Page last updated: 2024-12-05

oxethazaine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Oxethazaine is a local anesthetic that was originally developed in the 1960s. It is a white, crystalline solid that is soluble in water. Oxethazaine is used to treat pain associated with a variety of conditions, including dental procedures, minor skin abrasions, and burns. It is also used to treat pain associated with labor and delivery. Oxethazaine is typically applied topically, but it can also be injected or taken orally. It works by blocking the transmission of pain signals to the brain. Oxethazaine is generally well-tolerated, but it can cause side effects such as dizziness, nausea, and vomiting. Oxethazaine is a relatively safe and effective local anesthetic. It is widely available and is commonly used in medical settings. It is being studied for its potential to treat a variety of other conditions, including chronic pain and cancer pain. Oxethazaine is a local anesthetic that is used to treat pain. It is typically applied topically, but it can also be injected or taken orally. It works by blocking the transmission of pain signals to the brain. Oxethazaine is generally well-tolerated, but it can cause side effects such as dizziness, nausea, and vomiting.'

Cross-References

ID SourceID
PubMed CID4621
CHEMBL ID127592
CHEBI ID31947
SCHEMBL ID24489
MeSH IDM0263350

Synonyms (128)

Synonym
MLS002154188
smr001233479
BRD-K56940463-001-05-4
DIVK1C_000715
KBIO1_000715
SPECTRUM_001657
BPBIO1_000237
PRESTWICK3_000058
PRESTWICK_767
NCGC00016382-01
cas-126-27-2
oxethazaine ,
oxetacaine
126-27-2
IDI1_000715
BSPBIO_000215
PRESTWICK2_000058
BSPBIO_003482
SPECTRUM5_001269
AB00052348
acetamide, 2,2'-((2-hydroxyethyl)imino)bis(n-(alpha,alpha-dimethylphenethyl)-n-methyl-
oxaethacainum
n,n-bis(n-methyl-n-phenyl-tert-butylacetamido)-beta-hydroxyethylamine
ccris 4692
brn 2404063
mucaine
fh 099
wy 806
oxetacainum [inn-latin]
betalgil
2,2'-((2-hydroxyethyl)imino)bis(n-(alpha,alpha-dimethylphenethyl)-n-methylacetamide)
oxetacaina [inn-spanish]
oxethacaine
einecs 204-780-5
acetamide, 2,2'-((2-hydroxyethyl)imino)bis(n-(1,1-dimethyl-2-phenylethyl)-n-methyl-
2-di(n-methyl-n-phenyl-tert-butyl-carbamoylmethyl)aminoethanol
oxethacaina [italian]
D01152
oxethazaine (jp17/usan)
oxetacaine (inn)
NCGC00095039-01
NCGC00095039-02
KBIO2_007273
KBIOGR_000803
KBIO2_004705
KBIO2_002137
KBIO3_002702
KBIOSS_002137
NINDS_000715
SPBIO_002173
SPECTRUM4_000202
SPBIO_002136
SPECTRUM3_001751
SPECTRUM2_001987
PRESTWICK0_000058
PRESTWICK1_000058
SPECTRUM1503279
2,2'-((2-hydroxyethyl)imino)bis(n-(1,1-dimethyl-2-phenylethyl)-n-methylacetamide)
NCGC00095039-03
HMS2093C15
CHEMBL127592 ,
chebi:31947 ,
nsc-758444
wy-806
strocain
HMS502D17
HMS1922A04
HMS1568K17
2-[2-hydroxyethyl-[2-[methyl-(2-methyl-1-phenylpropan-2-yl)amino]-2-oxoethyl]amino]-n-methyl-n-(2-methyl-1-phenylpropan-2-yl)acetamide
bdbm50017672
cid_4621
n-(1,1-dimethyl-2-phenyl-ethyl)-2-[{[(1,1-dimethyl-2-phenyl-ethyl)-methyl-carbamoyl]-methyl}-(2-hydroxy-ethyl)-amino]-n-methyl-acetamide
HMS2095K17
milzine
nsc 758444
unii-ip8qt76v17
oxetacaine [inn]
4-12-00-02822 (beilstein handbook reference)
oxethazaine [usan:jan]
ip8qt76v17 ,
pharmakon1600-01503279
nsc758444
dtxcid605818
dtxsid0025818 ,
tox21_110407
HMS2236A03
CCG-39525
NCGC00016382-04
NCGC00016382-03
NCGC00016382-02
FT-0603332
HMS3370M13
SCHEMBL24489
tox21_110407_1
NCGC00016382-07
oxethazaine [jan]
oxetacaine [who-dd]
2,2'-((2-hydroxyethyl)imino)bis(n-(.alpha.,.alpha.-dimethylphenethyl)-n-methylacetamide)
oxetacaine [mart.]
oxethazaine [mi]
oxethazaine [usan]
CS-4432
n-(1,1-dimethyl-2-phenyl-ethyl)-2-[[2-[(1,1-dimethyl-2-phenyl-ethyl)-methyl-amino]-2-oxo-ethyl]-(2-hydroxyethyl)amino]-n-methyl-acetamide
AKOS024284189
FTLDJPRFCGDUFH-UHFFFAOYSA-N
HY-B0955
AB00052348_09
AB00052348_08
J-005353
sr-05000001851
SR-05000001851-3
SR-05000001851-1
oxethazaine, analytical standard
acetamide, 2,2'-[(2-hydroxyethyl)imino]bis[n-(1,1-dimethyl-2-phenylethyl)-n-methyl-
SBI-0051816.P002
HMS3712K17
SW196906-3
DB12532
2,2'-(2-hydroxyethylazanediyl)bis(n-methyl-n-(2-methyl-1-phenylpropan-2-yl)acetamide)
BCP07626
Q2412605
BRD-K56940463-001-08-8
HMS3885P21
MS-28631
NCGC00016382-09
2-hydroxyethyliminobis(n-[alpha,alpha-dimethylphenethyl]-n-methylacetamide)
EN300-26506802
2-[(2-hydroxyethyl)({[methyl(2-methyl-1-phenylpropan-2-yl)carbamoyl]methyl})amino]-n-methyl-n-(2-methyl-1-phenylpropan-2-yl)acetamide

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

ExcerptRelevanceReference
" Oxethazaine shifted the carbachol dose-response curves to the right with suppression of maximal response."( Effect of procaine and oxethazaine on muscarinic receptors of parietal cells.
Kimura, N; Miwa, T; Miyazawa, M; Muramatsu, S; Suzuki, T; Tani, N; Watanabe, Y, 1997
)
1.52
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
amino acid amideAn amide of an amino acid formed formally by conversion of the carboxy group to a carboxamido group.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (60)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Beta-lactamaseEscherichia coli K-12Potency19.95260.044717.8581100.0000AID485341
glp-1 receptor, partialHomo sapiens (human)Potency28.18380.01846.806014.1254AID624417
15-lipoxygenase, partialHomo sapiens (human)Potency2.51190.012610.691788.5700AID887
phosphopantetheinyl transferaseBacillus subtilisPotency39.81070.141337.9142100.0000AID1490
RAR-related orphan receptor gammaMus musculus (house mouse)Potency28.22630.006038.004119,952.5996AID1159521; AID1159523
Fumarate hydrataseHomo sapiens (human)Potency10.00000.00308.794948.0869AID1347053
TDP1 proteinHomo sapiens (human)Potency8.92500.000811.382244.6684AID686978; AID686979
GLI family zinc finger 3Homo sapiens (human)Potency16.78550.000714.592883.7951AID1259369; AID1259392
apical membrane antigen 1, AMA1Plasmodium falciparum 3D7Potency3.16230.707912.194339.8107AID720542
hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)Homo sapiens (human)Potency7.94330.00137.762544.6684AID914; AID915
thyroid stimulating hormone receptorHomo sapiens (human)Potency19.95260.001318.074339.8107AID926
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency8.79620.01237.983543.2770AID1346984; AID1645841
retinoic acid nuclear receptor alpha variant 1Homo sapiens (human)Potency29.84930.003041.611522,387.1992AID1159552; AID1159555
retinoid X nuclear receptor alphaHomo sapiens (human)Potency24.62300.000817.505159.3239AID1159527; AID1159531
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency29.84930.001530.607315,848.9004AID1224848; AID1224849; AID1259403
pregnane X nuclear receptorHomo sapiens (human)Potency5.64180.005428.02631,258.9301AID1346982; AID1346985
GVesicular stomatitis virusPotency15.48710.01238.964839.8107AID1645842
cytochrome P450 2D6Homo sapiens (human)Potency1.38030.00108.379861.1304AID1645840
polyproteinZika virusPotency10.00000.00308.794948.0869AID1347053
activating transcription factor 6Homo sapiens (human)Potency25.37350.143427.612159.8106AID1159516; AID1159519
v-jun sarcoma virus 17 oncogene homolog (avian)Homo sapiens (human)Potency18.33460.057821.109761.2679AID1159526; AID1159528
nuclear receptor subfamily 1, group I, member 2Rattus norvegicus (Norway rat)Potency11.22020.10009.191631.6228AID1346983
cytochrome P450 2D6 isoform 1Homo sapiens (human)Potency3.16230.00207.533739.8107AID891
cytochrome P450 2C19 precursorHomo sapiens (human)Potency12.58930.00255.840031.6228AID899
potassium voltage-gated channel subfamily H member 2 isoform dHomo sapiens (human)Potency5.01190.01789.637444.6684AID588834
thyroid hormone receptor beta isoform 2Rattus norvegicus (Norway rat)Potency11.66130.000323.4451159.6830AID743065; AID743067
heat shock protein beta-1Homo sapiens (human)Potency23.70830.042027.378961.6448AID743210
importin subunit beta-1 isoform 1Homo sapiens (human)Potency1.45815.804836.130665.1308AID540253
snurportin-1Homo sapiens (human)Potency1.45815.804836.130665.1308AID540253
GTP-binding nuclear protein Ran isoform 1Homo sapiens (human)Potency1.45815.804816.996225.9290AID540253
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency89.12510.050127.073689.1251AID588590
gemininHomo sapiens (human)Potency0.14130.004611.374133.4983AID624297
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency23.87700.031610.279239.8107AID884; AID885
lamin isoform A-delta10Homo sapiens (human)Potency0.04470.891312.067628.1838AID1487
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Polyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)Potency3.98110.316212.765731.6228AID881
Interferon betaHomo sapiens (human)Potency22.58020.00339.158239.8107AID1347407; AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency15.48710.01238.964839.8107AID1645842
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Histamine H2 receptorCavia porcellus (domestic guinea pig)Potency3.98110.00638.235039.8107AID881
Spike glycoproteinSevere acute respiratory syndrome-related coronavirusPotency35.48130.009610.525035.4813AID1479145
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
GABA theta subunitRattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency15.48710.01238.964839.8107AID1645842
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency23.87701.000012.224831.6228AID885
cytochrome P450 2C9, partialHomo sapiens (human)Potency15.48710.01238.964839.8107AID1645842
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency0.84920.060110.745337.9330AID485367
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
ubiquitin-conjugating enzyme E2 NHomo sapiens (human)IC50 (µMol)20.00000.873010.721978.4000AID493155
Bile salt export pumpHomo sapiens (human)IC50 (µMol)10.00000.11007.190310.0000AID1449628
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (88)

Processvia Protein(s)Taxonomy
lipid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
phospholipid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
apoptotic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell population proliferationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of macrophage derived foam cell differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonic acid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell migrationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
prostate gland developmentPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
regulation of epithelial cell differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of chemokine productionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of peroxisome proliferator activated receptor signaling pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of keratinocyte differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell cyclePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of growthPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
hepoxilin biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
endocannabinoid signaling pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cannabinoid biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipoxin A4 biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleic acid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipid oxidationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipoxygenase pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
fatty acid metabolic processBile salt export pumpHomo sapiens (human)
bile acid biosynthetic processBile salt export pumpHomo sapiens (human)
xenobiotic metabolic processBile salt export pumpHomo sapiens (human)
xenobiotic transmembrane transportBile salt export pumpHomo sapiens (human)
response to oxidative stressBile salt export pumpHomo sapiens (human)
bile acid metabolic processBile salt export pumpHomo sapiens (human)
response to organic cyclic compoundBile salt export pumpHomo sapiens (human)
bile acid and bile salt transportBile salt export pumpHomo sapiens (human)
canalicular bile acid transportBile salt export pumpHomo sapiens (human)
protein ubiquitinationBile salt export pumpHomo sapiens (human)
regulation of fatty acid beta-oxidationBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transportBile salt export pumpHomo sapiens (human)
bile acid signaling pathwayBile salt export pumpHomo sapiens (human)
cholesterol homeostasisBile salt export pumpHomo sapiens (human)
response to estrogenBile salt export pumpHomo sapiens (human)
response to ethanolBile salt export pumpHomo sapiens (human)
xenobiotic export from cellBile salt export pumpHomo sapiens (human)
lipid homeostasisBile salt export pumpHomo sapiens (human)
phospholipid homeostasisBile salt export pumpHomo sapiens (human)
positive regulation of bile acid secretionBile salt export pumpHomo sapiens (human)
regulation of bile acid metabolic processBile salt export pumpHomo sapiens (human)
transmembrane transportBile salt export pumpHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (31)

Processvia Protein(s)Taxonomy
iron ion bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
calcium ion bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
protein bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipid bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleate 13S-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonate 8(S)-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonate 15-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleate 9S-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
protein bindingBile salt export pumpHomo sapiens (human)
ATP bindingBile salt export pumpHomo sapiens (human)
ABC-type xenobiotic transporter activityBile salt export pumpHomo sapiens (human)
bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
canalicular bile acid transmembrane transporter activityBile salt export pumpHomo sapiens (human)
carbohydrate transmembrane transporter activityBile salt export pumpHomo sapiens (human)
ABC-type bile acid transporter activityBile salt export pumpHomo sapiens (human)
ATP hydrolysis activityBile salt export pumpHomo sapiens (human)
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (32)

Processvia Protein(s)Taxonomy
nucleusPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cytosolPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cytoskeletonPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
plasma membranePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
adherens junctionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
focal adhesionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
membranePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
extracellular exosomePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
basolateral plasma membraneBile salt export pumpHomo sapiens (human)
Golgi membraneBile salt export pumpHomo sapiens (human)
endosomeBile salt export pumpHomo sapiens (human)
plasma membraneBile salt export pumpHomo sapiens (human)
cell surfaceBile salt export pumpHomo sapiens (human)
apical plasma membraneBile salt export pumpHomo sapiens (human)
intercellular canaliculusBile salt export pumpHomo sapiens (human)
intracellular canaliculusBile salt export pumpHomo sapiens (human)
recycling endosomeBile salt export pumpHomo sapiens (human)
recycling endosome membraneBile salt export pumpHomo sapiens (human)
extracellular exosomeBile salt export pumpHomo sapiens (human)
membraneBile salt export pumpHomo sapiens (human)
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
virion membraneSpike glycoproteinSevere acute respiratory syndrome-related coronavirus
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (56)

Assay IDTitleYearJournalArticle
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1745855NCATS anti-infectives library activity on the primary C. elegans qHTS viability assay2023Disease models & mechanisms, 03-01, Volume: 16, Issue:3
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
AID1745854NCATS anti-infectives library activity on HEK293 viability as a counter-qHTS vs the C. elegans viability qHTS2023Disease models & mechanisms, 03-01, Volume: 16, Issue:3
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
AID205268Inhibition of binding of Batrachotoxinin [3H]BTX-B to high affinity sites on voltage dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex at 10 uM1985Journal of medicinal chemistry, Mar, Volume: 28, Issue:3
[3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
AID588212Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID588211Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in humans2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID205267Inhibition of binding of Batrachotoxinin [3H]BTX-B to high affinity sites on voltage dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex1985Journal of medicinal chemistry, Mar, Volume: 28, Issue:3
[3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
AID1449628Inhibition of human BSEP expressed in baculovirus transfected fall armyworm Sf21 cell membranes vesicles assessed as reduction in ATP-dependent [3H]-taurocholate transport into vesicles incubated for 5 mins by Topcount based rapid filtration method2012Drug metabolism and disposition: the biological fate of chemicals, Dec, Volume: 40, Issue:12
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
AID588213Literature-mined compound from Fourches et al multi-species drug-induced liver injury (DILI) dataset, effect in non-rodents2010Chemical research in toxicology, Jan, Volume: 23, Issue:1
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (69)

TimeframeStudies, This Drug (%)All Drugs %
pre-199024 (34.78)18.7374
1990's9 (13.04)18.2507
2000's8 (11.59)29.6817
2010's20 (28.99)24.3611
2020's8 (11.59)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 58.17

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be very strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index58.17 (24.57)
Research Supply Index4.36 (2.92)
Research Growth Index4.62 (4.65)
Search Engine Demand Index92.52 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (58.17)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials7 (10.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies2 (2.86%)4.05%
Observational0 (0.00%)0.25%
Other61 (87.14%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Clinical Trials (1)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Clinical Trial to Assess the Efficacy of Fixed Combination Product Tepilta® in the Treatment of Radiation-induced Oesophagitis Compared to Its Active Ingredients Oxetacaine and Antacids, and to Placebo [NCT01336530]Phase 340 participants (Actual)Interventional2011-04-30Terminated(stopped due to The study stopped prematurely due to and administrative reasons, not based on grounds of safety.)
[information is prepared from clinicaltrials.gov, extracted Sep-2024]