Page last updated: 2024-12-10

4-aminocrotonic acid

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID5310987
CHEMBL ID33086
SCHEMBL ID232135
SCHEMBL ID489325
MeSH IDM0155831

Synonyms (62)

Synonym
(e)-4-amino-but-2-enoic acid
BPBIO1_000683
EU-0101145
(e)-4-amino-2-butenoic acid
BIOMOL-NT_000233
LOPAC0_001145
PDSP1_000613
PDSP2_000610
SPECTRUM5_001675
4 aminocrotonic acid
BSPBIO_002528
NCGC00024485-03
NCGC00024485-05
SPECTRUM1502123
NCGC00024485-02
NCGC00024485-04
NCGC00024485-06
4-aminocrotonic acid
trans-4-aminocrotonic acid
25747-40-4
taca
T 1694
NCGC00024485-07
4-amino-but-2-enoic acid
4-aminobut-2-enoic acid
bdbm50087271
(e)-4-amino-but-2-enoic acid (taca)
38090-53-8
CHEMBL33086 ,
t-4-aminocrotonic acid (taca)
(e)-4-aminobut-2-enoic acid
HMS3263F11
dtxsid8045648 ,
tox21_110902
dtxcid6025648
cas-38090-53-8
CCG-39246
2-butenoic acid, 4-amino-
LP01145
SCHEMBL232135
AKOS022632601
tox21_110902_1
NCGC00024485-08
tox21_501145
NCGC00261830-01
SCHEMBL489325
trans-4-aminocrotonicacid
sr-01000075646
SR-01000075646-1
SR-01000075646-3
2-butenoic acid, 4-amino-, (2e)-
SDCCGSBI-0051112.P002
NCGC00024485-11
unii-s2r6r1i2mp
MS-22730
4-trans-aminocrotonic acid
S2R6R1I2MP ,
HY-100800
(2e)-4-aminobut-2-enoic acid
CS-0020447
EN300-188085
EN300-1448586

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (13)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
acetylcholinesteraseHomo sapiens (human)Potency0.77620.002541.796015,848.9004AID1347398
thioredoxin reductaseRattus norvegicus (Norway rat)Potency42.28410.100020.879379.4328AID488772; AID588456
Fumarate hydrataseHomo sapiens (human)Potency4.46680.00308.794948.0869AID1347053
AR proteinHomo sapiens (human)Potency29.84930.000221.22318,912.5098AID1259381
progesterone receptorHomo sapiens (human)Potency29.84930.000417.946075.1148AID1346784; AID1347036
polyproteinZika virusPotency4.46680.00308.794948.0869AID1347053
arylsulfatase AHomo sapiens (human)Potency0.84921.069113.955137.9330AID720538
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency89.12510.035520.977089.1251AID504332
Bloom syndrome protein isoform 1Homo sapiens (human)Potency8.91250.540617.639296.1227AID2364; AID2528
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency8.49210.060110.745337.9330AID485368
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Gamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)Kd0.60000.60001.15001.7000AID71409
Gamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)EC50 (µMol)0.48000.26911.09214.6000AID406570; AID71413; AID71419
Gamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)Kd0.60000.60001.53332.3000AID71409
Gamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)EC50 (µMol)0.40000.40001.70003.0000AID71532
Gamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)Kd0.60000.60001.23331.7000AID71409
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (9)

Processvia Protein(s)Taxonomy
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
modulation of chemical synaptic transmissionGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
signal transductionGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
gamma-aminobutyric acid signaling pathwayGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
chemical synaptic transmissionGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
visual perceptionGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
regulation of membrane potentialGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
chloride transmembrane transportGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (9)

Processvia Protein(s)Taxonomy
GABA-A receptor activityGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
protein domain specific bindingGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
protein domain specific bindingGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
identical protein bindingGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
protein-containing complex bindingGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
GABA-A receptor activityGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
protein domain specific bindingGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
GABA-gated chloride ion channel activityGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
chloride channel activityGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
neurotransmitter receptor activityGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (11)

Processvia Protein(s)Taxonomy
cellular_componentGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
postsynaptic membraneGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit rho-3Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
presynaptic membraneGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
postsynaptic membraneGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
glutamatergic synapseGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit rho-1Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
postsynaptic membraneGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
GABA-ergic synapseGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
chloride channel complexGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
synapseGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
GABA-A receptor complexGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
neuron projectionGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
transmembrane transporter complexGamma-aminobutyric acid receptor subunit rho-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (63)

Assay IDTitleYearJournalArticle
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588349qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay
AID1347049Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot screen2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347045Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot counterscreen GloSensor control cell line2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347410qHTS for inhibitors of adenylyl cyclases using a fission yeast platform: a pilot screen against the NCATS LOPAC library2019Cellular signalling, 08, Volume: 60A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347050Natriuretic polypeptide receptor (hNpr2) antagonism - Pilot subtype selectivity assay2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347059CD47-SIRPalpha protein protein interaction - Alpha assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347058CD47-SIRPalpha protein protein interaction - HTRF assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID588378qHTS for Inhibitors of ATXN expression: Validation
AID1347405qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS LOPAC collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID504836Inducers of the Endoplasmic Reticulum Stress Response (ERSR) in human glioma: Validation2002The Journal of biological chemistry, Apr-19, Volume: 277, Issue:16
Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347057CD47-SIRPalpha protein protein interaction - LANCE assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID71413Partial agonist activity against human rho-1 subunit GABA-C receptor expressed in Xenopus oocytes2000Journal of medicinal chemistry, Apr-20, Volume: 43, Issue:8
GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology.
AID22614Maximal rate constant was determined1986Journal of medicinal chemistry, Oct, Volume: 29, Issue:10
Inactivation of gamma-aminobutyric acid aminotransferase by (S,E)-4-amino-5-fluoropent-2-enoic acid and effect on the enzyme of (E)-3-(1-aminocyclopropyl)-2-propenoic acid.
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID71409Agonist activity against Gamma-aminobutyric acid type C (GABA-C) receptor derived from bovine retinal RNA expressed in Xenopus oocytes2000Journal of medicinal chemistry, Apr-20, Volume: 43, Issue:8
GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology.
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID71532Partial agonist activity against homomeric rho-2 subunit GABA-C receptor expressed in Xenopus oocytes2000Journal of medicinal chemistry, Apr-20, Volume: 43, Issue:8
GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology.
AID71419Partial agonist activity against homomeric rho-1 subunit GABA-C receptor expressed in Xenopus oocytes2000Journal of medicinal chemistry, Apr-20, Volume: 43, Issue:8
GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology.
AID406570Agonist activity at human GABAc Rho1 receptor expressed in Xenopus oocytes assessed as whole cell current production by two electrode voltage clamp method2008Journal of medicinal chemistry, Jul-10, Volume: 51, Issue:13
Novel gamma-aminobutyric acid rho1 receptor antagonists; synthesis, pharmacological activity and structure-activity relationships.
AID1463972Agonist activity at Heaemonchus contortus UNC-49B/C GABAA receptor expressed in Xenopus laevis oocytes by two-electrode voltage-clamp method2017Bioorganic & medicinal chemistry letters, 09-15, Volume: 27, Issue:18
Efficient synthesis of the GABA
AID521220Inhibition of neurosphere proliferation of mouse neural precursor cells by MTT assay2007Nature chemical biology, May, Volume: 3, Issue:5
Chemical genetics reveals a complex functional ground state of neural stem cells.
AID18295Michaelis-Menten constant was determined1986Journal of medicinal chemistry, Oct, Volume: 29, Issue:10
Inactivation of gamma-aminobutyric acid aminotransferase by (S,E)-4-amino-5-fluoropent-2-enoic acid and effect on the enzyme of (E)-3-(1-aminocyclopropyl)-2-propenoic acid.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID1159550Human Phosphogluconate dehydrogenase (6PGD) Inhibitor Screening2015Nature cell biology, Nov, Volume: 17, Issue:11
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (59)

TimeframeStudies, This Drug (%)All Drugs %
pre-19902 (3.39)18.7374
1990's17 (28.81)18.2507
2000's15 (25.42)29.6817
2010's18 (30.51)24.3611
2020's7 (11.86)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 11.35

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index11.35 (24.57)
Research Supply Index4.11 (2.92)
Research Growth Index5.46 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (11.35)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews4 (6.67%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other56 (93.33%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]