume: 36, Issue: 8
1985
Reduction of psychotomimetic side effects of Ketalar (ketamine) by Rohypnol (flunitrazepam). A randomized, double-blind trial.
Acta anaesthesiologica Scandinavica, Volume: 20, Issue: 2
1976
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Long-term Use (36)

ArticleYear
Sedative-Hypnotic Agents That Impact Gamma-Aminobutyric Acid Receptors: Focus on Flunitrazepam, Gamma-Hydroxybutyric Acid, Phenibut, and Selank.
Journal of clinical pharmacology, Volume: 61 Suppl 2
2021
Effect of flunitrazepam as an oral hypnotic on 24-hour blood pressure in healthy volunteers.
European journal of clinical pharmacology, Volume: 74, Issue: 8
2018
Effects of acute and chronic administration of neurosteroid dehydroepiandrosterone sulfate on neuronal excitability in mice.
Drug design, development and therapy, Volume: 10
2016
Effects of the 5-HT(1A) Receptor Agonist Tandospirone on ACTH-Induced Sleep Disturbance in Rats.
Biological & pharmaceutical bulletin, Volume: 38, Issue: 6
2015
Dependence, misuse, and beliefs regarding use of hypnotics by elderly psychiatric patients taking zolpidem, estazolam, or flunitrazepam.
Asia-Pacific psychiatry : official journal of the Pacific Rim College of Psychiatrists, Volume: 7, Issue: 3
2015
The effects of zolpidem treatment on GABA(A) receptors in cultured cerebellar granule cells: changes in functional coupling.
Life sciences, Jun-14, Volume: 90, Issue: 23-24
2012
Flunitrazepam intake in male offenders.
Nordic journal of psychiatry, Volume: 66, Issue: 2
2012
Heightened aggression after chronic flunitrazepam in male rats: potential links to cortical and caudate-putamen-binding sites.
Psychopharmacology, Volume: 197, Issue: 2
2008
Effect of chronic administration of ethanol on GABAA receptor assemblies derived from alpha2-, alpha3-, beta2- and gamma2-subunits in the rat cerebral cortex.
Brain research, Jan-07, Volume: 1031, Issue: 1
2005
Inhibition by miltirone of up-regulation of GABAA receptor alpha4 subunit mRNA by ethanol withdrawal in hippocampal neurons.
European journal of pharmacology, Jun-28, Volume: 494, Issue: 2-3
2004
Long-, intermediate- and short-acting benzodiazepine effects on human sleep EEG spectra.
Psychiatry and clinical neurosciences, Volume: 57, Issue: 1
2003
In ovo chronic neurosteroid treatment affects the function and allosteric interactions of GABA(A) receptor modulatory sites.
Brain research, May-25, Volume: 902, Issue: 1
2001
Convulsive status epilepticus following abrupt high-dose benzodiazepine discontinuation.
Drug and alcohol dependence, Apr-01, Volume: 59, Issue: 1
2000
The effects of substituting zopiclone in withdrawal from chronic use of benzodiazepine hypnotics.
Psychopharmacology, Volume: 140, Issue: 4
1998
Anxiolytic and anticonvulsant activity of a synthetic neuroactive steroid Co 3-0593.
Psychopharmacology, Volume: 134, Issue: 1
1997
Sequestration of gamma-aminobutyric acidA receptors on clathrin-coated vesicles during chronic benzodiazepine administration in vivo.
The Journal of pharmacology and experimental therapeutics, Volume: 283, Issue: 1
1997
Benzodiazepine receptor binding following chronic treatment with naloxone, morphine and met-enkephalin in normal rats.
Brain research, May-28, Volume: 612, Issue: 1-2
1993
Effects of Kamikihito, a traditional Chinese medicine, on neurotransmitter receptor binding in the aged rat brain determined by in vitro autoradiography (2): changes in GABAA and benzodiazepine receptor binding.
Japanese journal of pharmacology, Volume: 66, Issue: 1
1994
Chronic administration of the antidepressants phenelzine, desipramine, clomipramine, or maprotiline decreases binding to 5-hydroxytryptamine2A receptors without affecting benzodiazepine binding sites in rat brain.
Cellular and molecular neurobiology, Volume: 15, Issue: 3
1995
Chronic administration of the GABA-transaminase inhibitor ethanolamine O-sulphate leads to up-regulation of GABA binding sites.
Biochemical pharmacology, Feb-01, Volume: 33, Issue: 3
1984
Biochemical and functional alterations of central GABA receptors during chronic estradiol treatment.
Brain research, Nov-21, Volume: 279, Issue: 1-2
1983
[Effect of chronic use of antidepressants on the state of benzodiazepine receptors in the mouse brain].
Biulleten' eksperimental'noi biologii i meditsiny, Volume: 96, Issue: 7
1983
Decreased number of benzodiazepine receptors in frontal cortex of rat brain following long-term lithium treatment.
Journal of neurochemistry, Volume: 41, Issue: 1
1983
Decreased benzodiazepine receptor density in rat cerebellum following neurotoxic doses of phenytoin.
Journal of neurochemistry, Volume: 35, Issue: 6
1980
Flunitrazepam: a review of its pharmacological properties and therapeutic use.
Drugs, Volume: 20, Issue: 5
1980
Chronic administration of diazepam downregulates adenosine receptors in the rat brain.
Pharmacology, biochemistry, and behavior, Volume: 30, Issue: 2
1988
Superoxide dismutase treatment reduces [3H]flunitrazepam affinity in cortex and hippocampus of the rat.
Neuroscience letters, Jul-31, Volume: 102, Issue: 2-3
1989
Effects of picrotoxin treatment on GABAA receptor supramolecular complexes in rat brain.
Journal of neurochemistry, Volume: 52, Issue: 4
1989
Benzodiazepines and the mammalian retina. I. Autoradiographic localisation of receptor sites and the lack of effect on the electroretinogram.
Brain research, Feb-13, Volume: 479, Issue: 2
1989
Chronic benzodiazepine antagonist treatment and its withdrawal upregulates components of GABA-benzodiazepine receptor ionophore complex in cerebral cortex of rat.
Brain research, Jun-11, Volume: 519, Issue: 1-2
1990
Effect of acute and chronic administration of buspirone on serotonin and benzodiazepine receptor subtypes in the rat brain: an autoradiographic study.
Neuropharmacology, Volume: 30, Issue: 4
1991
Effects of lorazepam tolerance and withdrawal on GABAA receptor-operated chloride channels.
The Journal of pharmacology and experimental therapeutics, Volume: 261, Issue: 2
1992
Dietary choline supplementation increases the density of nicotine binding sites in rat brain.
The Journal of pharmacology and experimental therapeutics, Volume: 262, Issue: 3
1992
A controlled long-term study of flunitrazepam, nitrazepam and placebo, with special regard to withdrawal effects.
Acta psychiatrica Scandinavica, Volume: 58, Issue: 1
1978
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Pharmacokinetics (29)

ArticleYear
Rapid Drop-Volume Electrochemical Detection of the "Date Rape" Drug Flunitrazepam in Spirits Using a Screen-Printed Sensor in a Dry-Reagent Format.
Sensors (Basel, Switzerland), Sep-11, Volume: 20, Issue: 18
2020
Lab-on-a-screen-printed electrochemical cell for drop-volume voltammetric screening of flunitrazepam in untreated, undiluted alcoholic and soft drinks.
Biosensors & bioelectronics, May-01, Volume: 132
2019
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Drug metabolism and disposition: the biological fate of chemicals, Volume: 36, Issue: 7
2008
Prediction of metabolic clearance using fresh human hepatocytes: comparison with cryopreserved hepatocytes and hepatic microsomes for five benzodiazepines.
Xenobiotica; the fate of foreign compounds in biological systems, Volume: 38, Issue: 4
2008
Acute zolpidem administration produces pharmacodynamic and receptor occupancy changes at similar doses.
Pharmacology, biochemistry, and behavior, Volume: 83, Issue: 1
2006
Development and validation of a gas chromatography-mass spectrometry method for the simultaneous determination of buprenorphine, flunitrazepam and their metabolites in rat plasma: application to the pharmacokinetic study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, Aug-05, Volume: 807, Issue: 2
2004
Pharmacokinetics and tolerance of flunitrazepam in neonates and in infants.
Clinical pharmacology and therapeutics, Volume: 66, Issue: 2
1999
Effects of ketoconazole on triazolam pharmacokinetics, pharmacodynamics and benzodiazepine receptor binding in mice.
The Journal of pharmacology and experimental therapeutics, Volume: 285, Issue: 1
1998
Midazolam and flunitrazepam: pharmacokinetics and effects on night time respiration and body movements in the elderly.
International journal of clinical pharmacology, therapy, and toxicology, Volume: 31, Issue: 4
1993
Pharmacokinetics of cetirizine in 2- to 6-year-old children.
International journal of clinical pharmacology and therapeutics, Volume: 33, Issue: 6
1995
A time-dependent volume of distribution term used to describe linear concentration-time profiles.
Journal of pharmacokinetics and biopharmaceutics, Volume: 11, Issue: 4
1983
Pharmacokinetics of benzodiazepines: metabolic pathways and plasma level profiles.
Current medical research and opinion, Volume: 8 Suppl 4
1984
A pharmacokinetic and pharmacodynamic study of flunitrazepam.
International journal of clinical pharmacology, therapy, and toxicology, Volume: 20, Issue: 12
1982
Use of benzodiazepines during pregnancy, labour and lactation, with particular reference to pharmacokinetic considerations.
Drugs, Volume: 23, Issue: 5
1982
Effect of age on the pharmacokinetics and sedative of flunitrazepam.
International journal of clinical pharmacology, therapy, and toxicology, Volume: 19, Issue: 9
1981
[Clinical pharmacokinetics of flunitrazepam (Nacrozep) in intensive care patient (preliminary results)].
Annales de l'anesthesiologie francaise, Volume: 22, Issue: 2
1981
[Clinical pharmacokinetics of midazolam, flunitrazepam and diazepam (author's transl)].
Anasthesie, Intensivtherapie, Notfallmedizin, Volume: 16, Issue: 3
1981
Pharmacokinetics of flunitrazepam in rats studied by a radioreceptor assay.
Pharmacological research communications, Volume: 17, Issue: 8
1985
Flunitrazepam and lormetazepam do not affect the pharmacokinetics of the benzodiazepine antagonist Ro 15-1788.
British journal of clinical pharmacology, Volume: 19, Issue: 1
1985
Effect of after-dinner administration on the pharmacokinetics of oral flunitrazepam and loprazolam.
Journal of clinical pharmacology, Volume: 28, Issue: 4
1988
Dynamical dosage regimen calculations in linear pharmacokinetics.
Computers and biomedical research, an international journal, Volume: 21, Issue: 3
1988
INTRAV and ORAL: BASIC interactive computer programs for estimating pharmacokinetic parameters.
Journal of pharmaceutical sciences, Volume: 74, Issue: 2
1985
A new criterion for selection of pharmacokinetic multiexponential equations.
Journal of pharmaceutical sciences, Volume: 77, Issue: 9
1988
Comparison of sublingual and oral prazepam in normal subjects. II. Pharmacokinetic and pharmacodynamic data.
Neuropsychobiology, Volume: 19, Issue: 4
1988
Drug interactions and clinical pharmacokinetics of flumazenil.
European journal of anaesthesiology. Supplement, Volume: 2
1988
Pharmacokinetics of flunitrazepam following single dose oral administration in liver disease patients compared with healthy volunteers.
Fundamental & clinical pharmacology, Volume: 4, Issue: 6
1990
Does preoperative anxiety influence gastric fluid volume and acidity?
Anesthesia and analgesia, Volume: 75, Issue: 1
1992
Pharmacokinetics of flunitrazepam following single- and multiple-dose oral administration to healthy human subjects.
Journal of pharmacokinetics and biopharmaceutics, Volume: 6, Issue: 4
1978
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Bioavailability (9)

ArticleYear
[Comparative study of drug efficacy and drug additives between generic drugs and original drugs].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, Volume: 127, Issue: 12
2007
Do subtype-selective gamma-aminobutyric acid A receptor modulators have a reduced propensity to induce physical dependence in mice?
The Journal of pharmacology and experimental therapeutics, Volume: 316, Issue: 3
2006
QSAR model for drug human oral bioavailability.
Journal of medicinal chemistry, Jun-29, Volume: 43, Issue: 13
2000
Anxiolytic and anticonvulsant activity of a synthetic neuroactive steroid Co 3-0593.
Psychopharmacology, Volume: 134, Issue: 1
1997
Midazolam and flunitrazepam: pharmacokinetics and effects on night time respiration and body movements in the elderly.
International journal of clinical pharmacology, therapy, and toxicology, Volume: 31, Issue: 4
1993
Pharmacokinetics of flunitrazepam in rats studied by a radioreceptor assay.
Pharmacological research communications, Volume: 17, Issue: 8
1985
Peptide derivatives as prodrugs.
Biochemical Society transactions, Volume: 14, Issue: 2
1986
Bioavailability from various galenic formulations of flunitrazepam.
Arzneimittel-Forschung, Volume: 27, Issue: 12
1977
Determination of flunitrazepam, desmethylflunitrazepam and clonazepam in plasma by gas liquid chromatography with an internal standard.
Arzneimittel-Forschung, Volume: 27, Issue: 2
1977
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Dosage (84)

ArticleYear
Prevalence and clinical correlates of flunitrazepam-related complex sleep behaviors.
Psychiatry and clinical neurosciences, Volume: 71, Issue: 3
2017
Superadditive effects of ethanol and flunitrazepam: implications of using immunopharmacotherapy as a therapeutic.
Molecular pharmaceutics, Dec-06, Volume: 7, Issue: 6
2010
A prospective naturalistic multicentre study of intravenous medications in behavioural emergencies: haloperidol versus flunitrazepam.
Psychiatry research, Jun-30, Volume: 178, Issue: 1
2010
Chemical submission: results of 4-year French inquiry.
International journal of legal medicine, Volume: 123, Issue: 3
2009
Buprenorphine alters desmethylflunitrazepam disposition and flunitrazepam toxicity in rats.
Toxicological sciences : an official journal of the Society of Toxicology, Volume: 106, Issue: 1
2008
Differentiating the discriminative stimulus effects of gamma-hydroxybutyrate and ethanol in a three-choice drug discrimination procedure in rats.
Pharmacology, biochemistry, and behavior, Volume: 89, Issue: 4
2008
Modulation of human risky decision making by flunitrazepam.
Psychopharmacology, Volume: 196, Issue: 2
2008
[Flunitrazepam and driving ability].
Fortschritte der Neurologie-Psychiatrie, Volume: 72, Issue: 9
2004
Deposition of [3H]cocaine, [3H]nicotine, and [3H]flunitrazepam in mouse hair melanosomes after systemic administration.
Drug metabolism and disposition: the biological fate of chemicals, Volume: 27, Issue: 6
1999
[Gamma-hydroxybutyrate for treatment of alcohol withdrawal syndrome in intensive care patients. A comparison between with two symptom-oriented therapeutic concepts].
Der Anaesthesist, Volume: 48, Issue: 2
1999
Long-term changes in brain following continuous phencyclidine administration: an autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4-3H(N)-TCP, and AMPA receptor ligands.
Pharmacology & toxicology, Volume: 84, Issue: 1
1999
Impairment of memory and plasma flunitrazepam levels.
Psychopharmacology, Volume: 140, Issue: 2
1998
Anxiogenic-like effects of Tagetes minuta L essential oil on T-maze and tonic immobility behaviour in domestic chicks.
Fundamental & clinical pharmacology, Volume: 12, Issue: 4
1998
Dentate gyrus basket cell GABAA receptors are blocked by Zn2+ via changes of their desensitization kinetics: an in situ patch-clamp and single-cell PCR study.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Apr-01, Volume: 18, Issue: 7
1998
Rohypnol ("roofies") control of drug discrimination: effect of coadministered ethanol or flumenazil.
Pharmacology, biochemistry, and behavior, Volume: 59, Issue: 1
1998
Development of tolerance in mice to the sedative effects of the neuroactive steroid minaxolone following chronic exposure.
Pharmacology, biochemistry, and behavior, Volume: 58, Issue: 1
1997
GABAA receptor binding in the aging rat inferior colliculus.
Neuroscience, Volume: 73, Issue: 2
1996
Loreclezole modulates [35S]t-butylbicyclophosphorothionate and [3H]flunitrazepam binding via a distinct site on the GABAA receptor complex.
European journal of pharmacology, Apr-04, Volume: 300, Issue: 1-2
1996
[Oral premedication with clorazepate dipotassium. Comparison with oral premedication with flunitrazepam and intramuscular premedication with promethazine, pethidine and atropine in adults].
Der Anaesthesist, Volume: 42, Issue: 1
1993
Bicuculline-produced regional differences in the modulation of 35S-TBPS binding by GABA, pentobarbital and diazepam in mouse cerebellum and cortex.
The Journal of pharmacology and experimental therapeutics, Volume: 264, Issue: 2
1993
Reconstitution of purified GABAA receptors: ligand binding and chloride transporting properties.
Biochemistry, Jan-25, Volume: 33, Issue: 3
1994
Amnesic effects and subjective ratings during repeated dosing of flunitrazepam to healthy volunteers.
European journal of clinical pharmacology, Volume: 45, Issue: 3
1993
Midlatency auditory evoked potentials and explicit and implicit memory in patients undergoing cardiac surgery.
Anesthesiology, Volume: 80, Issue: 3
1994
[Effect of sedation on otoacoustic emissions].
Laryngo- rhino- otologie, Volume: 73, Issue: 6
1994
Characterization of the GABA-induced current in frog pituitary melanotrophs.
Journal of neuroendocrinology, Volume: 6, Issue: 1
1994
A system for testing the development and reversal of anticonvulsant tolerance to benzodiazepines in mice.
Epilepsy research, Volume: 16, Issue: 1
1993
Modulation by extracellular pH of the activity of GABAA receptors on rat cerebellum granule cells.
Neuroscience, Volume: 61, Issue: 4
1994
Lindane administration to the rat induces modifications in the regional cerebral binding of [3H]Muscimol, [3H]-flunitrazepam, and t-[35S]butylbicyclophosphorothionate: an autoradiographic study.
Journal of neurochemistry, Volume: 60, Issue: 5
1993
Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects.
Planta medica, Volume: 61, Issue: 3
1995
Pharmacokinetics of cetirizine in 2- to 6-year-old children.
International journal of clinical pharmacology and therapeutics, Volume: 33, Issue: 6
1995
NMDA-mediated modulation of gamma-aminobutyric acid type A receptor function in cerebellar granule neurons.
The Journal of neuroscience : the official journal of the Society for Neuroscience, Volume: 15, Issue: 11
1995
Application of radioreceptor assay of benzodiazepines for toxicology.
Acta pharmacologica et toxicologica, Volume: 50, Issue: 3
1982
A new method for the evaluation of benzodiazepines based on their ability to block muscimol-induced myoclonic jerks in mice.
Psychopharmacology, Volume: 75, Issue: 3
1981
[Hyperbaric spinal anesthesia with 0.5 percent bupivacaine in traumatological and orthopedic surgery].
Cahiers d'anesthesiologie, Volume: 32, Issue: 8
1984
[High-dose thalamonal-rohypnol for premedication. A randomized double-blind study].
Der Anaesthesist, Volume: 33, Issue: 10
1984
Modern trends in the investigation of new hypnotics in anaesthesia.
Psychopharmacology. Supplementum, Volume: 1
1984
Efficacy and tolerance of zopiclone in insomniac geriatric patients.
Pharmacology, Volume: 27 Suppl 2
1983
Multiple embryonic benzodiazepine binding sites: evidence for functionality.
Life sciences, Nov-21, Volume: 33, Issue: 21
1983
Effects of agents which enhance GABA-mediated neurotransmission on licking conflict in rats and exploration in mice.
European journal of pharmacology, Sep-10, Volume: 83, Issue: 1-2
1982
Pharmacokinetics of benzodiazepines: metabolic pathways and plasma level profiles.
Current medical research and opinion, Volume: 8 Suppl 4
1984
Highly specific and sensitive method for the determination of flunitrazepam in plasma by electron capture gas-liquid chromatography.
Arzneimittel-Forschung, Volume: 32, Issue: 3
1982
Triazolam (Halcion) versus flunitrazepam (Rohypnol) against midwinter insomnia in Northern Norway.
Acta psychiatrica Scandinavica, Volume: 64, Issue: 3
1981
[Clinical pharmacokinetics of midazolam, flunitrazepam and diazepam (author's transl)].
Anasthesie, Intensivtherapie, Notfallmedizin, Volume: 16, Issue: 3
1981
[Intraoperative cardiac arrest and postoperative coma secondary to flunitrazepam (Rohypnol) (author's transl)].
Anasthesie, Intensivtherapie, Notfallmedizin, Volume: 15, Issue: 5
1980
Flunitrazepam: a review of its pharmacological properties and therapeutic use.
Drugs, Volume: 20, Issue: 5
1980
Total intravenous anaesthesia: a technique using flunitrazepam, ketamine, muscle relaxants and controlled ventilation of the lung.
Anaesthesia, Volume: 35, Issue: 3
1980
Decreased convulsant potency of picrotoxin and pentetrazol and enhanced [3H]flunitrazepam cortical binding following stressful manipulations in rats.
Brain research, May-12, Volume: 189, Issue: 2
1980
Flunitrazepam and lormetazepam do not affect the pharmacokinetics of the benzodiazepine antagonist Ro 15-1788.
British journal of clinical pharmacology, Volume: 19, Issue: 1
1985
A useful tool for predicting the clinical effects of hypnotics in humans: averaged photopalpebral reflex.
Methods and findings in experimental and clinical pharmacology, Volume: 8, Issue: 5
1986
Effect of increasing amounts of epinephrine during isobaric bupivacaine spinal anesthesia in elderly patients.
Anesthesia and analgesia, Volume: 66, Issue: 9
1987
[Ketamine/flunitrazepam--an alternative intravenous anesthesia].
Der Anaesthesist, Volume: 35, Issue: 10
1986
Dynamical dosage regimen calculations in linear pharmacokinetics.
Computers and biomedical research, an international journal, Volume: 21, Issue: 3
1988
[Extracorporeal shockwave lithotripsy in sedation-analgesia].
Der Urologe. Ausg. A, Volume: 27, Issue: 2
1988
[Efficacy and safety of the benzodiazepine antagonist RO 15-1788].
Der Anaesthesist, Volume: 37, Issue: 7
1988
[Effect of lormetazepam, triazolam and flunitrazepam on rapid eye movements, K-complexes and sleep spindles in normal probands].
EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete, Volume: 18, Issue: 2
1987
[Effectiveness of the benzodiazepine antagonist Ro 15-1788 following anesthesia induced by flunitrazepam].
Anasthesie, Intensivtherapie, Notfallmedizin, Volume: 21, Issue: 6
1986
Diazepam, flunitrazepam and midazolam for elective endoscopy--a comparative study.
Middle East journal of anaesthesiology, Volume: 9, Issue: 6
1988
gamma-Aminobutyric acid receptor-regulated 36Cl- flux in mouse cortical slices.
The Journal of pharmacology and experimental therapeutics, Volume: 241, Issue: 2
1987
In vivo [3H]flunitrazepam binding: imaging of receptor regulation.
The Journal of pharmacology and experimental therapeutics, Volume: 238, Issue: 2
1986
Diurnal variations of benzodiazepine binding in rat cerebral cortex: disruption by pinealectomy.
Journal of pineal research, Volume: 3, Issue: 2
1986
3H-dopamine uptake and 3H-haloperidol binding in striatum after administration of methyl mercury to rats.
Archives of toxicology, Volume: 57, Issue: 4
1985
Benzodiazepine receptor photoaffinity labeling: correlation of function with binding.
European journal of pharmacology, Apr-02, Volume: 110, Issue: 2
1985
Anterograde and retrograde amnesia after lormetazepam and flunitrazepam.
Psychopharmacology series, Volume: 6
1988
Saccadic eye movements as a measure of residual effects: temazepam compared with other hypnotics.
Acta psychiatrica Scandinavica. Supplementum, Volume: 332
1986
Benzodiazepine antagonist Ro 15-1788 in self-poisoning. Diagnostic and therapeutic use.
Archives of internal medicine, Volume: 145, Issue: 4
1985
Benzodiazepine interactions with GABAA receptors on chick ciliary ganglion neurons.
Molecular pharmacology, Volume: 34, Issue: 2
1988
Clinical pharmacology of flumazenil.
European journal of anaesthesiology. Supplement, Volume: 2
1988
GABA receptors on the cell-body membrane of an identified insect motor neuron.
Proceedings of the Royal Society of London. Series B, Biological sciences, Jan-22, Volume: 232, Issue: 1269
1988
Daytime wakefulness following a bedtime oral dose of zolpidem 20 mg, flunitrazepam 2 mg and placebo.
British journal of clinical pharmacology, Volume: 30, Issue: 3
1990
Inter- and intraindividual variability in the concentration-effect (sedation) relationship of flunitrazepam.
British journal of clinical pharmacology, Volume: 31, Issue: 1
1991
[Beta activation following the intravenous administration of benzodiazepines and the specific antagonist flumazenil (Ro 15-1788)].
EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete, Volume: 21, Issue: 1
1990
A comparison of the physical dependence inducing properties of flunitrazepam and diazepam.
Pharmacology, biochemistry, and behavior, Volume: 39, Issue: 2
1991
Binding of benzodiazepines and some major metabolites at their sites in normal human frontal cortex in vitro.
The Journal of pharmacology and experimental therapeutics, Volume: 256, Issue: 3
1991
High-dose flunitrazepam anesthesia.
Medical hypotheses, Volume: 38, Issue: 4
1992
Effect of kainic acid administration to prepubescent rats on cholinergic markers in selected brain regions of adult rats.
Neurochemistry international, Volume: 21, Issue: 3
1992
[Action of central depressants on the nitrous oxide anesthesia (author's transl)].
Der Anaesthesist, Volume: 24, Issue: 6
1975
Increased specific binding of [3H]diazepam in rat brain following chronic diazepam administration.
Cell biology international reports, Volume: 3, Issue: 2
1979
[Anaesthesia with flunitrazepam (rohypnol) and fentanyl for geriatric patients (author's transl)].
Der Anaesthesist, Volume: 26, Issue: 4
1977
Intravenous flunitrazepam as an anesthetic induction agent.
Anaesthesia and intensive care, Volume: 4, Issue: 4
1976
Reduction of psychotomimetic side effects of Ketalar (ketamine) by Rohypnol (flunitrazepam). A randomized, double-blind trial.
Acta anaesthesiologica Scandinavica, Volume: 20, Issue: 2
1976
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Interactions (5)

ArticleYear
Nanoparticle-assisted MALDI-TOF MS combined with seed-layer surface preparation for quantification of small molecules.
Analytica chimica acta, Jul-04, Volume: 697, Issue: 1-2
2011
UDP-glucuronosyltransferases and clinical drug-drug interactions.
Pharmacology & therapeutics, Volume: 106, Issue: 1
2005
Flunitrazepam (Rohypnol) abuse in combination with alcohol causes premeditated, grievous violence in male juvenile offenders.
The journal of the American Academy of Psychiatry and the Law, Volume: 27, Issue: 1
1999
Anaesthesia for coronary artery bypass grafting: opioid-analgesia combined with either flunitrazepam, propofol or isoflurane.
Acta anaesthesiologica Scandinavica, Volume: 37, Issue: 6
1993
Drug interactions and clinical pharmacokinetics of flumazenil.
European journal of anaesthesiology. Supplement, Volume: 2
1988
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]