Page last updated: 2024-11-04

nadolol

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Nadolol is a non-selective beta blocker used primarily to treat hypertension (high blood pressure) and angina (chest pain). It works by blocking the effects of adrenaline (epinephrine) and noradrenaline (norepinephrine) on the heart and blood vessels, which helps to lower blood pressure and reduce heart rate. Nadolol is synthesized through a multi-step process involving the reaction of a substituted phenol with an alkyl halide followed by a series of reactions to introduce the desired functional groups. It was first synthesized in the 1970s and has been extensively studied for its therapeutic effects. Nadolol is important because it can be used to prevent heart attacks, strokes, and other cardiovascular events in high-risk patients. It is also used to treat other conditions such as migraine headaches and essential tremor. Nadolol is studied to understand its mechanism of action, its effectiveness in various clinical settings, and its potential side effects. Its non-selective nature and long duration of action make it a suitable option for patients who require continuous blood pressure control.'

Cross-References

ID SourceID
PubMed CID4411
CHEMBL ID521606
CHEBI ID91985
SCHEMBL ID1134022
MeSH IDM0014411

Synonyms (53)

Synonym
OPREA1_423217
LS-14606
MLS002154017
BRD-A97454584-001-02-0
2,3-naphthalenediol, 5-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,2,3,4-tetrahydro-
einecs 255-706-3
nadololum [inn-latin]
2,3-naphthalenediol, 5-(3-((1,1-dimethylethyl)amino)-2-hydroxypropoxy)-1,2,3,4-tetrahydro-
2,3-cis-1,2,3,4-tetrahydro-5-((2-hydroxy-3-tert-butylamino)propoxy)-2,3-naphthalenediol
hsdb 6532
ccris 1048
5-(3-((1,1-dimethylethyl)amino)-2-hydroxypropoxy)-1,2,3,4-tetrahydro-2,3-naphthalenediol
sq 11725
BSPBIO_000715
PRESTWICK3_000818
BPBIO1_000787
AB00513927
NCGC00095034-01
NCGC00095034-02
MLS001333998
smr000304369
MLS001333999
AKOS001483026
L000661
HMS1607C05
5-[3-(tert-butylamino)-2-hydroxypropoxy]-1,2,3,4-tetrahydronaphthalene-2,3-diol
CHEMBL521606 ,
NCGC00018270-03
NCGC00021623-02
NCGC00018270-02
HMS2097D17
HMS2231K13
nsc 758430
nadolol [usan:usp:inn:ban:jan]
FT-0630624
HMS3372J01
HMS3369O18
AKOS021983735
SCHEMBL1134022
5-[3-(tert-butylamino)-2-hydroxypropoxy]-1,2,3,4-tetrahydro-2,3-naphthalenediol, cis-
VWPOSFSPZNDTMJ-UHFFFAOYSA-N
corzide (salt/mix)
bdbm50237606
SR-01000106183-1
sr-01000106183
CHEBI:91985
5-(2-hydroxy-3-t-butylamino-propoxy)tetralin-2,3-diol
Q27163784
CS-0012452
ZB1799
HY-B0804
EN300-295998
5-(3-(tert-butylamino)-2-hydroxypropoxy)-1,2,3,4-tetrahydronaphthalene-2,3-diol
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
tetralinsCompounds containing a tetralin skeleton.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (8)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
IDH1Homo sapiens (human)Potency5.17350.005210.865235.4813AID686970
importin subunit beta-1 isoform 1Homo sapiens (human)Potency70.79465.804836.130665.1308AID540263
snurportin-1Homo sapiens (human)Potency70.79465.804836.130665.1308AID540263
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
ATP-binding cassette sub-family C member 3Homo sapiens (human)IC50 (µMol)133.00000.63154.45319.3000AID1473740
Multidrug resistance-associated protein 4Homo sapiens (human)IC50 (µMol)133.00000.20005.677410.0000AID1473741
Bile salt export pumpHomo sapiens (human)IC50 (µMol)422.66670.11007.190310.0000AID1443980; AID1449628; AID1473738
Canalicular multispecific organic anion transporter 1Homo sapiens (human)IC50 (µMol)133.00002.41006.343310.0000AID1473739
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Beta-2 adrenergic receptorHomo sapiens (human)Kd0.03570.00000.62888.9130AID1626022; AID1626023
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (73)

Processvia Protein(s)Taxonomy
xenobiotic metabolic processATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
bile acid and bile salt transportATP-binding cassette sub-family C member 3Homo sapiens (human)
glucuronoside transportATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transportATP-binding cassette sub-family C member 3Homo sapiens (human)
transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
leukotriene transportATP-binding cassette sub-family C member 3Homo sapiens (human)
monoatomic anion transmembrane transportATP-binding cassette sub-family C member 3Homo sapiens (human)
transport across blood-brain barrierATP-binding cassette sub-family C member 3Homo sapiens (human)
prostaglandin secretionMultidrug resistance-associated protein 4Homo sapiens (human)
cilium assemblyMultidrug resistance-associated protein 4Homo sapiens (human)
platelet degranulationMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic metabolic processMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
bile acid and bile salt transportMultidrug resistance-associated protein 4Homo sapiens (human)
prostaglandin transportMultidrug resistance-associated protein 4Homo sapiens (human)
urate transportMultidrug resistance-associated protein 4Homo sapiens (human)
glutathione transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
cAMP transportMultidrug resistance-associated protein 4Homo sapiens (human)
leukotriene transportMultidrug resistance-associated protein 4Homo sapiens (human)
monoatomic anion transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
export across plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
transport across blood-brain barrierMultidrug resistance-associated protein 4Homo sapiens (human)
guanine nucleotide transmembrane transportMultidrug resistance-associated protein 4Homo sapiens (human)
fatty acid metabolic processBile salt export pumpHomo sapiens (human)
bile acid biosynthetic processBile salt export pumpHomo sapiens (human)
xenobiotic metabolic processBile salt export pumpHomo sapiens (human)
xenobiotic transmembrane transportBile salt export pumpHomo sapiens (human)
response to oxidative stressBile salt export pumpHomo sapiens (human)
bile acid metabolic processBile salt export pumpHomo sapiens (human)
response to organic cyclic compoundBile salt export pumpHomo sapiens (human)
bile acid and bile salt transportBile salt export pumpHomo sapiens (human)
canalicular bile acid transportBile salt export pumpHomo sapiens (human)
protein ubiquitinationBile salt export pumpHomo sapiens (human)
regulation of fatty acid beta-oxidationBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transportBile salt export pumpHomo sapiens (human)
bile acid signaling pathwayBile salt export pumpHomo sapiens (human)
cholesterol homeostasisBile salt export pumpHomo sapiens (human)
response to estrogenBile salt export pumpHomo sapiens (human)
response to ethanolBile salt export pumpHomo sapiens (human)
xenobiotic export from cellBile salt export pumpHomo sapiens (human)
lipid homeostasisBile salt export pumpHomo sapiens (human)
phospholipid homeostasisBile salt export pumpHomo sapiens (human)
positive regulation of bile acid secretionBile salt export pumpHomo sapiens (human)
regulation of bile acid metabolic processBile salt export pumpHomo sapiens (human)
transmembrane transportBile salt export pumpHomo sapiens (human)
diet induced thermogenesisBeta-2 adrenergic receptorHomo sapiens (human)
regulation of sodium ion transportBeta-2 adrenergic receptorHomo sapiens (human)
transcription by RNA polymerase IIBeta-2 adrenergic receptorHomo sapiens (human)
receptor-mediated endocytosisBeta-2 adrenergic receptorHomo sapiens (human)
smooth muscle contractionBeta-2 adrenergic receptorHomo sapiens (human)
cell surface receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
activation of transmembrane receptor protein tyrosine kinase activityBeta-2 adrenergic receptorHomo sapiens (human)
adenylate cyclase-modulating G protein-coupled receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
endosome to lysosome transportBeta-2 adrenergic receptorHomo sapiens (human)
response to coldBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of protein kinase A signalingBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of bone mineralizationBeta-2 adrenergic receptorHomo sapiens (human)
heat generationBeta-2 adrenergic receptorHomo sapiens (human)
negative regulation of multicellular organism growthBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of MAPK cascadeBeta-2 adrenergic receptorHomo sapiens (human)
bone resorptionBeta-2 adrenergic receptorHomo sapiens (human)
negative regulation of G protein-coupled receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIBeta-2 adrenergic receptorHomo sapiens (human)
negative regulation of smooth muscle contractionBeta-2 adrenergic receptorHomo sapiens (human)
brown fat cell differentiationBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of mini excitatory postsynaptic potentialBeta-2 adrenergic receptorHomo sapiens (human)
adrenergic receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of protein serine/threonine kinase activityBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of cold-induced thermogenesisBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of autophagosome maturationBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of lipophagyBeta-2 adrenergic receptorHomo sapiens (human)
cellular response to amyloid-betaBeta-2 adrenergic receptorHomo sapiens (human)
response to psychosocial stressBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of cAMP-dependent protein kinase activityBeta-2 adrenergic receptorHomo sapiens (human)
positive regulation of AMPA receptor activityBeta-2 adrenergic receptorHomo sapiens (human)
norepinephrine-epinephrine-mediated vasodilation involved in regulation of systemic arterial blood pressureBeta-2 adrenergic receptorHomo sapiens (human)
xenobiotic metabolic processCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
negative regulation of gene expressionCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bile acid and bile salt transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bilirubin transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
heme catabolic processCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic export from cellCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transepithelial transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
leukotriene transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
monoatomic anion transmembrane transportCanalicular multispecific organic anion transporter 1Homo sapiens (human)
transport across blood-brain barrierCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transport across blood-brain barrierCanalicular multispecific organic anion transporter 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (32)

Processvia Protein(s)Taxonomy
ATP bindingATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type xenobiotic transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
glucuronoside transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type bile acid transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATP hydrolysis activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATPase-coupled transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
xenobiotic transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
icosanoid transmembrane transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
ABC-type transporter activityATP-binding cassette sub-family C member 3Homo sapiens (human)
guanine nucleotide transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
protein bindingMultidrug resistance-associated protein 4Homo sapiens (human)
ATP bindingMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type xenobiotic transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
prostaglandin transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
urate transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
purine nucleotide transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type bile acid transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
efflux transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
15-hydroxyprostaglandin dehydrogenase (NAD+) activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATP hydrolysis activityMultidrug resistance-associated protein 4Homo sapiens (human)
glutathione transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATPase-coupled transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
xenobiotic transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
ABC-type transporter activityMultidrug resistance-associated protein 4Homo sapiens (human)
protein bindingBile salt export pumpHomo sapiens (human)
ATP bindingBile salt export pumpHomo sapiens (human)
ABC-type xenobiotic transporter activityBile salt export pumpHomo sapiens (human)
bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
canalicular bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transporter activityBile salt export pumpHomo sapiens (human)
ABC-type bile acid transporter activityBile salt export pumpHomo sapiens (human)
ATP hydrolysis activityBile salt export pumpHomo sapiens (human)
amyloid-beta bindingBeta-2 adrenergic receptorHomo sapiens (human)
beta2-adrenergic receptor activityBeta-2 adrenergic receptorHomo sapiens (human)
protein bindingBeta-2 adrenergic receptorHomo sapiens (human)
adenylate cyclase bindingBeta-2 adrenergic receptorHomo sapiens (human)
potassium channel regulator activityBeta-2 adrenergic receptorHomo sapiens (human)
identical protein bindingBeta-2 adrenergic receptorHomo sapiens (human)
protein homodimerization activityBeta-2 adrenergic receptorHomo sapiens (human)
protein-containing complex bindingBeta-2 adrenergic receptorHomo sapiens (human)
norepinephrine bindingBeta-2 adrenergic receptorHomo sapiens (human)
protein bindingCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATP bindingCanalicular multispecific organic anion transporter 1Homo sapiens (human)
organic anion transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type xenobiotic transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
bilirubin transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type glutathione S-conjugate transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATP hydrolysis activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATPase-coupled transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
xenobiotic transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ATPase-coupled inorganic anion transmembrane transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
ABC-type transporter activityCanalicular multispecific organic anion transporter 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (24)

Processvia Protein(s)Taxonomy
plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
basal plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
basolateral plasma membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
membraneATP-binding cassette sub-family C member 3Homo sapiens (human)
nucleolusMultidrug resistance-associated protein 4Homo sapiens (human)
Golgi apparatusMultidrug resistance-associated protein 4Homo sapiens (human)
plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
membraneMultidrug resistance-associated protein 4Homo sapiens (human)
basolateral plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
apical plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
platelet dense granule membraneMultidrug resistance-associated protein 4Homo sapiens (human)
external side of apical plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
plasma membraneMultidrug resistance-associated protein 4Homo sapiens (human)
basolateral plasma membraneBile salt export pumpHomo sapiens (human)
Golgi membraneBile salt export pumpHomo sapiens (human)
endosomeBile salt export pumpHomo sapiens (human)
plasma membraneBile salt export pumpHomo sapiens (human)
cell surfaceBile salt export pumpHomo sapiens (human)
apical plasma membraneBile salt export pumpHomo sapiens (human)
intercellular canaliculusBile salt export pumpHomo sapiens (human)
intracellular canaliculusBile salt export pumpHomo sapiens (human)
recycling endosomeBile salt export pumpHomo sapiens (human)
recycling endosome membraneBile salt export pumpHomo sapiens (human)
extracellular exosomeBile salt export pumpHomo sapiens (human)
membraneBile salt export pumpHomo sapiens (human)
nucleusBeta-2 adrenergic receptorHomo sapiens (human)
lysosomeBeta-2 adrenergic receptorHomo sapiens (human)
endosomeBeta-2 adrenergic receptorHomo sapiens (human)
early endosomeBeta-2 adrenergic receptorHomo sapiens (human)
Golgi apparatusBeta-2 adrenergic receptorHomo sapiens (human)
plasma membraneBeta-2 adrenergic receptorHomo sapiens (human)
endosome membraneBeta-2 adrenergic receptorHomo sapiens (human)
membraneBeta-2 adrenergic receptorHomo sapiens (human)
apical plasma membraneBeta-2 adrenergic receptorHomo sapiens (human)
clathrin-coated endocytic vesicle membraneBeta-2 adrenergic receptorHomo sapiens (human)
neuronal dense core vesicleBeta-2 adrenergic receptorHomo sapiens (human)
receptor complexBeta-2 adrenergic receptorHomo sapiens (human)
plasma membraneBeta-2 adrenergic receptorHomo sapiens (human)
plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
cell surfaceCanalicular multispecific organic anion transporter 1Homo sapiens (human)
apical plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
intercellular canaliculusCanalicular multispecific organic anion transporter 1Homo sapiens (human)
apical plasma membraneCanalicular multispecific organic anion transporter 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (37)

Assay IDTitleYearJournalArticle
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1626024Binding affinity to inactive/G protein-uncoupled human beta2-AR by immobilized artificial membrane HPLC analysis2016Journal of medicinal chemistry, 06-23, Volume: 59, Issue:12
Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.
AID1886476Apparent permeability from apical to basolateral side in human Caco-2 cells at 20 uM measured after 2 hrs by LC-MS/MS analysis
AID1911471Stability in human plasma assessed as compound remaining measured upto 1440 mins by HPLC analysis2022Journal of medicinal chemistry, 06-09, Volume: 65, Issue:11
Design, Synthesis, and Biological Evaluations of DOT1L Peptide Mimetics Targeting the Protein-Protein Interactions between DOT1L and MLL-AF9/MLL-ENL.
AID1626023Displacement of [3H]DHA from inactive/G protein-uncoupled human beta2-AR expressed in CHO cell membranes assessed as intrinsic Kd by liquid scintillation counting2016Journal of medicinal chemistry, 06-23, Volume: 59, Issue:12
Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.
AID1473741Inhibition of human MRP4 overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID1918193Dissociation constant, pKa of the compound2022Journal of medicinal chemistry, 11-10, Volume: 65, Issue:21
Identification of Organic Anion Transporter 2 Inhibitors: Screening, Structure-Based Analysis, and Clinical Drug Interaction Risk Assessment.
AID1474167Liver toxicity in human assessed as induction of drug-induced liver injury by measuring verified drug-induced liver injury concern status2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
AID1626022Displacement of [3H]DHA from inactive/G protein-uncoupled human beta2-AR expressed in CHO cell membranes by liquid scintillation counting2016Journal of medicinal chemistry, 06-23, Volume: 59, Issue:12
Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.
AID1918194Lipophilicity, log D of the compound2022Journal of medicinal chemistry, 11-10, Volume: 65, Issue:21
Identification of Organic Anion Transporter 2 Inhibitors: Screening, Structure-Based Analysis, and Clinical Drug Interaction Risk Assessment.
AID1911470Apparent permeability across apical to basolateral side in human Caco-2 cells2022Journal of medicinal chemistry, 06-09, Volume: 65, Issue:11
Design, Synthesis, and Biological Evaluations of DOT1L Peptide Mimetics Targeting the Protein-Protein Interactions between DOT1L and MLL-AF9/MLL-ENL.
AID1539621Apparent permeability from apical side to basolateral side in human Caco2 cells at 2 uM incubated for 2 hrs in presence of 10 uM pgp/bcrp inhibitor GF120918 by LC-MS/MS analysis2019Journal of medicinal chemistry, 09-12, Volume: 62, Issue:17
Targeting GNE Myopathy: A Dual Prodrug Approach for the Delivery of
AID1588919Apparent permeability in human Caco2 cells by LC analysis2019Bioorganic & medicinal chemistry, 09-01, Volume: 27, Issue:17
Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase.
AID1443980Inhibition of human BSEP expressed in fall armyworm sf9 cell plasma membrane vesicles assessed as reduction in vesicle-associated [3H]-taurocholate transport preincubated for 10 mins prior to ATP addition measured after 15 mins in presence of [3H]-tauroch2010Toxicological sciences : an official journal of the Society of Toxicology, Dec, Volume: 118, Issue:2
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
AID1769825Permeability of the compound across basolateral to apical membrane in human Caco-2 cells incubated for 2 hrs by LC-MS/MS analysis2021Journal of medicinal chemistry, 08-12, Volume: 64, Issue:15
Discovery, Structure-Activity Relationships, and In Vivo Evaluation of Novel Aryl Amides as Brain Penetrant Adaptor Protein 2-Associated Kinase 1 (AAK1) Inhibitors for the Treatment of Neuropathic Pain.
AID1449628Inhibition of human BSEP expressed in baculovirus transfected fall armyworm Sf21 cell membranes vesicles assessed as reduction in ATP-dependent [3H]-taurocholate transport into vesicles incubated for 5 mins by Topcount based rapid filtration method2012Drug metabolism and disposition: the biological fate of chemicals, Dec, Volume: 40, Issue:12
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
AID1473740Inhibition of human MRP3 overexpressed in Sf9 insect cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 10 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID1473738Inhibition of human BSEP overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-taurocholate in presence of ATP measured after 15 to 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID1769826Permeability of the compound across apical to basolateral membrane in human Caco-2 cells incubated for 2 hrs by LC-MS/MS analysis2021Journal of medicinal chemistry, 08-12, Volume: 64, Issue:15
Discovery, Structure-Activity Relationships, and In Vivo Evaluation of Novel Aryl Amides as Brain Penetrant Adaptor Protein 2-Associated Kinase 1 (AAK1) Inhibitors for the Treatment of Neuropathic Pain.
AID1473739Inhibition of human MRP2 overexpressed in Sf9 cell membrane vesicles assessed as uptake of [3H]-estradiol-17beta-D-glucuronide in presence of ATP and GSH measured after 20 mins by membrane vesicle transport assay2013Toxicological sciences : an official journal of the Society of Toxicology, Nov, Volume: 136, Issue:1
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
AID1862271Apparent permeability across apical to basolateral side in human Caco-2 cells at 2 uM measured after 2 hrs by LC-MS/MS analysis2022European journal of medicinal chemistry, Oct-05, Volume: 240Design, synthesis, and biological evaluation of novel double-winged galloyl derivatives as HIV-1 RNase H inhibitors.
AID1474166Liver toxicity in human assessed as induction of drug-induced liver injury by measuring severity class index2016Drug discovery today, Apr, Volume: 21, Issue:4
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (20)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (5.00)29.6817
2010's13 (65.00)24.3611
2020's6 (30.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 89.84

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be very strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index89.84 (24.57)
Research Supply Index3.04 (2.92)
Research Growth Index4.73 (4.65)
Search Engine Demand Index154.98 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (89.84)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (5.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other19 (95.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Clinical Trials (17)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
A Controlled Trial of Nadolol Plus Isosorbide Mononitrate vs. Carvedilol for the Prevention of Variceal Rebleeding [NCT01103154]Phase 4121 participants (Actual)Interventional2005-03-31Completed
N-of-1 Trials for Deprescribing Beta-blockers in HFpEF [NCT04767061]Phase 49 participants (Actual)Interventional2021-04-01Completed
A Randomized, Controlled Trial of Ligation Plus Nadolol Versus Nadolol Alone in the Prophylaxis of First Variceal Bleeding in Cirrhosis [NCT00921349]Phase 4140 participants (Actual)Interventional2004-12-31Completed
Association Between Angiotensin Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use and COVID-19 Severity and Mortality Among US Veterans [NCT04467931]22,213 participants (Actual)Observational2020-01-19Completed
Single-Dose Fed Bioequivalence Study of Nadolol/Bendroflumethiazide Tablets (80 mg/5 mg; Mylan) and Corzide® Tablets (80 mg/5 mg; King) in Healthy Volunteers [NCT00648297]Phase 142 participants (Actual)Interventional2006-08-31Completed
Single-Dose Fasting Bioequivalence Study of Nadolol/Bendroflumethiazide Tablets (80 mg/5 mg; Mylan) to Corzide® Tablets (80 mg/5 mg; King) in Healthy Volunteers [NCT00647660]Phase 166 participants (Actual)Interventional2006-07-31Completed
A Relative Bioavailability Study of Nadolol (1 x 80 mg) Tablets Under Fasting Conditions. [NCT00960245]Phase 134 participants (Actual)Interventional1994-07-31Completed
Drug and Non-Drug Treatment of Severe Migraine [NCT00910689]Phase 4232 participants (Actual)Interventional2001-07-31Completed
N-of-1 Trials for Deprescribing Beta-blockers in HFpEF [NCT04757584]Phase 49 participants (Actual)Interventional2021-04-01Completed
Secondary Prophylaxis of Gastrointestinal Bleeding in Cirrhotic Patients Using Thalidomide [NCT00787436]Phase 30 participants (Actual)Interventional2006-05-31Withdrawn
A Randomized Tril of Endoscopic Cyanoacrylate Obliteration vs. Nadolol [NCT00567216]Phase 4120 participants (Anticipated)Interventional2007-04-30Recruiting
Nadolol for Proliferating Infantile Hemangiomas: A Prospective Open Label Study With a Historical Control [NCT01010308]Phase 220 participants (Actual)Interventional2009-11-30Completed
Secondary Prophylaxis After Variceal Bleeding: Combined Treatment With Endoscopic Ligation and Nadolol Against Nadolol Associated With Mononitrate of Isosorbide or Prazosin According to Hemodynamic Response. [NCT00450164]Phase 450 participants Interventional2000-11-30Completed
An Open-Label, Dose-Escalating, Study to Evaluate the Safety, Efficacy and Tolerability of Oral Nadolol for the Treatment of Adults With Mild Asthma [NCT00670267]Phase 1/Phase 210 participants (Actual)Interventional2007-01-31Completed
[NCT01825122]Phase 2155 participants (Actual)Interventional2014-03-31Completed
[NCT01804218]Phase 260 participants (Anticipated)Interventional2013-03-31Active, not recruiting
Nadolol Versus Propranolol in Children With Infantile Hemangiomas: a Randomized, Controlled, Double-blinded Trial [NCT02505971]Phase 374 participants (Actual)Interventional2015-09-30Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Trial Outcomes

TrialOutcome
NCT00670267 (5) [back to overview]Change in Airway Hyper-reactivity Compared to Baseline (Change in PC20 Doubling Dose by Methacholine Challenge)
NCT00670267 (5) [back to overview]Change in Asthma Control Questionnaire (ACQ) Score Compared to Baseline
NCT00670267 (5) [back to overview]Mean Daily Dose at Study Termination Across Participants
NCT00670267 (5) [back to overview]Percent Change in FEV1% Predicted From Baseline to End of Study
NCT00670267 (5) [back to overview]Daily Dose at Study Termination Across Participants
NCT00910689 (6) [back to overview]Change in Number of Migraine Episodes Per 30 Days at Month 10.
NCT00910689 (6) [back to overview]Change in Number of Migraine Episodes Per 30 Days at Month 16.
NCT00910689 (6) [back to overview]Change in Quality of Life at Month 10
NCT00910689 (6) [back to overview]Change in Quality of Life at Month 16
NCT00910689 (6) [back to overview]Change in the Number of Migraine Days Per 30 Days at Month 10
NCT00910689 (6) [back to overview]Change in the Number of Migraine Days Per 30 Days at Month 16
NCT01825122 (1) [back to overview]Change From Baseline in the Average Number of Cigarettes Smoked Per Day
NCT04767061 (10) [back to overview]Change in Exercise Capacity When on Beta-blocker Versus When Off Beta-blocker, as Measured by Peak Oxygen Consumption (VO2) During Cardiopulmonary Exercise Test (CPET)
NCT04767061 (10) [back to overview]Change in Lower Extremity Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by the Balance Portion of a Modified Version of the Short Physical Performance Battery.
NCT04767061 (10) [back to overview]Change in Lower Extremity Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by the Chair Rise Portion of a Modified Version of the Short Physical Performance Battery.
NCT04767061 (10) [back to overview]Change in Lower Extremity Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by the Gait Speed Portion of a Modified Version of the Short Physical Performance Battery.
NCT04767061 (10) [back to overview]Change in Patient-reported Cognitive Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by Patient-Reported Outcome Measurement Information System-Short Form 6a (PROMIS SF-6a)
NCT04767061 (10) [back to overview]Change in Patient-reported Health Status When on Beta-blocker Versus When Off Beta-blocker, as Measured by Kansas City Cardiomyopathy Questionnaire (KCCQ-12)
NCT04767061 (10) [back to overview]Change in Patient-reported Health When on Beta-blocker Versus When Off Beta-blocker, as Measured by the EuroQol-5D Visual Analogue System (EQ-5D VAS)
NCT04767061 (10) [back to overview]Change in Patient-reported Sexual Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by Patient-Reported Outcome Measurement Information System-Sexual Function (PROMIS-Sexual Function)
NCT04767061 (10) [back to overview]Change in Physical Activity When on Beta-blocker Versus When Off Beta-blocker, as Measured by Step Count on Wearable Activity Monitoring Device
NCT04767061 (10) [back to overview]Change in Patient-reported Quality of Life When on Beta-blocker Versus When Off Beta-blocker, as Measured by Patient-Reported Outcome Measurement Information System-29 (PROMIS-29)

Change in Airway Hyper-reactivity Compared to Baseline (Change in PC20 Doubling Dose by Methacholine Challenge)

Bronchoprovocation assessment was done by doubling doses of methacholine in accordance with the methodology recommended by the American Thoracic Society in the official policy statement adopted by the ATS Board of Directors, July 1999 (Guidelines for Methacholine and Exercise Challenge Testing-1999). (NCT00670267)
Timeframe: Baseline to end of study (105 days)

Interventionmg/mL (Mean)
Open Label Treatment With Oral Nadolol1.8

[back to top]

Change in Asthma Control Questionnaire (ACQ) Score Compared to Baseline

In the E.F. Juniper Asthma Control Questionnaire, a lower number reflects better control of asthma symptoms. A positive change in ACQ score reflects a reduction in control compared to baseline; conversely, a negative change in ACQ score reflects an increase in control compared to baseline. The ACQ has 7 questions (the top scoring 5 symptoms, FEV1% pred. and daily rescue bronchodilator use). Patients are asked to recall how their asthma has been during the previous week and to respond to the symptom and bronchodilator use questions on a 7-point scale (0=no impairment, 6= maximum impairment). Clinic staff score the FEV1% predicted on a 7-point scale. The questions are equally weighted and the ACQ score is the mean of the 7 questions and therefore between 0 (totally controlled) and 6 (severely uncontrolled). (NCT00670267)
Timeframe: Baseline to end of study (105 days)

Interventionunits on a scale (Mean)
Open Label Treatment With Oral Nadolol0.3

[back to top]

Mean Daily Dose at Study Termination Across Participants

The outcome measure describes the mean daily dose achieved by the subjects at study termination. This data includes one subject who terminated early, having reached 2.5mgs and subsequently reducing to 1.25mgs prior to dropping out. (NCT00670267)
Timeframe: Baseline to end of study (105 days)

Interventionmg (Mean)
Open Label Treatment With Oral Nadolol29.6

[back to top]

Percent Change in FEV1% Predicted From Baseline to End of Study

(NCT00670267)
Timeframe: Baseline to end of study (105 days)

Interventionpercent change in FEV1% predicted (Mean)
Open Label Treatment With Oral Nadolol-5.9

[back to top]

Daily Dose at Study Termination Across Participants

The outcome measure describes the final daily dose achieved by the subjects in this study. The subjects described below who finished on less than the highest dose (i.e., 1.25, 5, and 10mgs) had all been down-titrated one dose (i.e., from 2.5, 10, and 20mgs) prior to completing the study on the dose reported. (NCT00670267)
Timeframe: Baseline to end of study (105 days)

Interventionparticipants (Number)
1.25mgs2.5mgs5.0mgs10.0mgs20mgs40mgs
Open Label Treatment With Oral Nadolol101107

[back to top]

Change in Number of Migraine Episodes Per 30 Days at Month 10.

Change in number of migraine episodes(with 24 hours pain free period required between episodes)per 30 days from OAT run-in (Month 1) to Month 10.Obtained from daily electronic diary. (NCT00910689)
Timeframe: Change from Month 1 to Month 10

InterventionNumber of Migraine episodes (Mean)
OAT + Placebo (PL)-2.1
OAT + Beta Blocker (Beta-B)-2.1
OAT + BMM + PL-2.2
OAT + BMM + Beta-B-3.3

[back to top]

Change in Number of Migraine Episodes Per 30 Days at Month 16.

Change in number of migraine episodes (with 24 hours pain free period required between episodes) per 30 days from OAT run-in (Month 1) to Month 16. Assessed by participant daily electronic diary. (NCT00910689)
Timeframe: Change from Month 1 to Month 16

InterventionNumber of Migraine Episodes (Mean)
OAT + Placebo (PL)-2.5
OAT + Beta Blocker (Beta-B)-2.5
OAT + BMM + PL-2.7
OAT + BMM + Beta-B-3.8

[back to top]

Change in Quality of Life at Month 10

Change in Migraine Specific Quality of Life Questionnaire (MSQL; Martin, et al., 2000: v 2.1) scores at Month 10 relative to OAT run-in (Month 1). The MSQL is a 14-item self-report measure that assesses the impact of migraine. The total score ranges from 14 to 84 with higher scores reflecting greater impairment. (NCT00910689)
Timeframe: Change from Month 1 to Month 10

InterventionScores on a scale (Mean)
OAT + Placebo (PL)-7.1
OAT + Beta Blocker (Beta-B)-7.1
OAT + BMM + PL-8.6
OAT + BMM + Beta-B-13.0

[back to top]

Change in Quality of Life at Month 16

Change in Migraine Specific Quality of Life Questionnaire (MSQL; Martin, et al., 2000: v 2.1) scores relative to OAT run-in. The MSQL is a 14-item self-report measure that assesses the impact of migraine. The total score ranges from 14 to 84 with higher scores reflecting greater impairment. (NCT00910689)
Timeframe: Change from Month 1 to Month 16

InterventionScores on a scale (Mean)
OAT + Placebo (PL)-8.8
OAT + Beta Blocker (Beta-B)-8.5
OAT + BMM + PL-9.6
OAT + BMM + Beta-B-15.2

[back to top]

Change in the Number of Migraine Days Per 30 Days at Month 10

Change in the number of days with migraine per 30 days at Month 10 relative to the OAT Run-in (Month 1). Obtained from daily electronic diary. (NCT00910689)
Timeframe: Change from Month 1 to Month 10

InterventionNumber of days (Mean)
OAT + Placebo (PL)-3.3
OAT + Beta Blocker (Beta-B)-3.9
OAT + BMM + PL-3.3
OAT + BMM + Beta-B-5.4

[back to top]

Change in the Number of Migraine Days Per 30 Days at Month 16

Change in the number of migraine days per 30 days at Month 16 relative to the OAT run-in (Month 1). Assessed by participant electronic diary. (NCT00910689)
Timeframe: Change form Month 1 to Month 16

InterventionNumber of Days (Mean)
OAT + Placebo (PL)-3.9
OAT + Beta Blocker (Beta-B)-4.5
OAT + BMM + PL-4.1
OAT + BMM + Beta-B-6.1

[back to top]

Change From Baseline in the Average Number of Cigarettes Smoked Per Day

(NCT01825122)
Timeframe: Baseline to end of treatment, up to 15 weeks

,
Interventionparticipants (Number)
≥ 70% Reduction from Baseline< 70% reduction from baseline
Active, Nadolol4528
Placebo3636

[back to top]

Change in Exercise Capacity When on Beta-blocker Versus When Off Beta-blocker, as Measured by Peak Oxygen Consumption (VO2) During Cardiopulmonary Exercise Test (CPET)

"Cardiopulmonary exercise testing (CPET) measures breath-by-breath oxygen production during symptom-limited exercise on a stationary bike. This permits the calculation of peak oxygen consumption (VO2). Percent predicted peak VO2 for body weight will also be calculated. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3 - 6 weeks. The outcome measure data is the mean of the data collected during the span of the outcome measure time frame." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this outcome measure is 6-weeks. This outcome was measured at the end of the first and second visit.

Interventionml/kg/min (Mean)
ON Beta Blockers10.0
OFF Beta Blockers11.4

[back to top]

Change in Lower Extremity Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by the Balance Portion of a Modified Version of the Short Physical Performance Battery.

"The Short Physical Performance Battery assesses gait speed, core strength when rising from a chair without using the upper extremities, and balance while standing without a cane or walker. The balance test portion of the SPPB assesses the subject's ability to stand unassisted without the use of a cane or walker. Balance test scores range from 0 - 4 with higher scores indicating better ability to stand unassisted. Our research team conducted the balance test according to SPPB standards. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3 - 6 weeks. The outcome measure data is the mean of the data collected during the span of the outcome measure time frame." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this outcome measure is 24-weeks. This outcome was measured at baseline and at each end of period visit.

Interventionscore on a scale (Mean)
ON Beta Blockers3.9
OFF Beta Blockers3.6

[back to top]

Change in Lower Extremity Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by the Chair Rise Portion of a Modified Version of the Short Physical Performance Battery.

"The Short Physical Performance Battery assesses gait speed, core strength when rising from a chair without using the upper extremities, and balance while standing without a cane or walker. The chair rise portion of the SPPB assesses core strength. When comparing the number of seconds it takes to complete 5 chair rises, quicker speeds indicate better core strength. Our research team has chosen on comparing the speed at which subjects were able to complete the test. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3 - 6 weeks. The outcome measure data is the mean of the data collected during the outcome measure time frame." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this outcome measure is 24-weeks. This outcome was measured at baseline and at each end of period visit.

Interventionseconds (Mean)
ON Beta Blockers16
OFF Beta Blockers15.1

[back to top]

Change in Lower Extremity Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by the Gait Speed Portion of a Modified Version of the Short Physical Performance Battery.

"The Short Physical Performance Battery assesses gait speed, core strength when rising from a chair without using the upper extremities, and balance while standing without a cane or walker. The gait speed portion of the SPPB assesses the subject's lower extremity function. When comparing the number of seconds it takes to complete the 4-meter gait speed test, quicker speeds indicate better lower extremity function. Our research team conducted the 4-meter gait speed test according to SPPB standards, but have chosen on comparing the speed at which subjects were able to complete the test. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3 - 6 weeks. The outcome measure data is the mean of the data collected during the span of the outcome measure time frame." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this outcome measure is 24-weeks. This outcome was measured at baseline and at each end of period visit.

Interventionseconds (Mean)
ON Beta Blockers4.3
OFF Beta Blockers4.6

[back to top]

Change in Patient-reported Cognitive Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by Patient-Reported Outcome Measurement Information System-Short Form 6a (PROMIS SF-6a)

"Patient-Reported Outcome Measurement Information System-Short Form 6a (PROMIS SF-6a) is a survey of patient-perceived cognitive deficits. Questions are ranked on a 5-point Likert scale, with higher scores indicating better cognitive function. Scores are mapped so the values follow a normal distribution with a population mean T-score of 50 and an SD of 10. Instead of having a min or max, the raw scores have been transformed into t-scores for comparison to a reference population (the US general population) with a mean of 50 and SD of 10. Scores lower than 50 indicate worse cognitive function compared to the US general population. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3-6 weeks. The outcome measure data is the mean of the data collected during the span of the measured time points." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this measure is 76-weeks (24-week max intervention phase,1-year follow-up phase). This outcome was measured at baseline, weekly, end of period and intervention visits, and during follow-up.

Interventionscore on a scale (Mean)
ON Beta Blockers53.8
OFF Beta Blockers52.4

[back to top]

Change in Patient-reported Health Status When on Beta-blocker Versus When Off Beta-blocker, as Measured by Kansas City Cardiomyopathy Questionnaire (KCCQ-12)

"The Kansas City Cardiomyopathy Questionnaire (KCCQ-12) is a heart failure-specific health status survey. Questions are ranked on 5- to 7-point Likert scales, with higher scores indicating better health status. KCCQ scores are scaled from 0 to 100 and frequently summarized in 25-point ranges, where scores represent health status as follows: 0 to 24: very poor to poor; 25 to 49: poor to fair; 50 to 74: fair to good; and 75 to 100: good to excellent. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3 - 6 weeks. The outcome measure data is the mean of the data collected during the span of the outcome measure time frame." (NCT04767061)
Timeframe: The max amount of time a subject could have been assessed for this measure is 76-weeks (24-week max intervention phase,1-year follow-up phase). This outcome was measured at baseline, bi-weekly, end of period and intervention visits, and during follow-up.

Interventionscore on a scale (Mean)
ON Beta Blockers58.7
OFF Beta Blockers66.0

[back to top]

Change in Patient-reported Health When on Beta-blocker Versus When Off Beta-blocker, as Measured by the EuroQol-5D Visual Analogue System (EQ-5D VAS)

"The EuroQol-5D Visual Analogue System (EQ-5D VAS) indicates patient-perceived health on a vertical visual analogue scale. The scale ranges from 0, indicating poorest health, to 100, indicating the best health. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3 - 6 weeks. The outcome measure data is the mean of the data collected during the span of the outcome measure time frame." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this outcome measure is 24-weeks. This outcome was measured at baseline and at each end of period visit.

Interventionscore on a scale (Mean)
ON Beta Blockers68.9
OFF Beta Blockers67.8

[back to top]

Change in Patient-reported Sexual Function When on Beta-blocker Versus When Off Beta-blocker, as Measured by Patient-Reported Outcome Measurement Information System-Sexual Function (PROMIS-Sexual Function)

"Patient-Reported Outcome Measurement Information System-Sexual Function (PROMIS-Sexual Function) measures self-reported sexual function and satisfaction. Questions are ranked on a 6-point Likert scale, with higher scores indicating poorer sexual function and satisfaction. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3 - 6 weeks. The outcome measure data is the mean of the data collected during the span of the outcome measure time frame. The score ranges from 0-10 with higher scores meaning worsened sexual function." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this measure is 76-weeks (24-week max intervention phase,1-year follow-up phase). This outcome was measured at baseline, end of period and intervention visits, and during follow-up.

Interventionscore on a scale (Mean)
ON Beta Blockers1.8
OFF Beta Blockers2.1

[back to top]

Change in Physical Activity When on Beta-blocker Versus When Off Beta-blocker, as Measured by Step Count on Wearable Activity Monitoring Device

"The wearable activity monitoring device measures daily step count. Due to the nature of N-of-1 trials, the duration of a subject's periods varies based on the subject's home dose of beta-blocker prior to enrollment, therefore, each subject's respective time period for the OFF and ON periods could range between 3 and 6 weeks. We will compare average step counts over 2-week periods, which will be the final 2 weeks of each period when subjects are either on their home (ON Beta Blockers) or minimally tolerated (OFF Beta Blockers) dose. The outcome measure data is the mean collected during the outcome measure time frame." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this outcome measure is 8-weeks (last 2 weeks of each period for up to 4 periods).

InterventionCount of Steps (Mean)
ON Beta Blockers2790.5
OFF Beta Blockers3167.3

[back to top]

Change in Patient-reported Quality of Life When on Beta-blocker Versus When Off Beta-blocker, as Measured by Patient-Reported Outcome Measurement Information System-29 (PROMIS-29)

"The PROMIS-29 assesses 7 domains with 4 questions with an additional pain intensity numeric rating scale. The patients' answers to the PROMIS-29 are scored from 1-5 (except for the pain numeric rating scale). The sum of the PROMIS-29 is the raw score transformed into a final T-score metric. Scores are mapped so that the values follow a normal distribution with a population mean T-score of 50 and an SD of 10. Instead of having a min or max, the PROMIS-29 raw scores have been transformed into t-scores for comparison to a reference population (the US general population) with a mean of 50 and SD of 10. Scores lower than 50 indicate worse health compared to the US general population. Due to the nature of N-of-1 trials, the duration of a subject's period varies based on the subject's home dose of beta-blocker before enrollment, therefore, each subject's respective period for the OFF and ON periods could range between 3 - 6 weeks. The values measured over the time points were averaged." (NCT04767061)
Timeframe: The maximum amount of time a subject could have been assessed for this measure is 76-weeks (24-week max intervention phase,1-year follow-up phase). This outcome was measured at baseline, weekly, end of period and intervention visits, and during follow-up.

,
Interventionscore on a scale (Mean)
Physical Health ComponentMental Health Component
OFF Beta Blockers40.047.9
ON Beta Blockers39.846.8

[back to top]