Page last updated: 2024-12-11

b 43

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

RK-24466 : A member of the class of pyrrolopyrimidines that is 7H-pyrrolo[2,3-d]pyrimidine substituted by amino, 4-phenoxyphenyl, and cyclopentyl groups at positions 4, 5 and 7, respectively. It is a potent inhibitor of Lck that inhibits Lck (64-509) and LckCD isoforms (IC50 of less than 1 and 2 nM, respectively). [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID6603792
CHEMBL ID47940
CHEBI ID180499
SCHEMBL ID378454
MeSH IDM0061030

Synonyms (68)

Synonym
7-cyclopentyl-5-(4-phenoxyphenyl)-7h-pyrrolo[2,3-d]pyrimidin-4-ylamine
smr001230675
MLS002153184
rk-24466
rk 24466
213743-31-8
rk24466
kin001-051
7-cyclopentyl-5-(4-phenoxyphenyl)-7h-pyrrolo[2,3-d]pyrimidin-4-amine
kin 001-51
CHEBI:180499
EU-0100450
7-cyclopentyl-5-(4-phenoxyphenyl)-7h-pyrrolo[2,3-d]pyrimidin-4-ylamine, >=98% (hplc)
NCGC00015280-01 ,
lopac-c-8863
LOPAC0_000450
7-cyclopentyl-5-(4-phenoxy)phenyl-7h-pyrrolo[2,3-d]pyrimidin-4-ylamine
NCGC00093866-01
NCGC00093866-02
NCGC00015280-02
C 8863
NCGC00015280-04
bdbm50092228
7-cyclopentyl-5-(4-phenoxy-phenyl)-7h-pyrrolo[2,3-d]pyrimidin-4-ylamine
CHEMBL47940 ,
HMS3229G15
4-amino-5-(4-phenoxyphenyl)-7h-pyrrolo[2,3-d]pyrimidin-7-yl-cyclopentane
B43 ,
7-cyclopentyl-5-(4-phenoxyphenyl)pyrrolo[2,3-d]pyrimidin-4-amine
HMS3261I22
CCG-204542
HMS2232E04
NCGC00015280-05
NCGC00015280-03
LP00450
3VRY
gtpl6003
HMS3371C06
3GEN
tox21_500450
NCGC00261135-01
SCHEMBL378454
DTXSID90424958
HY-108318
CS-8050
7-cyclopentyl-5-(4-phenoxyphenyl)-7h-pyrrolo[2,3d]pyrimidin-4-ylamine
mfcd04974490
N16945
J-014016
SR-01000075852-1
sr-01000075852
7-cyclopentyl-5-(4-phenoxy)phenyl-7h-pyr
lck inhibitor - cas 213743-31-8
BS-15903
Q27079373
A16923
SDCCGSBI-0050435.P003
NCGC00015280-12
kin 001-51kin 001-51
HMS3749G17
NCGC00015280-06
7-cyclopentyl-5-(4-phenoxyphenyl)-7h-pyrrolo[2,3-d]pyrimidine-4-ylamine
7-cyclopentyl-5-(4-phenoxyphenyl)-7h-pyrrolo[2,3d] pyrimidin-4-ylamine
S0020
AKOS037648871
4-amino-7-cyclopentyl-5-(4-phenoxyphenyl)-7h-pyrrolo[2,3-d]pyrimidine
SY285017
kin 001-51;lck inhibitor ;c8863

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule."( Highly predictive and interpretable models for PAMPA permeability.
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR, 2017
)
0.46
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (2)

RoleDescription
geroprotectorAny compound that supports healthy aging, slows the biological aging process, or extends lifespan.
EC 2.7.10.2 (non-specific protein-tyrosine kinase) inhibitorAn EC 2.7.10.* (protein-tyrosine kinase) inhibitor that specifically blocks the action of non-specific protein-tyrosine kinase (EC 2.7.10.2).
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (5)

ClassDescription
primary amino compoundA compound formally derived from ammonia by replacing one hydrogen atom by an organyl group.
pyrrolopyrimidine
aromatic amineAn amino compound in which the amino group is linked directly to an aromatic system.
aromatic etherAny ether in which the oxygen is attached to at least one aryl substituent.
cyclopentanesCyclopentane and its derivatives formed by substitution.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (110)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, TYROSYL-DNA PHOSPHODIESTERASEHomo sapiens (human)Potency21.28040.004023.8416100.0000AID485290
Chain A, HADH2 proteinHomo sapiens (human)Potency35.71680.025120.237639.8107AID886; AID893
Chain B, HADH2 proteinHomo sapiens (human)Potency35.71680.025120.237639.8107AID886; AID893
Chain A, JmjC domain-containing histone demethylation protein 3AHomo sapiens (human)Potency44.66840.631035.7641100.0000AID504339
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency25.11890.177814.390939.8107AID2147
Chain A, Ferritin light chainEquus caballus (horse)Potency39.81075.623417.292931.6228AID2323
Chain A, CruzipainTrypanosoma cruziPotency31.62280.002014.677939.8107AID1476
endonuclease IVEscherichia coliPotency0.89130.707912.432431.6228AID1708
glp-1 receptor, partialHomo sapiens (human)Potency7.07950.01846.806014.1254AID624417
thioredoxin reductaseRattus norvegicus (Norway rat)Potency12.58930.100020.879379.4328AID588456
RGS12Homo sapiens (human)Potency10.00000.794310.991425.1189AID879
ClpPBacillus subtilisPotency28.18381.995322.673039.8107AID651965
phosphopantetheinyl transferaseBacillus subtilisPotency70.79460.141337.9142100.0000AID1490
ATAD5 protein, partialHomo sapiens (human)Potency23.39130.004110.890331.5287AID493106; AID493107; AID504466; AID504467
NFKB1 protein, partialHomo sapiens (human)Potency11.22020.02827.055915.8489AID895; AID928
GLS proteinHomo sapiens (human)Potency25.11890.35487.935539.8107AID624146
TDP1 proteinHomo sapiens (human)Potency15.67580.000811.382244.6684AID686978; AID686979
Microtubule-associated protein tauHomo sapiens (human)Potency22.38720.180013.557439.8107AID1460
ThrombopoietinHomo sapiens (human)Potency12.58930.02517.304831.6228AID917; AID918
Smad3Homo sapiens (human)Potency22.38720.00527.809829.0929AID588855
apical membrane antigen 1, AMA1Plasmodium falciparum 3D7Potency15.84890.707912.194339.8107AID720542
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency35.48130.011212.4002100.0000AID1030
hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)Homo sapiens (human)Potency31.62280.00137.762544.6684AID914; AID915
regulator of G-protein signaling 4Homo sapiens (human)Potency7.51930.531815.435837.6858AID504845
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency56.23410.28189.721235.4813AID2326
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency12.77550.001530.607315,848.9004AID1224819; AID1224820
67.9K proteinVaccinia virusPotency14.12540.00018.4406100.0000AID720580
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency39.81070.707936.904389.1251AID504333
arylsulfatase AHomo sapiens (human)Potency8.49211.069113.955137.9330AID720538
IDH1Homo sapiens (human)Potency23.10930.005210.865235.4813AID686970
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency22.31350.035520.977089.1251AID504332
Bloom syndrome protein isoform 1Homo sapiens (human)Potency22.38720.540617.639296.1227AID2364; AID2528
cytochrome P450 2D6 isoform 1Homo sapiens (human)Potency31.62280.00207.533739.8107AID891
NPC intracellular cholesterol transporter 1 precursorHomo sapiens (human)Potency115.82100.01262.451825.0177AID485313
peripheral myelin protein 22 isoform 1Homo sapiens (human)Potency9.528323.934123.934123.9341AID1967
cellular tumor antigen p53 isoform aHomo sapiens (human)Potency20.48390.316212.443531.6228AID902; AID924
cytochrome P450 2C19 precursorHomo sapiens (human)Potency25.11890.00255.840031.6228AID899
cytochrome P450 2C9 precursorHomo sapiens (human)Potency31.62280.00636.904339.8107AID883
D(1A) dopamine receptorHomo sapiens (human)Potency8.34930.02245.944922.3872AID488982; AID488983
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency31.62280.001815.663839.8107AID894
chromobox protein homolog 1Homo sapiens (human)Potency42.23950.006026.168889.1251AID488953; AID540317
nuclear factor erythroid 2-related factor 2 isoform 2Homo sapiens (human)Potency20.59620.00419.984825.9290AID504444
parathyroid hormone/parathyroid hormone-related peptide receptor precursorHomo sapiens (human)Potency39.81073.548119.542744.6684AID743266
potassium voltage-gated channel subfamily H member 2 isoform dHomo sapiens (human)Potency5.01190.01789.637444.6684AID588834
transcriptional regulator ERG isoform 3Homo sapiens (human)Potency39.81070.794321.275750.1187AID624246
guanine nucleotide-binding protein G(i) subunit alpha-1 isoform 1Homo sapiens (human)Potency10.00000.794312.126325.1189AID879
mitogen-activated protein kinase 1Homo sapiens (human)Potency23.87700.039816.784239.8107AID1454; AID995
ras-related protein Rab-9AHomo sapiens (human)Potency91.99970.00022.621531.4954AID485297
serine/threonine-protein kinase mTOR isoform 1Homo sapiens (human)Potency13.09180.00378.618923.2809AID2668
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency35.48130.00798.23321,122.0200AID2546
lethal(3)malignant brain tumor-like protein 1 isoform IHomo sapiens (human)Potency15.84890.075215.225339.8107AID485360
gemininHomo sapiens (human)Potency11.13780.004611.374133.4983AID463097; AID504364; AID624296
DNA polymerase kappa isoform 1Homo sapiens (human)Potency42.28410.031622.3146100.0000AID588579
survival motor neuron protein isoform dHomo sapiens (human)Potency10.00000.125912.234435.4813AID1458
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency3.16230.031610.279239.8107AID884; AID885
M-phase phosphoprotein 8Homo sapiens (human)Potency34.65430.177824.735279.4328AID488949
muscarinic acetylcholine receptor M1Rattus norvegicus (Norway rat)Potency7.07950.00106.000935.4813AID943
lethal factor (plasmid)Bacillus anthracis str. A2012Potency15.84890.020010.786931.6228AID912
lamin isoform A-delta10Homo sapiens (human)Potency11.29470.891312.067628.1838AID1459; AID1487
neuropeptide S receptor isoform AHomo sapiens (human)Potency12.58930.015812.3113615.5000AID1461
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Polyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)Potency7.94330.316212.765731.6228AID881
Integrin beta-3Homo sapiens (human)Potency25.11890.316211.415731.6228AID924
Integrin alpha-IIbHomo sapiens (human)Potency25.11890.316211.415731.6228AID924
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Histamine H2 receptorCavia porcellus (domestic guinea pig)Potency22.15100.00638.235039.8107AID881; AID883
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
TAR DNA-binding protein 43Homo sapiens (human)Potency35.48131.778316.208135.4813AID652104
GABA theta subunitRattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
Ataxin-2Homo sapiens (human)Potency25.11890.011912.222168.7989AID588378
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency3.16231.000012.224831.6228AID885
ATP-dependent phosphofructokinaseTrypanosoma brucei brucei TREU927Potency4.25620.060110.745337.9330AID485368
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Tyrosine-protein kinase BTKHomo sapiens (human)IC50 (µMol)0.00070.00070.00070.0007AID977608
Serine/threonine-protein kinase D3Homo sapiens (human)IC50 (µMol)33.00000.00011.170110.0000AID155705
G2/mitotic-specific cyclin-B2Homo sapiens (human)IC50 (µMol)50.00000.00251.817210.0000AID42949
Epidermal growth factor receptorHomo sapiens (human)IC50 (µMol)1.68850.00000.536910.0000AID1576941; AID69408
Protein kinase C gamma typeHomo sapiens (human)IC50 (µMol)33.00000.00011.035410.0000AID155705
Protein kinase C beta typeHomo sapiens (human)IC50 (µMol)33.00000.00010.554210.0000AID155705
Tyrosine-protein kinase LckHomo sapiens (human)IC50 (µMol)0.17030.00021.317310.0000AID223955; AID223965; AID223969; AID223970; AID223973; AID223977; AID223978
Tyrosine-protein kinase FynHomo sapiens (human)IC50 (µMol)0.12600.00021.67898.6800AID72278
Cyclin-dependent kinase 1Homo sapiens (human)IC50 (µMol)50.00000.00041.345210.0000AID42949
Tyrosine-protein kinase LynHomo sapiens (human)IC50 (µMol)0.42000.00020.55945.2000AID164695
Proto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)IC50 (µMol)0.31500.00020.533510.0000AID205329; AID227683
G2/mitotic-specific cyclin-B1Homo sapiens (human)IC50 (µMol)50.00000.00131.451810.0000AID42949
Protein kinase C alpha typeHomo sapiens (human)IC50 (µMol)33.00000.00010.972010.0000AID155705
Protein kinase C eta typeHomo sapiens (human)IC50 (µMol)33.00000.00010.797110.0000AID155705
Vascular endothelial growth factor receptor 2Homo sapiens (human)IC50 (µMol)2.52670.00000.48308.8000AID216640; AID216764; AID216765
Tyrosine-protein kinase CSKHomo sapiens (human)IC50 (µMol)5.18000.00131.33525.1800AID220047
Protein kinase C iota typeHomo sapiens (human)IC50 (µMol)33.00000.00012.037810.0000AID155705
Tyrosine-protein kinase ZAP-70Homo sapiens (human)IC50 (µMol)50.00000.00111.23099.7000AID220418
Protein kinase C epsilon typeHomo sapiens (human)IC50 (µMol)33.00000.00010.802910.0000AID155705
Angiopoietin-1 receptorHomo sapiens (human)IC50 (µMol)4.34330.00040.55539.0700AID209357; AID228419; AID228420
Protein kinase C theta typeHomo sapiens (human)IC50 (µMol)33.00000.00010.989710.0000AID155705
Protein kinase C zeta typeHomo sapiens (human)IC50 (µMol)33.00000.00012.445310.0000AID155705
Protein kinase C delta typeHomo sapiens (human)IC50 (µMol)33.00000.00010.844810.0000AID155705
Tyrosine-protein kinase BTKHomo sapiens (human)IC50 (µMol)0.31000.00010.25577.6000AID1576940
Serine/threonine-protein kinase D1Homo sapiens (human)IC50 (µMol)33.00000.00011.231910.0000AID155705
G2/mitotic-specific cyclin-B3Homo sapiens (human)IC50 (µMol)50.00000.00251.817210.0000AID42949
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (754)

Processvia Protein(s)Taxonomy
lipid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
phospholipid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
apoptotic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell population proliferationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of macrophage derived foam cell differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonic acid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell migrationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
prostate gland developmentPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
regulation of epithelial cell differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of chemokine productionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of peroxisome proliferator activated receptor signaling pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of keratinocyte differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell cyclePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of growthPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
hepoxilin biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
endocannabinoid signaling pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cannabinoid biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipoxin A4 biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleic acid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipid oxidationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipoxygenase pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
protein phosphorylationSerine/threonine-protein kinase D3Homo sapiens (human)
protein kinase C-activating G protein-coupled receptor signaling pathwaySerine/threonine-protein kinase D3Homo sapiens (human)
sphingolipid biosynthetic processSerine/threonine-protein kinase D3Homo sapiens (human)
intracellular signal transductionSerine/threonine-protein kinase D3Homo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwaySerine/threonine-protein kinase D3Homo sapiens (human)
in utero embryonic developmentG2/mitotic-specific cyclin-B2Homo sapiens (human)
spindle assembly involved in female meiosis IG2/mitotic-specific cyclin-B2Homo sapiens (human)
G2/MI transition of meiotic cell cycleG2/mitotic-specific cyclin-B2Homo sapiens (human)
regulation of growthG2/mitotic-specific cyclin-B2Homo sapiens (human)
T cell homeostasisG2/mitotic-specific cyclin-B2Homo sapiens (human)
thymus developmentG2/mitotic-specific cyclin-B2Homo sapiens (human)
cell divisionG2/mitotic-specific cyclin-B2Homo sapiens (human)
regulation of cyclin-dependent protein serine/threonine kinase activityG2/mitotic-specific cyclin-B2Homo sapiens (human)
mitotic cell cycle phase transitionG2/mitotic-specific cyclin-B2Homo sapiens (human)
cell surface receptor signaling pathwayEpidermal growth factor receptorHomo sapiens (human)
epidermal growth factor receptor signaling pathwayEpidermal growth factor receptorHomo sapiens (human)
positive regulation of cell population proliferationEpidermal growth factor receptorHomo sapiens (human)
MAPK cascadeEpidermal growth factor receptorHomo sapiens (human)
ossificationEpidermal growth factor receptorHomo sapiens (human)
embryonic placenta developmentEpidermal growth factor receptorHomo sapiens (human)
positive regulation of protein phosphorylationEpidermal growth factor receptorHomo sapiens (human)
hair follicle developmentEpidermal growth factor receptorHomo sapiens (human)
translationEpidermal growth factor receptorHomo sapiens (human)
signal transductionEpidermal growth factor receptorHomo sapiens (human)
epidermal growth factor receptor signaling pathwayEpidermal growth factor receptorHomo sapiens (human)
activation of phospholipase C activityEpidermal growth factor receptorHomo sapiens (human)
salivary gland morphogenesisEpidermal growth factor receptorHomo sapiens (human)
midgut developmentEpidermal growth factor receptorHomo sapiens (human)
learning or memoryEpidermal growth factor receptorHomo sapiens (human)
circadian rhythmEpidermal growth factor receptorHomo sapiens (human)
positive regulation of cell population proliferationEpidermal growth factor receptorHomo sapiens (human)
diterpenoid metabolic processEpidermal growth factor receptorHomo sapiens (human)
peptidyl-tyrosine phosphorylationEpidermal growth factor receptorHomo sapiens (human)
cerebral cortex cell migrationEpidermal growth factor receptorHomo sapiens (human)
positive regulation of cell growthEpidermal growth factor receptorHomo sapiens (human)
lung developmentEpidermal growth factor receptorHomo sapiens (human)
positive regulation of cell migrationEpidermal growth factor receptorHomo sapiens (human)
positive regulation of superoxide anion generationEpidermal growth factor receptorHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylationEpidermal growth factor receptorHomo sapiens (human)
response to cobalaminEpidermal growth factor receptorHomo sapiens (human)
response to hydroxyisoflavoneEpidermal growth factor receptorHomo sapiens (human)
cellular response to reactive oxygen speciesEpidermal growth factor receptorHomo sapiens (human)
peptidyl-tyrosine autophosphorylationEpidermal growth factor receptorHomo sapiens (human)
ERBB2-EGFR signaling pathwayEpidermal growth factor receptorHomo sapiens (human)
negative regulation of epidermal growth factor receptor signaling pathwayEpidermal growth factor receptorHomo sapiens (human)
negative regulation of protein catabolic processEpidermal growth factor receptorHomo sapiens (human)
vasodilationEpidermal growth factor receptorHomo sapiens (human)
positive regulation of phosphorylationEpidermal growth factor receptorHomo sapiens (human)
ovulation cycleEpidermal growth factor receptorHomo sapiens (human)
hydrogen peroxide metabolic processEpidermal growth factor receptorHomo sapiens (human)
negative regulation of apoptotic processEpidermal growth factor receptorHomo sapiens (human)
positive regulation of MAP kinase activityEpidermal growth factor receptorHomo sapiens (human)
tongue developmentEpidermal growth factor receptorHomo sapiens (human)
positive regulation of cyclin-dependent protein serine/threonine kinase activityEpidermal growth factor receptorHomo sapiens (human)
positive regulation of DNA repairEpidermal growth factor receptorHomo sapiens (human)
positive regulation of DNA replicationEpidermal growth factor receptorHomo sapiens (human)
positive regulation of bone resorptionEpidermal growth factor receptorHomo sapiens (human)
positive regulation of DNA-templated transcriptionEpidermal growth factor receptorHomo sapiens (human)
positive regulation of vasoconstrictionEpidermal growth factor receptorHomo sapiens (human)
negative regulation of mitotic cell cycleEpidermal growth factor receptorHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIEpidermal growth factor receptorHomo sapiens (human)
regulation of JNK cascadeEpidermal growth factor receptorHomo sapiens (human)
symbiont entry into host cellEpidermal growth factor receptorHomo sapiens (human)
protein autophosphorylationEpidermal growth factor receptorHomo sapiens (human)
astrocyte activationEpidermal growth factor receptorHomo sapiens (human)
positive regulation of fibroblast proliferationEpidermal growth factor receptorHomo sapiens (human)
digestive tract morphogenesisEpidermal growth factor receptorHomo sapiens (human)
positive regulation of smooth muscle cell proliferationEpidermal growth factor receptorHomo sapiens (human)
neuron projection morphogenesisEpidermal growth factor receptorHomo sapiens (human)
epithelial cell proliferationEpidermal growth factor receptorHomo sapiens (human)
positive regulation of epithelial cell proliferationEpidermal growth factor receptorHomo sapiens (human)
regulation of peptidyl-tyrosine phosphorylationEpidermal growth factor receptorHomo sapiens (human)
protein insertion into membraneEpidermal growth factor receptorHomo sapiens (human)
response to calcium ionEpidermal growth factor receptorHomo sapiens (human)
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionEpidermal growth factor receptorHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionEpidermal growth factor receptorHomo sapiens (human)
positive regulation of synaptic transmission, glutamatergicEpidermal growth factor receptorHomo sapiens (human)
positive regulation of glial cell proliferationEpidermal growth factor receptorHomo sapiens (human)
morphogenesis of an epithelial foldEpidermal growth factor receptorHomo sapiens (human)
eyelid development in camera-type eyeEpidermal growth factor receptorHomo sapiens (human)
response to UV-AEpidermal growth factor receptorHomo sapiens (human)
positive regulation of mucus secretionEpidermal growth factor receptorHomo sapiens (human)
regulation of ERK1 and ERK2 cascadeEpidermal growth factor receptorHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeEpidermal growth factor receptorHomo sapiens (human)
cellular response to amino acid stimulusEpidermal growth factor receptorHomo sapiens (human)
cellular response to mechanical stimulusEpidermal growth factor receptorHomo sapiens (human)
cellular response to cadmium ionEpidermal growth factor receptorHomo sapiens (human)
cellular response to epidermal growth factor stimulusEpidermal growth factor receptorHomo sapiens (human)
cellular response to estradiol stimulusEpidermal growth factor receptorHomo sapiens (human)
cellular response to xenobiotic stimulusEpidermal growth factor receptorHomo sapiens (human)
cellular response to dexamethasone stimulusEpidermal growth factor receptorHomo sapiens (human)
positive regulation of canonical Wnt signaling pathwayEpidermal growth factor receptorHomo sapiens (human)
liver regenerationEpidermal growth factor receptorHomo sapiens (human)
cell-cell adhesionEpidermal growth factor receptorHomo sapiens (human)
positive regulation of protein kinase C activityEpidermal growth factor receptorHomo sapiens (human)
positive regulation of G1/S transition of mitotic cell cycleEpidermal growth factor receptorHomo sapiens (human)
positive regulation of non-canonical NF-kappaB signal transductionEpidermal growth factor receptorHomo sapiens (human)
positive regulation of prolactin secretionEpidermal growth factor receptorHomo sapiens (human)
positive regulation of miRNA transcriptionEpidermal growth factor receptorHomo sapiens (human)
positive regulation of protein localization to plasma membraneEpidermal growth factor receptorHomo sapiens (human)
negative regulation of cardiocyte differentiationEpidermal growth factor receptorHomo sapiens (human)
neurogenesisEpidermal growth factor receptorHomo sapiens (human)
multicellular organism developmentEpidermal growth factor receptorHomo sapiens (human)
positive regulation of kinase activityEpidermal growth factor receptorHomo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayEpidermal growth factor receptorHomo sapiens (human)
regulation of gene expressionAmyloid-beta precursor proteinHomo sapiens (human)
cognitionAmyloid-beta precursor proteinHomo sapiens (human)
G2/M transition of mitotic cell cycleAmyloid-beta precursor proteinHomo sapiens (human)
microglial cell activationAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of protein phosphorylationAmyloid-beta precursor proteinHomo sapiens (human)
suckling behaviorAmyloid-beta precursor proteinHomo sapiens (human)
astrocyte activation involved in immune responseAmyloid-beta precursor proteinHomo sapiens (human)
regulation of translationAmyloid-beta precursor proteinHomo sapiens (human)
protein phosphorylationAmyloid-beta precursor proteinHomo sapiens (human)
intracellular copper ion homeostasisAmyloid-beta precursor proteinHomo sapiens (human)
endocytosisAmyloid-beta precursor proteinHomo sapiens (human)
response to oxidative stressAmyloid-beta precursor proteinHomo sapiens (human)
cell adhesionAmyloid-beta precursor proteinHomo sapiens (human)
regulation of epidermal growth factor-activated receptor activityAmyloid-beta precursor proteinHomo sapiens (human)
Notch signaling pathwayAmyloid-beta precursor proteinHomo sapiens (human)
axonogenesisAmyloid-beta precursor proteinHomo sapiens (human)
learning or memoryAmyloid-beta precursor proteinHomo sapiens (human)
learningAmyloid-beta precursor proteinHomo sapiens (human)
mating behaviorAmyloid-beta precursor proteinHomo sapiens (human)
locomotory behaviorAmyloid-beta precursor proteinHomo sapiens (human)
axo-dendritic transportAmyloid-beta precursor proteinHomo sapiens (human)
cholesterol metabolic processAmyloid-beta precursor proteinHomo sapiens (human)
negative regulation of cell population proliferationAmyloid-beta precursor proteinHomo sapiens (human)
adult locomotory behaviorAmyloid-beta precursor proteinHomo sapiens (human)
visual learningAmyloid-beta precursor proteinHomo sapiens (human)
regulation of gene expressionAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of gene expressionAmyloid-beta precursor proteinHomo sapiens (human)
negative regulation of gene expressionAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of peptidyl-threonine phosphorylationAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of G2/M transition of mitotic cell cycleAmyloid-beta precursor proteinHomo sapiens (human)
microglia developmentAmyloid-beta precursor proteinHomo sapiens (human)
axon midline choice point recognitionAmyloid-beta precursor proteinHomo sapiens (human)
neuron remodelingAmyloid-beta precursor proteinHomo sapiens (human)
dendrite developmentAmyloid-beta precursor proteinHomo sapiens (human)
regulation of Wnt signaling pathwayAmyloid-beta precursor proteinHomo sapiens (human)
extracellular matrix organizationAmyloid-beta precursor proteinHomo sapiens (human)
forebrain developmentAmyloid-beta precursor proteinHomo sapiens (human)
neuron projection developmentAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of chemokine productionAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of interleukin-1 beta productionAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of interleukin-6 productionAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of tumor necrosis factor productionAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylationAmyloid-beta precursor proteinHomo sapiens (human)
ionotropic glutamate receptor signaling pathwayAmyloid-beta precursor proteinHomo sapiens (human)
regulation of multicellular organism growthAmyloid-beta precursor proteinHomo sapiens (human)
negative regulation of neuron differentiationAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of glycolytic processAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of mitotic cell cycleAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of JNK cascadeAmyloid-beta precursor proteinHomo sapiens (human)
astrocyte activationAmyloid-beta precursor proteinHomo sapiens (human)
regulation of long-term neuronal synaptic plasticityAmyloid-beta precursor proteinHomo sapiens (human)
collateral sprouting in absence of injuryAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of inflammatory responseAmyloid-beta precursor proteinHomo sapiens (human)
regulation of peptidyl-tyrosine phosphorylationAmyloid-beta precursor proteinHomo sapiens (human)
regulation of synapse structure or activityAmyloid-beta precursor proteinHomo sapiens (human)
synapse organizationAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of calcium-mediated signalingAmyloid-beta precursor proteinHomo sapiens (human)
neuromuscular process controlling balanceAmyloid-beta precursor proteinHomo sapiens (human)
synaptic assembly at neuromuscular junctionAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of protein metabolic processAmyloid-beta precursor proteinHomo sapiens (human)
neuron apoptotic processAmyloid-beta precursor proteinHomo sapiens (human)
smooth endoplasmic reticulum calcium ion homeostasisAmyloid-beta precursor proteinHomo sapiens (human)
neuron cellular homeostasisAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeAmyloid-beta precursor proteinHomo sapiens (human)
response to interleukin-1Amyloid-beta precursor proteinHomo sapiens (human)
modulation of excitatory postsynaptic potentialAmyloid-beta precursor proteinHomo sapiens (human)
NMDA selective glutamate receptor signaling pathwayAmyloid-beta precursor proteinHomo sapiens (human)
regulation of spontaneous synaptic transmissionAmyloid-beta precursor proteinHomo sapiens (human)
cytosolic mRNA polyadenylationAmyloid-beta precursor proteinHomo sapiens (human)
negative regulation of long-term synaptic potentiationAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of long-term synaptic potentiationAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of non-canonical NF-kappaB signal transductionAmyloid-beta precursor proteinHomo sapiens (human)
cellular response to amyloid-betaAmyloid-beta precursor proteinHomo sapiens (human)
regulation of presynapse assemblyAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of amyloid fibril formationAmyloid-beta precursor proteinHomo sapiens (human)
amyloid fibril formationAmyloid-beta precursor proteinHomo sapiens (human)
neuron projection maintenanceAmyloid-beta precursor proteinHomo sapiens (human)
positive regulation of T cell migrationAmyloid-beta precursor proteinHomo sapiens (human)
central nervous system developmentAmyloid-beta precursor proteinHomo sapiens (human)
negative regulation of low-density lipoprotein receptor activityIntegrin beta-3Homo sapiens (human)
positive regulation of protein phosphorylationIntegrin beta-3Homo sapiens (human)
positive regulation of endothelial cell proliferationIntegrin beta-3Homo sapiens (human)
positive regulation of cell-matrix adhesionIntegrin beta-3Homo sapiens (human)
cell-substrate junction assemblyIntegrin beta-3Homo sapiens (human)
cell adhesionIntegrin beta-3Homo sapiens (human)
cell-matrix adhesionIntegrin beta-3Homo sapiens (human)
integrin-mediated signaling pathwayIntegrin beta-3Homo sapiens (human)
embryo implantationIntegrin beta-3Homo sapiens (human)
blood coagulationIntegrin beta-3Homo sapiens (human)
positive regulation of endothelial cell migrationIntegrin beta-3Homo sapiens (human)
positive regulation of gene expressionIntegrin beta-3Homo sapiens (human)
negative regulation of macrophage derived foam cell differentiationIntegrin beta-3Homo sapiens (human)
positive regulation of fibroblast migrationIntegrin beta-3Homo sapiens (human)
negative regulation of lipid storageIntegrin beta-3Homo sapiens (human)
response to activityIntegrin beta-3Homo sapiens (human)
smooth muscle cell migrationIntegrin beta-3Homo sapiens (human)
positive regulation of smooth muscle cell migrationIntegrin beta-3Homo sapiens (human)
platelet activationIntegrin beta-3Homo sapiens (human)
positive regulation of vascular endothelial growth factor receptor signaling pathwayIntegrin beta-3Homo sapiens (human)
cell-substrate adhesionIntegrin beta-3Homo sapiens (human)
activation of protein kinase activityIntegrin beta-3Homo sapiens (human)
negative regulation of lipid transportIntegrin beta-3Homo sapiens (human)
regulation of protein localizationIntegrin beta-3Homo sapiens (human)
regulation of actin cytoskeleton organizationIntegrin beta-3Homo sapiens (human)
cell adhesion mediated by integrinIntegrin beta-3Homo sapiens (human)
positive regulation of cell adhesion mediated by integrinIntegrin beta-3Homo sapiens (human)
positive regulation of osteoblast proliferationIntegrin beta-3Homo sapiens (human)
heterotypic cell-cell adhesionIntegrin beta-3Homo sapiens (human)
substrate adhesion-dependent cell spreadingIntegrin beta-3Homo sapiens (human)
tube developmentIntegrin beta-3Homo sapiens (human)
wound healing, spreading of epidermal cellsIntegrin beta-3Homo sapiens (human)
cellular response to platelet-derived growth factor stimulusIntegrin beta-3Homo sapiens (human)
apolipoprotein A-I-mediated signaling pathwayIntegrin beta-3Homo sapiens (human)
wound healingIntegrin beta-3Homo sapiens (human)
apoptotic cell clearanceIntegrin beta-3Homo sapiens (human)
regulation of bone resorptionIntegrin beta-3Homo sapiens (human)
positive regulation of angiogenesisIntegrin beta-3Homo sapiens (human)
positive regulation of bone resorptionIntegrin beta-3Homo sapiens (human)
symbiont entry into host cellIntegrin beta-3Homo sapiens (human)
platelet-derived growth factor receptor signaling pathwayIntegrin beta-3Homo sapiens (human)
positive regulation of fibroblast proliferationIntegrin beta-3Homo sapiens (human)
mesodermal cell differentiationIntegrin beta-3Homo sapiens (human)
positive regulation of smooth muscle cell proliferationIntegrin beta-3Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationIntegrin beta-3Homo sapiens (human)
negative regulation of lipoprotein metabolic processIntegrin beta-3Homo sapiens (human)
negative chemotaxisIntegrin beta-3Homo sapiens (human)
regulation of release of sequestered calcium ion into cytosolIntegrin beta-3Homo sapiens (human)
regulation of serotonin uptakeIntegrin beta-3Homo sapiens (human)
angiogenesis involved in wound healingIntegrin beta-3Homo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeIntegrin beta-3Homo sapiens (human)
platelet aggregationIntegrin beta-3Homo sapiens (human)
cellular response to mechanical stimulusIntegrin beta-3Homo sapiens (human)
cellular response to xenobiotic stimulusIntegrin beta-3Homo sapiens (human)
positive regulation of glomerular mesangial cell proliferationIntegrin beta-3Homo sapiens (human)
blood coagulation, fibrin clot formationIntegrin beta-3Homo sapiens (human)
maintenance of postsynaptic specialization structureIntegrin beta-3Homo sapiens (human)
regulation of postsynaptic neurotransmitter receptor internalizationIntegrin beta-3Homo sapiens (human)
regulation of postsynaptic neurotransmitter receptor diffusion trappingIntegrin beta-3Homo sapiens (human)
positive regulation of substrate adhesion-dependent cell spreadingIntegrin beta-3Homo sapiens (human)
positive regulation of adenylate cyclase-inhibiting opioid receptor signaling pathwayIntegrin beta-3Homo sapiens (human)
regulation of trophoblast cell migrationIntegrin beta-3Homo sapiens (human)
regulation of extracellular matrix organizationIntegrin beta-3Homo sapiens (human)
cellular response to insulin-like growth factor stimulusIntegrin beta-3Homo sapiens (human)
negative regulation of endothelial cell apoptotic processIntegrin beta-3Homo sapiens (human)
positive regulation of T cell migrationIntegrin beta-3Homo sapiens (human)
cell migrationIntegrin beta-3Homo sapiens (human)
protein phosphorylationProtein kinase C gamma typeHomo sapiens (human)
chemical synaptic transmissionProtein kinase C gamma typeHomo sapiens (human)
learning or memoryProtein kinase C gamma typeHomo sapiens (human)
chemosensory behaviorProtein kinase C gamma typeHomo sapiens (human)
response to toxic substanceProtein kinase C gamma typeHomo sapiens (human)
phosphorylationProtein kinase C gamma typeHomo sapiens (human)
negative regulation of protein ubiquitinationProtein kinase C gamma typeHomo sapiens (human)
regulation of response to foodProtein kinase C gamma typeHomo sapiens (human)
positive regulation of mismatch repairProtein kinase C gamma typeHomo sapiens (human)
negative regulation of protein catabolic processProtein kinase C gamma typeHomo sapiens (human)
regulation of circadian rhythmProtein kinase C gamma typeHomo sapiens (human)
response to morphineProtein kinase C gamma typeHomo sapiens (human)
negative regulation of neuron apoptotic processProtein kinase C gamma typeHomo sapiens (human)
response to painProtein kinase C gamma typeHomo sapiens (human)
rhythmic processProtein kinase C gamma typeHomo sapiens (human)
regulation of phagocytosisProtein kinase C gamma typeHomo sapiens (human)
long-term synaptic potentiationProtein kinase C gamma typeHomo sapiens (human)
innervationProtein kinase C gamma typeHomo sapiens (human)
presynaptic modulation of chemical synaptic transmissionProtein kinase C gamma typeHomo sapiens (human)
negative regulation of proteasomal protein catabolic processProtein kinase C gamma typeHomo sapiens (human)
response to psychosocial stressProtein kinase C gamma typeHomo sapiens (human)
regulation of synaptic vesicle exocytosisProtein kinase C gamma typeHomo sapiens (human)
intracellular signal transductionProtein kinase C gamma typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C gamma typeHomo sapiens (human)
adaptive immune responseProtein kinase C beta typeHomo sapiens (human)
chromatin remodelingProtein kinase C beta typeHomo sapiens (human)
regulation of transcription by RNA polymerase IIProtein kinase C beta typeHomo sapiens (human)
protein phosphorylationProtein kinase C beta typeHomo sapiens (human)
calcium ion transportProtein kinase C beta typeHomo sapiens (human)
intracellular calcium ion homeostasisProtein kinase C beta typeHomo sapiens (human)
apoptotic processProtein kinase C beta typeHomo sapiens (human)
mitotic nuclear membrane disassemblyProtein kinase C beta typeHomo sapiens (human)
signal transductionProtein kinase C beta typeHomo sapiens (human)
phospholipase C-activating G protein-coupled acetylcholine receptor signaling pathwayProtein kinase C beta typeHomo sapiens (human)
response to xenobiotic stimulusProtein kinase C beta typeHomo sapiens (human)
response to glucoseProtein kinase C beta typeHomo sapiens (human)
regulation of glucose transmembrane transportProtein kinase C beta typeHomo sapiens (human)
negative regulation of glucose transmembrane transportProtein kinase C beta typeHomo sapiens (human)
regulation of dopamine secretionProtein kinase C beta typeHomo sapiens (human)
dibenzo-p-dioxin metabolic processProtein kinase C beta typeHomo sapiens (human)
positive regulation of vascular endothelial growth factor receptor signaling pathwayProtein kinase C beta typeHomo sapiens (human)
positive regulation of insulin secretionProtein kinase C beta typeHomo sapiens (human)
response to vitamin DProtein kinase C beta typeHomo sapiens (human)
regulation of growthProtein kinase C beta typeHomo sapiens (human)
B cell activationProtein kinase C beta typeHomo sapiens (human)
positive regulation of odontogenesis of dentin-containing toothProtein kinase C beta typeHomo sapiens (human)
lipoprotein transportProtein kinase C beta typeHomo sapiens (human)
positive regulation of canonical NF-kappaB signal transductionProtein kinase C beta typeHomo sapiens (human)
post-translational protein modificationProtein kinase C beta typeHomo sapiens (human)
response to ethanolProtein kinase C beta typeHomo sapiens (human)
positive regulation of angiogenesisProtein kinase C beta typeHomo sapiens (human)
positive regulation of DNA-templated transcriptionProtein kinase C beta typeHomo sapiens (human)
negative regulation of insulin receptor signaling pathwayProtein kinase C beta typeHomo sapiens (human)
B cell receptor signaling pathwayProtein kinase C beta typeHomo sapiens (human)
positive regulation of B cell receptor signaling pathwayProtein kinase C beta typeHomo sapiens (human)
cellular response to carbohydrate stimulusProtein kinase C beta typeHomo sapiens (human)
presynaptic modulation of chemical synaptic transmissionProtein kinase C beta typeHomo sapiens (human)
regulation of synaptic vesicle exocytosisProtein kinase C beta typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C beta typeHomo sapiens (human)
intracellular signal transductionProtein kinase C beta typeHomo sapiens (human)
protein phosphorylationTyrosine-protein kinase LckHomo sapiens (human)
intracellular zinc ion homeostasisTyrosine-protein kinase LckHomo sapiens (human)
activation of cysteine-type endopeptidase activity involved in apoptotic processTyrosine-protein kinase LckHomo sapiens (human)
response to xenobiotic stimulusTyrosine-protein kinase LckHomo sapiens (human)
peptidyl-tyrosine phosphorylationTyrosine-protein kinase LckHomo sapiens (human)
hemopoiesisTyrosine-protein kinase LckHomo sapiens (human)
platelet activationTyrosine-protein kinase LckHomo sapiens (human)
T cell differentiationTyrosine-protein kinase LckHomo sapiens (human)
T cell costimulationTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of heterotypic cell-cell adhesionTyrosine-protein kinase LckHomo sapiens (human)
intracellular signal transductionTyrosine-protein kinase LckHomo sapiens (human)
peptidyl-tyrosine autophosphorylationTyrosine-protein kinase LckHomo sapiens (human)
Fc-gamma receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
T cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of T cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of T cell activationTyrosine-protein kinase LckHomo sapiens (human)
leukocyte migrationTyrosine-protein kinase LckHomo sapiens (human)
release of sequestered calcium ion into cytosolTyrosine-protein kinase LckHomo sapiens (human)
regulation of lymphocyte activationTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of leukocyte cell-cell adhesionTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
innate immune responseTyrosine-protein kinase LckHomo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
B cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
response to singlet oxygenTyrosine-protein kinase FynHomo sapiens (human)
neuron migrationTyrosine-protein kinase FynHomo sapiens (human)
stimulatory C-type lectin receptor signaling pathwayTyrosine-protein kinase FynHomo sapiens (human)
adaptive immune responseTyrosine-protein kinase FynHomo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusTyrosine-protein kinase FynHomo sapiens (human)
heart processTyrosine-protein kinase FynHomo sapiens (human)
protein phosphorylationTyrosine-protein kinase FynHomo sapiens (human)
calcium ion transportTyrosine-protein kinase FynHomo sapiens (human)
G protein-coupled glutamate receptor signaling pathwayTyrosine-protein kinase FynHomo sapiens (human)
axon guidanceTyrosine-protein kinase FynHomo sapiens (human)
learningTyrosine-protein kinase FynHomo sapiens (human)
feeding behaviorTyrosine-protein kinase FynHomo sapiens (human)
regulation of cell shapeTyrosine-protein kinase FynHomo sapiens (human)
gene expressionTyrosine-protein kinase FynHomo sapiens (human)
negative regulation of gene expressionTyrosine-protein kinase FynHomo sapiens (human)
negative regulation of hydrogen peroxide biosynthetic processTyrosine-protein kinase FynHomo sapiens (human)
positive regulation of neuron projection developmentTyrosine-protein kinase FynHomo sapiens (human)
protein ubiquitinationTyrosine-protein kinase FynHomo sapiens (human)
peptidyl-tyrosine phosphorylationTyrosine-protein kinase FynHomo sapiens (human)
protein catabolic processTyrosine-protein kinase FynHomo sapiens (human)
forebrain developmentTyrosine-protein kinase FynHomo sapiens (human)
T cell costimulationTyrosine-protein kinase FynHomo sapiens (human)
negative regulation of protein ubiquitinationTyrosine-protein kinase FynHomo sapiens (human)
intracellular signal transductionTyrosine-protein kinase FynHomo sapiens (human)
cellular response to platelet-derived growth factor stimulusTyrosine-protein kinase FynHomo sapiens (human)
Fc-gamma receptor signaling pathway involved in phagocytosisTyrosine-protein kinase FynHomo sapiens (human)
negative regulation of protein catabolic processTyrosine-protein kinase FynHomo sapiens (human)
positive regulation of tyrosine phosphorylation of STAT proteinTyrosine-protein kinase FynHomo sapiens (human)
response to ethanolTyrosine-protein kinase FynHomo sapiens (human)
vascular endothelial growth factor receptor signaling pathwayTyrosine-protein kinase FynHomo sapiens (human)
ephrin receptor signaling pathwayTyrosine-protein kinase FynHomo sapiens (human)
dendrite morphogenesisTyrosine-protein kinase FynHomo sapiens (human)
regulation of peptidyl-tyrosine phosphorylationTyrosine-protein kinase FynHomo sapiens (human)
activated T cell proliferationTyrosine-protein kinase FynHomo sapiens (human)
modulation of chemical synaptic transmissionTyrosine-protein kinase FynHomo sapiens (human)
T cell receptor signaling pathwayTyrosine-protein kinase FynHomo sapiens (human)
leukocyte migrationTyrosine-protein kinase FynHomo sapiens (human)
detection of mechanical stimulus involved in sensory perception of painTyrosine-protein kinase FynHomo sapiens (human)
cellular response to hydrogen peroxideTyrosine-protein kinase FynHomo sapiens (human)
cellular response to transforming growth factor beta stimulusTyrosine-protein kinase FynHomo sapiens (human)
positive regulation of protein targeting to membraneTyrosine-protein kinase FynHomo sapiens (human)
dendritic spine maintenanceTyrosine-protein kinase FynHomo sapiens (human)
positive regulation of protein localization to nucleusTyrosine-protein kinase FynHomo sapiens (human)
regulation of glutamate receptor signaling pathwayTyrosine-protein kinase FynHomo sapiens (human)
negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathwayTyrosine-protein kinase FynHomo sapiens (human)
negative regulation of dendritic spine maintenanceTyrosine-protein kinase FynHomo sapiens (human)
response to amyloid-betaTyrosine-protein kinase FynHomo sapiens (human)
cellular response to amyloid-betaTyrosine-protein kinase FynHomo sapiens (human)
cellular response to L-glutamateTyrosine-protein kinase FynHomo sapiens (human)
cellular response to glycineTyrosine-protein kinase FynHomo sapiens (human)
positive regulation of protein localization to membraneTyrosine-protein kinase FynHomo sapiens (human)
regulation of calcium ion import across plasma membraneTyrosine-protein kinase FynHomo sapiens (human)
positive regulation of cysteine-type endopeptidase activityTyrosine-protein kinase FynHomo sapiens (human)
innate immune responseTyrosine-protein kinase FynHomo sapiens (human)
cell differentiationTyrosine-protein kinase FynHomo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayTyrosine-protein kinase FynHomo sapiens (human)
G1/S transition of mitotic cell cycleCyclin-dependent kinase 1Homo sapiens (human)
G2/M transition of mitotic cell cycleCyclin-dependent kinase 1Homo sapiens (human)
microtubule cytoskeleton organizationCyclin-dependent kinase 1Homo sapiens (human)
DNA replicationCyclin-dependent kinase 1Homo sapiens (human)
DNA repairCyclin-dependent kinase 1Homo sapiens (human)
chromatin remodelingCyclin-dependent kinase 1Homo sapiens (human)
regulation of transcription by RNA polymerase IICyclin-dependent kinase 1Homo sapiens (human)
protein phosphorylationCyclin-dependent kinase 1Homo sapiens (human)
apoptotic processCyclin-dependent kinase 1Homo sapiens (human)
DNA damage responseCyclin-dependent kinase 1Homo sapiens (human)
mitotic nuclear membrane disassemblyCyclin-dependent kinase 1Homo sapiens (human)
centrosome cycleCyclin-dependent kinase 1Homo sapiens (human)
pronuclear fusionCyclin-dependent kinase 1Homo sapiens (human)
response to xenobiotic stimulusCyclin-dependent kinase 1Homo sapiens (human)
response to toxic substanceCyclin-dependent kinase 1Homo sapiens (human)
positive regulation of gene expressionCyclin-dependent kinase 1Homo sapiens (human)
negative regulation of gene expressionCyclin-dependent kinase 1Homo sapiens (human)
positive regulation of G2/M transition of mitotic cell cycleCyclin-dependent kinase 1Homo sapiens (human)
regulation of Schwann cell differentiationCyclin-dependent kinase 1Homo sapiens (human)
response to amineCyclin-dependent kinase 1Homo sapiens (human)
response to activityCyclin-dependent kinase 1Homo sapiens (human)
cell migrationCyclin-dependent kinase 1Homo sapiens (human)
peptidyl-serine phosphorylationCyclin-dependent kinase 1Homo sapiens (human)
peptidyl-threonine phosphorylationCyclin-dependent kinase 1Homo sapiens (human)
chromosome condensationCyclin-dependent kinase 1Homo sapiens (human)
epithelial cell differentiationCyclin-dependent kinase 1Homo sapiens (human)
animal organ regenerationCyclin-dependent kinase 1Homo sapiens (human)
protein localization to kinetochoreCyclin-dependent kinase 1Homo sapiens (human)
positive regulation of protein import into nucleusCyclin-dependent kinase 1Homo sapiens (human)
regulation of circadian rhythmCyclin-dependent kinase 1Homo sapiens (human)
negative regulation of apoptotic processCyclin-dependent kinase 1Homo sapiens (human)
response to ethanolCyclin-dependent kinase 1Homo sapiens (human)
positive regulation of DNA replicationCyclin-dependent kinase 1Homo sapiens (human)
regulation of embryonic developmentCyclin-dependent kinase 1Homo sapiens (human)
response to cadmium ionCyclin-dependent kinase 1Homo sapiens (human)
response to copper ionCyclin-dependent kinase 1Homo sapiens (human)
symbiont entry into host cellCyclin-dependent kinase 1Homo sapiens (human)
fibroblast proliferationCyclin-dependent kinase 1Homo sapiens (human)
rhythmic processCyclin-dependent kinase 1Homo sapiens (human)
response to axon injuryCyclin-dependent kinase 1Homo sapiens (human)
cell divisionCyclin-dependent kinase 1Homo sapiens (human)
ventricular cardiac muscle cell developmentCyclin-dependent kinase 1Homo sapiens (human)
positive regulation of cardiac muscle cell proliferationCyclin-dependent kinase 1Homo sapiens (human)
positive regulation of mitotic sister chromatid segregationCyclin-dependent kinase 1Homo sapiens (human)
protein-containing complex assemblyCyclin-dependent kinase 1Homo sapiens (human)
cellular response to hydrogen peroxideCyclin-dependent kinase 1Homo sapiens (human)
ERK1 and ERK2 cascadeCyclin-dependent kinase 1Homo sapiens (human)
cellular response to organic cyclic compoundCyclin-dependent kinase 1Homo sapiens (human)
Golgi disassemblyCyclin-dependent kinase 1Homo sapiens (human)
positive regulation of protein localization to nucleusCyclin-dependent kinase 1Homo sapiens (human)
regulation of attachment of mitotic spindle microtubules to kinetochoreCyclin-dependent kinase 1Homo sapiens (human)
microtubule cytoskeleton organization involved in mitosisCyclin-dependent kinase 1Homo sapiens (human)
positive regulation of mitochondrial ATP synthesis coupled electron transportCyclin-dependent kinase 1Homo sapiens (human)
mitotic G2 DNA damage checkpoint signalingCyclin-dependent kinase 1Homo sapiens (human)
protein deubiquitinationCyclin-dependent kinase 1Homo sapiens (human)
DNA damage checkpoint signalingTyrosine-protein kinase LynHomo sapiens (human)
B cell homeostasisTyrosine-protein kinase LynHomo sapiens (human)
regulation of cytokine productionTyrosine-protein kinase LynHomo sapiens (human)
regulation of protein phosphorylationTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of protein phosphorylationTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of protein phosphorylationTyrosine-protein kinase LynHomo sapiens (human)
stimulatory C-type lectin receptor signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
hematopoietic progenitor cell differentiationTyrosine-protein kinase LynHomo sapiens (human)
adaptive immune responseTyrosine-protein kinase LynHomo sapiens (human)
Fc receptor mediated stimulatory signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
tolerance induction to self antigenTyrosine-protein kinase LynHomo sapiens (human)
histamine secretion by mast cellTyrosine-protein kinase LynHomo sapiens (human)
platelet degranulationTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of myeloid leukocyte differentiationTyrosine-protein kinase LynHomo sapiens (human)
immune response-regulating cell surface receptor signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
Fc receptor mediated inhibitory signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusTyrosine-protein kinase LynHomo sapiens (human)
regulation of B cell apoptotic processTyrosine-protein kinase LynHomo sapiens (human)
protein phosphorylationTyrosine-protein kinase LynHomo sapiens (human)
DNA damage responseTyrosine-protein kinase LynHomo sapiens (human)
response to sterol depletionTyrosine-protein kinase LynHomo sapiens (human)
signal transductionTyrosine-protein kinase LynHomo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of cell population proliferationTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of cell population proliferationTyrosine-protein kinase LynHomo sapiens (human)
response to xenobiotic stimulusTyrosine-protein kinase LynHomo sapiens (human)
response to toxic substanceTyrosine-protein kinase LynHomo sapiens (human)
response to hormoneTyrosine-protein kinase LynHomo sapiens (human)
response to carbohydrateTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of neuron projection developmentTyrosine-protein kinase LynHomo sapiens (human)
oligodendrocyte developmentTyrosine-protein kinase LynHomo sapiens (human)
response to organic cyclic compoundTyrosine-protein kinase LynHomo sapiens (human)
fatty acid transportTyrosine-protein kinase LynHomo sapiens (human)
peptidyl-tyrosine phosphorylationTyrosine-protein kinase LynHomo sapiens (human)
erythrocyte differentiationTyrosine-protein kinase LynHomo sapiens (human)
eosinophil differentiationTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of cell migrationTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of B cell proliferationTyrosine-protein kinase LynHomo sapiens (human)
T cell costimulationTyrosine-protein kinase LynHomo sapiens (human)
lipopolysaccharide-mediated signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
response to insulinTyrosine-protein kinase LynHomo sapiens (human)
regulation of mast cell activationTyrosine-protein kinase LynHomo sapiens (human)
regulation of cell adhesion mediated by integrinTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of toll-like receptor 2 signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
toll-like receptor 4 signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of toll-like receptor 4 signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
cellular response to heatTyrosine-protein kinase LynHomo sapiens (human)
interleukin-5-mediated signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
Fc-epsilon receptor signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
Fc-gamma receptor signaling pathway involved in phagocytosisTyrosine-protein kinase LynHomo sapiens (human)
C-X-C chemokine receptor CXCR4 signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of tyrosine phosphorylation of STAT proteinTyrosine-protein kinase LynHomo sapiens (human)
response to amino acidTyrosine-protein kinase LynHomo sapiens (human)
regulation of mast cell degranulationTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of MAP kinase activityTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of MAPK cascadeTyrosine-protein kinase LynHomo sapiens (human)
regulation of erythrocyte differentiationTyrosine-protein kinase LynHomo sapiens (human)
protein autophosphorylationTyrosine-protein kinase LynHomo sapiens (human)
ephrin receptor signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
response to axon injuryTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of immune responseTyrosine-protein kinase LynHomo sapiens (human)
B cell receptor signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
regulation of B cell receptor signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
leukocyte migrationTyrosine-protein kinase LynHomo sapiens (human)
regulation of release of sequestered calcium ion into cytosolTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of glial cell proliferationTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of Fc receptor mediated stimulatory signaling pathwayTyrosine-protein kinase LynHomo sapiens (human)
growth hormone receptor signaling pathway via JAK-STATTyrosine-protein kinase LynHomo sapiens (human)
regulation of ERK1 and ERK2 cascadeTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of ERK1 and ERK2 cascadeTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of oligodendrocyte progenitor proliferationTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of mast cell proliferationTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of mast cell proliferationTyrosine-protein kinase LynHomo sapiens (human)
cellular response to retinoic acidTyrosine-protein kinase LynHomo sapiens (human)
regulation of monocyte chemotaxisTyrosine-protein kinase LynHomo sapiens (human)
regulation of platelet aggregationTyrosine-protein kinase LynHomo sapiens (human)
dendritic cell differentiationTyrosine-protein kinase LynHomo sapiens (human)
negative regulation of intracellular signal transductionTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of aspartic-type endopeptidase activity involved in amyloid precursor protein catabolic processTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of dendritic cell apoptotic processTyrosine-protein kinase LynHomo sapiens (human)
neuron projection developmentTyrosine-protein kinase LynHomo sapiens (human)
innate immune responseTyrosine-protein kinase LynHomo sapiens (human)
positive regulation of leukocyte migrationIntegrin alpha-IIbHomo sapiens (human)
cell-matrix adhesionIntegrin alpha-IIbHomo sapiens (human)
integrin-mediated signaling pathwayIntegrin alpha-IIbHomo sapiens (human)
angiogenesisIntegrin alpha-IIbHomo sapiens (human)
cell-cell adhesionIntegrin alpha-IIbHomo sapiens (human)
cell adhesion mediated by integrinIntegrin alpha-IIbHomo sapiens (human)
peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
primary ovarian follicle growthProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of cytokine productionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
stimulatory C-type lectin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signal complex assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
epidermal growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transforming growth factor beta receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
integrin-mediated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
spermatogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
learning or memoryProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to xenobiotic stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to mechanical stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to acidic pHProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of gene expressionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of epithelial cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of epithelial cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of glucose metabolic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein processingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
skeletal muscle cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of smooth muscle cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
macroautophagyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of cell-cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
platelet activationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
forebrain developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
T cell costimulationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of protein-containing complex assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein destabilizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to nutrient levelsProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of telomere maintenance via telomeraseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to insulin stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of intracellular estrogen receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of integrin activationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of toll-like receptor 3 signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
adherens junction organizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
substrate adhesion-dependent cell spreadingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of dephosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of hippo signalingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
intracellular signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
entry of bacterium into host cellProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
osteoclast developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to platelet-derived growth factor stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
Fc-gamma receptor signaling pathway involved in phagocytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ERBB2 signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
angiotensin-activated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
odontogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of vascular permeabilityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
stress fiber assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of cysteine-type endopeptidase activity involved in apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transcytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of Notch signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of Ras protein signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of insulin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein autophosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
platelet-derived growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
vascular endothelial growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
neurotrophin TRK receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ephrin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
focal adhesion assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
oogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
progesterone receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
leukocyte migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of small GTPase mediated signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein transportProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to mineralocorticoidProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
myoblast proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to electrical stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of focal adhesion assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of mitochondrial depolarizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of telomerase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
uterus developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
branching involved in mammary gland duct morphogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of cell projection assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
intestinal epithelial cell developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
interleukin-6-mediated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to hydrogen peroxideProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to interleukin-1Proto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to lipopolysaccharideProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to peptide hormone stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to progesterone stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to fatty acidProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to hypoxiaProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to fluid shear stressProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of podosome assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
DNA biosynthetic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein serine/threonine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of heart rate by cardiac conductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of canonical Wnt signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell-cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein localization to nucleusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of non-membrane spanning protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of TORC1 signalingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of vascular associated smooth muscle cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to prolactinProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of male germ cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of ovarian follicle developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of lamellipodium morphogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of platelet-derived growth factor receptor-beta signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of early endosome to late endosome transportProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of anoikisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of extrinsic apoptotic signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of caveolin-mediated endocytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell differentiationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
innate immune responseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
symbiont entry into host cellProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
G2/M transition of mitotic cell cycleG2/mitotic-specific cyclin-B1Homo sapiens (human)
in utero embryonic developmentG2/mitotic-specific cyclin-B1Homo sapiens (human)
mitotic spindle organizationG2/mitotic-specific cyclin-B1Homo sapiens (human)
mitotic metaphase chromosome alignmentG2/mitotic-specific cyclin-B1Homo sapiens (human)
positive regulation of G2/M transition of mitotic cell cycleG2/mitotic-specific cyclin-B1Homo sapiens (human)
positive regulation of mitotic cell cycleG2/mitotic-specific cyclin-B1Homo sapiens (human)
positive regulation of fibroblast proliferationG2/mitotic-specific cyclin-B1Homo sapiens (human)
cell divisionG2/mitotic-specific cyclin-B1Homo sapiens (human)
positive regulation of attachment of spindle microtubules to kinetochoreG2/mitotic-specific cyclin-B1Homo sapiens (human)
regulation of mitotic cell cycle spindle assembly checkpointG2/mitotic-specific cyclin-B1Homo sapiens (human)
positive regulation of mitochondrial ATP synthesis coupled electron transportG2/mitotic-specific cyclin-B1Homo sapiens (human)
regulation of cyclin-dependent protein serine/threonine kinase activityG2/mitotic-specific cyclin-B1Homo sapiens (human)
mitotic cell cycle phase transitionG2/mitotic-specific cyclin-B1Homo sapiens (human)
angiogenesisProtein kinase C alpha typeHomo sapiens (human)
positive regulation of endothelial cell proliferationProtein kinase C alpha typeHomo sapiens (human)
desmosome assemblyProtein kinase C alpha typeHomo sapiens (human)
chromatin remodelingProtein kinase C alpha typeHomo sapiens (human)
protein phosphorylationProtein kinase C alpha typeHomo sapiens (human)
mitotic nuclear membrane disassemblyProtein kinase C alpha typeHomo sapiens (human)
cell adhesionProtein kinase C alpha typeHomo sapiens (human)
positive regulation of endothelial cell migrationProtein kinase C alpha typeHomo sapiens (human)
positive regulation of cardiac muscle hypertrophyProtein kinase C alpha typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C alpha typeHomo sapiens (human)
peptidyl-threonine phosphorylationProtein kinase C alpha typeHomo sapiens (human)
positive regulation of cell migrationProtein kinase C alpha typeHomo sapiens (human)
positive regulation of lipopolysaccharide-mediated signaling pathwayProtein kinase C alpha typeHomo sapiens (human)
negative regulation of glial cell apoptotic processProtein kinase C alpha typeHomo sapiens (human)
regulation of mRNA stabilityProtein kinase C alpha typeHomo sapiens (human)
positive regulation of blood vessel endothelial cell migrationProtein kinase C alpha typeHomo sapiens (human)
post-translational protein modificationProtein kinase C alpha typeHomo sapiens (human)
positive regulation of macrophage differentiationProtein kinase C alpha typeHomo sapiens (human)
positive regulation of angiogenesisProtein kinase C alpha typeHomo sapiens (human)
positive regulation of bone resorptionProtein kinase C alpha typeHomo sapiens (human)
positive regulation of cell adhesionProtein kinase C alpha typeHomo sapiens (human)
positive regulation of mitotic cell cycleProtein kinase C alpha typeHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeProtein kinase C alpha typeHomo sapiens (human)
response to interleukin-1Protein kinase C alpha typeHomo sapiens (human)
regulation of platelet aggregationProtein kinase C alpha typeHomo sapiens (human)
apoptotic signaling pathwayProtein kinase C alpha typeHomo sapiens (human)
positive regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathwayProtein kinase C alpha typeHomo sapiens (human)
positive regulation of angiotensin-activated signaling pathwayProtein kinase C alpha typeHomo sapiens (human)
positive regulation of dense core granule biogenesisProtein kinase C alpha typeHomo sapiens (human)
intracellular signal transductionProtein kinase C alpha typeHomo sapiens (human)
positive regulation of insulin secretionProtein kinase C alpha typeHomo sapiens (human)
protein phosphorylationProtein kinase C eta typeHomo sapiens (human)
signal transductionProtein kinase C eta typeHomo sapiens (human)
positive regulation of macrophage derived foam cell differentiationProtein kinase C eta typeHomo sapiens (human)
cell differentiationProtein kinase C eta typeHomo sapiens (human)
negative regulation of glial cell apoptotic processProtein kinase C eta typeHomo sapiens (human)
positive regulation of keratinocyte differentiationProtein kinase C eta typeHomo sapiens (human)
positive regulation of B cell receptor signaling pathwayProtein kinase C eta typeHomo sapiens (human)
positive regulation of NF-kappaB transcription factor activityProtein kinase C eta typeHomo sapiens (human)
positive regulation of glial cell proliferationProtein kinase C eta typeHomo sapiens (human)
protein kinase C signalingProtein kinase C eta typeHomo sapiens (human)
positive regulation of protein localization to plasma membraneProtein kinase C eta typeHomo sapiens (human)
regulation of bicellular tight junction assemblyProtein kinase C eta typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C eta typeHomo sapiens (human)
intracellular signal transductionProtein kinase C eta typeHomo sapiens (human)
branching involved in blood vessel morphogenesisVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of macroautophagyVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of mitochondrial depolarizationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of mitochondrial fissionVascular endothelial growth factor receptor 2Homo sapiens (human)
angiogenesisVascular endothelial growth factor receptor 2Homo sapiens (human)
ovarian follicle developmentVascular endothelial growth factor receptor 2Homo sapiens (human)
vasculogenesisVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of protein phosphorylationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of endothelial cell proliferationVascular endothelial growth factor receptor 2Homo sapiens (human)
lymph vessel developmentVascular endothelial growth factor receptor 2Homo sapiens (human)
cell migration involved in sprouting angiogenesisVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of mesenchymal cell proliferationVascular endothelial growth factor receptor 2Homo sapiens (human)
epithelial cell maturationVascular endothelial growth factor receptor 2Homo sapiens (human)
endocardium developmentVascular endothelial growth factor receptor 2Homo sapiens (human)
endothelium developmentVascular endothelial growth factor receptor 2Homo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of cell population proliferationVascular endothelial growth factor receptor 2Homo sapiens (human)
regulation of cell shapeVascular endothelial growth factor receptor 2Homo sapiens (human)
mesenchymal cell proliferationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of endothelial cell migrationVascular endothelial growth factor receptor 2Homo sapiens (human)
negative regulation of gene expressionVascular endothelial growth factor receptor 2Homo sapiens (human)
peptidyl-tyrosine phosphorylationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of cell migrationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of BMP signaling pathwayVascular endothelial growth factor receptor 2Homo sapiens (human)
embryonic hemopoiesisVascular endothelial growth factor receptor 2Homo sapiens (human)
cellular response to vascular endothelial growth factor stimulusVascular endothelial growth factor receptor 2Homo sapiens (human)
vascular endothelial growth factor receptor-2 signaling pathwayVascular endothelial growth factor receptor 2Homo sapiens (human)
peptidyl-tyrosine autophosphorylationVascular endothelial growth factor receptor 2Homo sapiens (human)
vascular endothelial growth factor signaling pathwayVascular endothelial growth factor receptor 2Homo sapiens (human)
surfactant homeostasisVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of MAPK cascadeVascular endothelial growth factor receptor 2Homo sapiens (human)
negative regulation of neuron apoptotic processVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of blood vessel endothelial cell migrationVascular endothelial growth factor receptor 2Homo sapiens (human)
cell fate commitmentVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of angiogenesisVascular endothelial growth factor receptor 2Homo sapiens (human)
protein autophosphorylationVascular endothelial growth factor receptor 2Homo sapiens (human)
vascular endothelial growth factor receptor signaling pathwayVascular endothelial growth factor receptor 2Homo sapiens (human)
lung alveolus developmentVascular endothelial growth factor receptor 2Homo sapiens (human)
post-embryonic camera-type eye morphogenesisVascular endothelial growth factor receptor 2Homo sapiens (human)
epithelial cell proliferationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of positive chemotaxisVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of nitric-oxide synthase biosynthetic processVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of focal adhesion assemblyVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionVascular endothelial growth factor receptor 2Homo sapiens (human)
calcium ion homeostasisVascular endothelial growth factor receptor 2Homo sapiens (human)
blood vessel endothelial cell differentiationVascular endothelial growth factor receptor 2Homo sapiens (human)
vascular wound healingVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeVascular endothelial growth factor receptor 2Homo sapiens (human)
semaphorin-plexin signaling pathwayVascular endothelial growth factor receptor 2Homo sapiens (human)
stem cell proliferationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of cell migration involved in sprouting angiogenesisVascular endothelial growth factor receptor 2Homo sapiens (human)
regulation of hematopoietic progenitor cell differentiationVascular endothelial growth factor receptor 2Homo sapiens (human)
regulation of bone developmentVascular endothelial growth factor receptor 2Homo sapiens (human)
cellular response to hydrogen sulfideVascular endothelial growth factor receptor 2Homo sapiens (human)
negative regulation of endothelial cell apoptotic processVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of stem cell proliferationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of endothelial cell chemotaxisVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of vasculogenesisVascular endothelial growth factor receptor 2Homo sapiens (human)
regulation of MAPK cascadeVascular endothelial growth factor receptor 2Homo sapiens (human)
multicellular organism developmentVascular endothelial growth factor receptor 2Homo sapiens (human)
cell migrationVascular endothelial growth factor receptor 2Homo sapiens (human)
endothelial cell differentiationVascular endothelial growth factor receptor 2Homo sapiens (human)
positive regulation of kinase activityVascular endothelial growth factor receptor 2Homo sapiens (human)
adaptive immune responseTyrosine-protein kinase CSKHomo sapiens (human)
protein phosphorylationTyrosine-protein kinase CSKHomo sapiens (human)
negative regulation of cell population proliferationTyrosine-protein kinase CSKHomo sapiens (human)
negative regulation of low-density lipoprotein particle clearanceTyrosine-protein kinase CSKHomo sapiens (human)
T cell costimulationTyrosine-protein kinase CSKHomo sapiens (human)
negative regulation of interleukin-6 productionTyrosine-protein kinase CSKHomo sapiens (human)
negative regulation of Golgi to plasma membrane protein transportTyrosine-protein kinase CSKHomo sapiens (human)
negative regulation of bone resorptionTyrosine-protein kinase CSKHomo sapiens (human)
oligodendrocyte differentiationTyrosine-protein kinase CSKHomo sapiens (human)
negative regulation of phagocytosisTyrosine-protein kinase CSKHomo sapiens (human)
T cell receptor signaling pathwayTyrosine-protein kinase CSKHomo sapiens (human)
negative regulation of ERK1 and ERK2 cascadeTyrosine-protein kinase CSKHomo sapiens (human)
cellular response to peptide hormone stimulusTyrosine-protein kinase CSKHomo sapiens (human)
regulation of Fc receptor mediated stimulatory signaling pathwayTyrosine-protein kinase CSKHomo sapiens (human)
adherens junction organizationTyrosine-protein kinase CSKHomo sapiens (human)
protein phosphorylationProtein kinase C iota typeHomo sapiens (human)
protein targeting to membraneProtein kinase C iota typeHomo sapiens (human)
cytoskeleton organizationProtein kinase C iota typeHomo sapiens (human)
actin filament organizationProtein kinase C iota typeHomo sapiens (human)
positive regulation of neuron projection developmentProtein kinase C iota typeHomo sapiens (human)
vesicle-mediated transportProtein kinase C iota typeHomo sapiens (human)
cell migrationProtein kinase C iota typeHomo sapiens (human)
cellular response to insulin stimulusProtein kinase C iota typeHomo sapiens (human)
negative regulation of glial cell apoptotic processProtein kinase C iota typeHomo sapiens (human)
establishment of apical/basal cell polarityProtein kinase C iota typeHomo sapiens (human)
eye photoreceptor cell developmentProtein kinase C iota typeHomo sapiens (human)
negative regulation of apoptotic processProtein kinase C iota typeHomo sapiens (human)
negative regulation of neuron apoptotic processProtein kinase C iota typeHomo sapiens (human)
establishment or maintenance of epithelial cell apical/basal polarityProtein kinase C iota typeHomo sapiens (human)
cell-cell junction organizationProtein kinase C iota typeHomo sapiens (human)
positive regulation of Notch signaling pathwayProtein kinase C iota typeHomo sapiens (human)
positive regulation of glucose importProtein kinase C iota typeHomo sapiens (human)
secretionProtein kinase C iota typeHomo sapiens (human)
Golgi vesicle buddingProtein kinase C iota typeHomo sapiens (human)
positive regulation of NF-kappaB transcription factor activityProtein kinase C iota typeHomo sapiens (human)
positive regulation of glial cell proliferationProtein kinase C iota typeHomo sapiens (human)
membrane organizationProtein kinase C iota typeHomo sapiens (human)
cellular response to chemical stressProtein kinase C iota typeHomo sapiens (human)
response to interleukin-1Protein kinase C iota typeHomo sapiens (human)
regulation of postsynaptic membrane neurotransmitter receptor levelsProtein kinase C iota typeHomo sapiens (human)
positive regulation of protein localization to plasma membraneProtein kinase C iota typeHomo sapiens (human)
positive regulation of endothelial cell apoptotic processProtein kinase C iota typeHomo sapiens (human)
intracellular signal transductionProtein kinase C iota typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C iota typeHomo sapiens (human)
peptidyl-tyrosine phosphorylationTyrosine-protein kinase ZAP-70Homo sapiens (human)
positive thymic T cell selectionTyrosine-protein kinase ZAP-70Homo sapiens (human)
positive regulation of T cell differentiationTyrosine-protein kinase ZAP-70Homo sapiens (human)
adaptive immune responseTyrosine-protein kinase ZAP-70Homo sapiens (human)
protein phosphorylationTyrosine-protein kinase ZAP-70Homo sapiens (human)
immune responseTyrosine-protein kinase ZAP-70Homo sapiens (human)
calcium-mediated signalingTyrosine-protein kinase ZAP-70Homo sapiens (human)
T cell differentiationTyrosine-protein kinase ZAP-70Homo sapiens (human)
intracellular signal transductionTyrosine-protein kinase ZAP-70Homo sapiens (human)
T cell activationTyrosine-protein kinase ZAP-70Homo sapiens (human)
B cell activationTyrosine-protein kinase ZAP-70Homo sapiens (human)
beta selectionTyrosine-protein kinase ZAP-70Homo sapiens (human)
negative thymic T cell selectionTyrosine-protein kinase ZAP-70Homo sapiens (human)
positive regulation of alpha-beta T cell differentiationTyrosine-protein kinase ZAP-70Homo sapiens (human)
positive regulation of alpha-beta T cell proliferationTyrosine-protein kinase ZAP-70Homo sapiens (human)
positive regulation of calcium-mediated signalingTyrosine-protein kinase ZAP-70Homo sapiens (human)
T cell receptor signaling pathwayTyrosine-protein kinase ZAP-70Homo sapiens (human)
T cell aggregationTyrosine-protein kinase ZAP-70Homo sapiens (human)
T cell migrationTyrosine-protein kinase ZAP-70Homo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayTyrosine-protein kinase ZAP-70Homo sapiens (human)
cell differentiationTyrosine-protein kinase ZAP-70Homo sapiens (human)
innate immune responseTyrosine-protein kinase ZAP-70Homo sapiens (human)
MAPK cascadeProtein kinase C epsilon typeHomo sapiens (human)
macrophage activation involved in immune responseProtein kinase C epsilon typeHomo sapiens (human)
protein phosphorylationProtein kinase C epsilon typeHomo sapiens (human)
apoptotic processProtein kinase C epsilon typeHomo sapiens (human)
signal transductionProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of epithelial cell migrationProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of fibroblast migrationProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of cell-substrate adhesionProtein kinase C epsilon typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C epsilon typeHomo sapiens (human)
insulin secretionProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of actin filament polymerizationProtein kinase C epsilon typeHomo sapiens (human)
negative regulation of protein ubiquitinationProtein kinase C epsilon typeHomo sapiens (human)
cell-substrate adhesionProtein kinase C epsilon typeHomo sapiens (human)
lipopolysaccharide-mediated signaling pathwayProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of insulin secretionProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of synaptic transmission, GABAergicProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of cytokinesisProtein kinase C epsilon typeHomo sapiens (human)
locomotory exploration behaviorProtein kinase C epsilon typeHomo sapiens (human)
TRAM-dependent toll-like receptor 4 signaling pathwayProtein kinase C epsilon typeHomo sapiens (human)
Fc-gamma receptor signaling pathway involved in phagocytosisProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of canonical NF-kappaB signal transductionProtein kinase C epsilon typeHomo sapiens (human)
response to morphineProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of MAPK cascadeProtein kinase C epsilon typeHomo sapiens (human)
regulation of peptidyl-tyrosine phosphorylationProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of lipid catabolic processProtein kinase C epsilon typeHomo sapiens (human)
regulation of release of sequestered calcium ion into cytosolProtein kinase C epsilon typeHomo sapiens (human)
cell divisionProtein kinase C epsilon typeHomo sapiens (human)
establishment of localization in cellProtein kinase C epsilon typeHomo sapiens (human)
synaptic transmission, GABAergicProtein kinase C epsilon typeHomo sapiens (human)
regulation of insulin secretion involved in cellular response to glucose stimulusProtein kinase C epsilon typeHomo sapiens (human)
mucus secretionProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of mucus secretionProtein kinase C epsilon typeHomo sapiens (human)
cellular response to ethanolProtein kinase C epsilon typeHomo sapiens (human)
cellular response to prostaglandin E stimulusProtein kinase C epsilon typeHomo sapiens (human)
cellular response to hypoxiaProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of wound healingProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of protein localization to plasma membraneProtein kinase C epsilon typeHomo sapiens (human)
negative regulation of sodium ion transmembrane transporter activityProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of cellular glucuronidationProtein kinase C epsilon typeHomo sapiens (human)
intracellular signal transductionProtein kinase C epsilon typeHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeAngiopoietin-1 receptorHomo sapiens (human)
angiogenesisAngiopoietin-1 receptorHomo sapiens (human)
response to hypoxiaAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of protein phosphorylationAngiopoietin-1 receptorHomo sapiens (human)
endothelial cell proliferationAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of endothelial cell proliferationAngiopoietin-1 receptorHomo sapiens (human)
endochondral ossificationAngiopoietin-1 receptorHomo sapiens (human)
sprouting angiogenesisAngiopoietin-1 receptorHomo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayAngiopoietin-1 receptorHomo sapiens (human)
cell-cell signalingAngiopoietin-1 receptorHomo sapiens (human)
heart developmentAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of endothelial cell migrationAngiopoietin-1 receptorHomo sapiens (human)
negative regulation of angiogenesisAngiopoietin-1 receptorHomo sapiens (human)
regulation of establishment or maintenance of cell polarityAngiopoietin-1 receptorHomo sapiens (human)
substrate adhesion-dependent cell spreadingAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of Rac protein signal transductionAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of Rho protein signal transductionAngiopoietin-1 receptorHomo sapiens (human)
negative regulation of apoptotic processAngiopoietin-1 receptorHomo sapiens (human)
regulation of vascular permeabilityAngiopoietin-1 receptorHomo sapiens (human)
response to peptide hormoneAngiopoietin-1 receptorHomo sapiens (human)
response to estrogenAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of angiogenesisAngiopoietin-1 receptorHomo sapiens (human)
Tie signaling pathwayAngiopoietin-1 receptorHomo sapiens (human)
negative regulation of inflammatory responseAngiopoietin-1 receptorHomo sapiens (human)
response to cAMPAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of focal adhesion assemblyAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionAngiopoietin-1 receptorHomo sapiens (human)
definitive hemopoiesisAngiopoietin-1 receptorHomo sapiens (human)
heart trabecula formationAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeAngiopoietin-1 receptorHomo sapiens (human)
glomerulus vasculature developmentAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of intracellular signal transductionAngiopoietin-1 receptorHomo sapiens (human)
regulation of endothelial cell apoptotic processAngiopoietin-1 receptorHomo sapiens (human)
negative regulation of endothelial cell apoptotic processAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of MAPK cascadeAngiopoietin-1 receptorHomo sapiens (human)
positive regulation of kinase activityAngiopoietin-1 receptorHomo sapiens (human)
multicellular organism developmentAngiopoietin-1 receptorHomo sapiens (human)
regulation of cell growthProtein kinase C theta typeHomo sapiens (human)
regulation of DNA-templated transcriptionProtein kinase C theta typeHomo sapiens (human)
protein phosphorylationProtein kinase C theta typeHomo sapiens (human)
membrane protein ectodomain proteolysisProtein kinase C theta typeHomo sapiens (human)
inflammatory responseProtein kinase C theta typeHomo sapiens (human)
axon guidanceProtein kinase C theta typeHomo sapiens (human)
positive regulation of telomere maintenance via telomeraseProtein kinase C theta typeHomo sapiens (human)
positive regulation of interleukin-17 productionProtein kinase C theta typeHomo sapiens (human)
positive regulation of interleukin-2 productionProtein kinase C theta typeHomo sapiens (human)
positive regulation of interleukin-4 productionProtein kinase C theta typeHomo sapiens (human)
intracellular signal transductionProtein kinase C theta typeHomo sapiens (human)
CD4-positive, alpha-beta T cell proliferationProtein kinase C theta typeHomo sapiens (human)
Fc-epsilon receptor signaling pathwayProtein kinase C theta typeHomo sapiens (human)
negative regulation of insulin receptor signaling pathwayProtein kinase C theta typeHomo sapiens (human)
positive regulation of T cell activationProtein kinase C theta typeHomo sapiens (human)
positive regulation of NF-kappaB transcription factor activityProtein kinase C theta typeHomo sapiens (human)
positive regulation of telomerase activityProtein kinase C theta typeHomo sapiens (human)
cell chemotaxisProtein kinase C theta typeHomo sapiens (human)
negative regulation of T cell apoptotic processProtein kinase C theta typeHomo sapiens (human)
regulation of platelet aggregationProtein kinase C theta typeHomo sapiens (human)
positive regulation of telomere cappingProtein kinase C theta typeHomo sapiens (human)
positive regulation of T-helper 17 type immune responseProtein kinase C theta typeHomo sapiens (human)
positive regulation of CD4-positive, alpha-beta T cell proliferationProtein kinase C theta typeHomo sapiens (human)
positive regulation of T-helper 2 cell activationProtein kinase C theta typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C theta typeHomo sapiens (human)
microtubule cytoskeleton organizationProtein kinase C zeta typeHomo sapiens (human)
positive regulation of cell-matrix adhesionProtein kinase C zeta typeHomo sapiens (human)
protein phosphorylationProtein kinase C zeta typeHomo sapiens (human)
inflammatory responseProtein kinase C zeta typeHomo sapiens (human)
signal transductionProtein kinase C zeta typeHomo sapiens (human)
cell surface receptor signaling pathwayProtein kinase C zeta typeHomo sapiens (human)
long-term memoryProtein kinase C zeta typeHomo sapiens (human)
positive regulation of cell population proliferationProtein kinase C zeta typeHomo sapiens (human)
cell migrationProtein kinase C zeta typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C zeta typeHomo sapiens (human)
establishment of cell polarityProtein kinase C zeta typeHomo sapiens (human)
negative regulation of protein-containing complex assemblyProtein kinase C zeta typeHomo sapiens (human)
positive regulation of interleukin-10 productionProtein kinase C zeta typeHomo sapiens (human)
positive regulation of interleukin-13 productionProtein kinase C zeta typeHomo sapiens (human)
positive regulation of interleukin-4 productionProtein kinase C zeta typeHomo sapiens (human)
positive regulation of interleukin-5 productionProtein kinase C zeta typeHomo sapiens (human)
cellular response to insulin stimulusProtein kinase C zeta typeHomo sapiens (human)
negative regulation of apoptotic processProtein kinase C zeta typeHomo sapiens (human)
establishment or maintenance of epithelial cell apical/basal polarityProtein kinase C zeta typeHomo sapiens (human)
positive regulation of T-helper 2 cell differentiationProtein kinase C zeta typeHomo sapiens (human)
negative regulation of insulin receptor signaling pathwayProtein kinase C zeta typeHomo sapiens (human)
positive regulation of insulin receptor signaling pathwayProtein kinase C zeta typeHomo sapiens (human)
vesicle transport along microtubuleProtein kinase C zeta typeHomo sapiens (human)
negative regulation of peptidyl-tyrosine phosphorylationProtein kinase C zeta typeHomo sapiens (human)
positive regulation of NF-kappaB transcription factor activityProtein kinase C zeta typeHomo sapiens (human)
positive regulation of protein transportProtein kinase C zeta typeHomo sapiens (human)
membrane depolarizationProtein kinase C zeta typeHomo sapiens (human)
membrane hyperpolarizationProtein kinase C zeta typeHomo sapiens (human)
long-term synaptic potentiationProtein kinase C zeta typeHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeProtein kinase C zeta typeHomo sapiens (human)
protein kinase C signalingProtein kinase C zeta typeHomo sapiens (human)
protein localization to plasma membraneProtein kinase C zeta typeHomo sapiens (human)
regulation of neurotransmitter receptor localization to postsynaptic specialization membraneProtein kinase C zeta typeHomo sapiens (human)
neuron projection extensionProtein kinase C zeta typeHomo sapiens (human)
positive regulation of excitatory postsynaptic potentialProtein kinase C zeta typeHomo sapiens (human)
positive regulation of T-helper 2 cell cytokine productionProtein kinase C zeta typeHomo sapiens (human)
intracellular signal transductionProtein kinase C zeta typeHomo sapiens (human)
protein phosphorylationProtein kinase C delta typeHomo sapiens (human)
apoptotic processProtein kinase C delta typeHomo sapiens (human)
DNA damage responseProtein kinase C delta typeHomo sapiens (human)
signal transductionProtein kinase C delta typeHomo sapiens (human)
intrinsic apoptotic signaling pathway in response to oxidative stressProtein kinase C delta typeHomo sapiens (human)
regulation of signaling receptor activityProtein kinase C delta typeHomo sapiens (human)
immunoglobulin mediated immune responseProtein kinase C delta typeHomo sapiens (human)
peptidyl-serine phosphorylationProtein kinase C delta typeHomo sapiens (human)
peptidyl-threonine phosphorylationProtein kinase C delta typeHomo sapiens (human)
termination of signal transductionProtein kinase C delta typeHomo sapiens (human)
negative regulation of actin filament polymerizationProtein kinase C delta typeHomo sapiens (human)
positive regulation of endodeoxyribonuclease activityProtein kinase C delta typeHomo sapiens (human)
negative regulation of protein bindingProtein kinase C delta typeHomo sapiens (human)
activation of protein kinase activityProtein kinase C delta typeHomo sapiens (human)
positive regulation of superoxide anion generationProtein kinase C delta typeHomo sapiens (human)
regulation of actin cytoskeleton organizationProtein kinase C delta typeHomo sapiens (human)
negative regulation of glial cell apoptotic processProtein kinase C delta typeHomo sapiens (human)
cellular response to UVProtein kinase C delta typeHomo sapiens (human)
positive regulation of protein dephosphorylationProtein kinase C delta typeHomo sapiens (human)
Fc-gamma receptor signaling pathway involved in phagocytosisProtein kinase C delta typeHomo sapiens (human)
B cell proliferationProtein kinase C delta typeHomo sapiens (human)
neutrophil activationProtein kinase C delta typeHomo sapiens (human)
positive regulation of protein import into nucleusProtein kinase C delta typeHomo sapiens (human)
defense response to bacteriumProtein kinase C delta typeHomo sapiens (human)
negative regulation of MAP kinase activityProtein kinase C delta typeHomo sapiens (human)
regulation of mRNA stabilityProtein kinase C delta typeHomo sapiens (human)
post-translational protein modificationProtein kinase C delta typeHomo sapiens (human)
negative regulation of insulin receptor signaling pathwayProtein kinase C delta typeHomo sapiens (human)
negative regulation of inflammatory responseProtein kinase C delta typeHomo sapiens (human)
negative regulation of peptidyl-tyrosine phosphorylationProtein kinase C delta typeHomo sapiens (human)
protein stabilizationProtein kinase C delta typeHomo sapiens (human)
negative regulation of filopodium assemblyProtein kinase C delta typeHomo sapiens (human)
cell chemotaxisProtein kinase C delta typeHomo sapiens (human)
cellular response to hydrogen peroxideProtein kinase C delta typeHomo sapiens (human)
cellular response to hydroperoxideProtein kinase C delta typeHomo sapiens (human)
negative regulation of platelet aggregationProtein kinase C delta typeHomo sapiens (human)
cellular senescenceProtein kinase C delta typeHomo sapiens (human)
positive regulation of phospholipid scramblase activityProtein kinase C delta typeHomo sapiens (human)
cellular response to angiotensinProtein kinase C delta typeHomo sapiens (human)
regulation of ceramide biosynthetic processProtein kinase C delta typeHomo sapiens (human)
positive regulation of ceramide biosynthetic processProtein kinase C delta typeHomo sapiens (human)
positive regulation of glucosylceramide catabolic processProtein kinase C delta typeHomo sapiens (human)
positive regulation of sphingomyelin catabolic processProtein kinase C delta typeHomo sapiens (human)
positive regulation of apoptotic signaling pathwayProtein kinase C delta typeHomo sapiens (human)
intracellular signal transductionProtein kinase C delta typeHomo sapiens (human)
neutrophil homeostasisTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of type III hypersensitivityTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of type I hypersensitivityTyrosine-protein kinase BTKHomo sapiens (human)
adaptive immune responseTyrosine-protein kinase BTKHomo sapiens (human)
B cell affinity maturationTyrosine-protein kinase BTKHomo sapiens (human)
histamine secretion by mast cellTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of immunoglobulin productionTyrosine-protein kinase BTKHomo sapiens (human)
regulation of B cell cytokine productionTyrosine-protein kinase BTKHomo sapiens (human)
MyD88-dependent toll-like receptor signaling pathwayTyrosine-protein kinase BTKHomo sapiens (human)
regulation of B cell apoptotic processTyrosine-protein kinase BTKHomo sapiens (human)
protein phosphorylationTyrosine-protein kinase BTKHomo sapiens (human)
mesoderm developmentTyrosine-protein kinase BTKHomo sapiens (human)
peptidyl-tyrosine phosphorylationTyrosine-protein kinase BTKHomo sapiens (human)
calcium-mediated signalingTyrosine-protein kinase BTKHomo sapiens (human)
proteoglycan catabolic processTyrosine-protein kinase BTKHomo sapiens (human)
negative regulation of B cell proliferationTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of B cell proliferationTyrosine-protein kinase BTKHomo sapiens (human)
response to lipopolysaccharideTyrosine-protein kinase BTKHomo sapiens (human)
negative regulation of interleukin-10 productionTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of interleukin-6 productionTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of tumor necrosis factor productionTyrosine-protein kinase BTKHomo sapiens (human)
cellular response to reactive oxygen speciesTyrosine-protein kinase BTKHomo sapiens (human)
intracellular signal transductionTyrosine-protein kinase BTKHomo sapiens (human)
Fc-epsilon receptor signaling pathwayTyrosine-protein kinase BTKHomo sapiens (human)
B cell activationTyrosine-protein kinase BTKHomo sapiens (human)
innate immune responseTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of B cell differentiationTyrosine-protein kinase BTKHomo sapiens (human)
cell maturationTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of phagocytosisTyrosine-protein kinase BTKHomo sapiens (human)
B cell receptor signaling pathwayTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of NF-kappaB transcription factor activityTyrosine-protein kinase BTKHomo sapiens (human)
monocyte proliferationTyrosine-protein kinase BTKHomo sapiens (human)
cellular response to molecule of fungal originTyrosine-protein kinase BTKHomo sapiens (human)
apoptotic signaling pathwayTyrosine-protein kinase BTKHomo sapiens (human)
cellular response to interleukin-7Tyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of interleukin-17A productionTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of NLRP3 inflammasome complex assemblyTyrosine-protein kinase BTKHomo sapiens (human)
positive regulation of synoviocyte proliferationTyrosine-protein kinase BTKHomo sapiens (human)
eosinophil homeostasisTyrosine-protein kinase BTKHomo sapiens (human)
T cell receptor signaling pathwayTyrosine-protein kinase BTKHomo sapiens (human)
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
peptidyl-threonine phosphorylationSerine/threonine-protein kinase D1Homo sapiens (human)
angiogenesisSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of endothelial cell proliferationSerine/threonine-protein kinase D1Homo sapiens (human)
apoptotic processSerine/threonine-protein kinase D1Homo sapiens (human)
inflammatory responseSerine/threonine-protein kinase D1Homo sapiens (human)
Golgi organizationSerine/threonine-protein kinase D1Homo sapiens (human)
signal transductionSerine/threonine-protein kinase D1Homo sapiens (human)
integrin-mediated signaling pathwaySerine/threonine-protein kinase D1Homo sapiens (human)
nervous system developmentSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of autophagySerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of endothelial cell migrationSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of gene expressionSerine/threonine-protein kinase D1Homo sapiens (human)
regulation of keratinocyte proliferationSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of neuron projection developmentSerine/threonine-protein kinase D1Homo sapiens (human)
regulation of skeletal muscle contraction by modulation of calcium ion sensitivity of myofibrilSerine/threonine-protein kinase D1Homo sapiens (human)
peptidyl-serine phosphorylationSerine/threonine-protein kinase D1Homo sapiens (human)
peptidyl-threonine phosphorylationSerine/threonine-protein kinase D1Homo sapiens (human)
sphingolipid biosynthetic processSerine/threonine-protein kinase D1Homo sapiens (human)
cell differentiationSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of peptidyl-serine phosphorylationSerine/threonine-protein kinase D1Homo sapiens (human)
cellular response to amino acid starvationSerine/threonine-protein kinase D1Homo sapiens (human)
cellular response to oxidative stressSerine/threonine-protein kinase D1Homo sapiens (human)
intracellular signal transductionSerine/threonine-protein kinase D1Homo sapiens (human)
cellular response to vascular endothelial growth factor stimulusSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of protein import into nucleusSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of canonical NF-kappaB signal transductionSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of blood vessel endothelial cell migrationSerine/threonine-protein kinase D1Homo sapiens (human)
innate immune responseSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of osteoblast differentiationSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of angiogenesisSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of cell sizeSerine/threonine-protein kinase D1Homo sapiens (human)
negative regulation of endocytosisSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of transcription by RNA polymerase IISerine/threonine-protein kinase D1Homo sapiens (human)
protein autophosphorylationSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of protein export from nucleusSerine/threonine-protein kinase D1Homo sapiens (human)
vascular endothelial growth factor receptor signaling pathwaySerine/threonine-protein kinase D1Homo sapiens (human)
Golgi vesicle transportSerine/threonine-protein kinase D1Homo sapiens (human)
defense response to Gram-negative bacteriumSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of NF-kappaB transcription factor activitySerine/threonine-protein kinase D1Homo sapiens (human)
regulation of release of sequestered calcium ion into cytosolSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of sarcomere organizationSerine/threonine-protein kinase D1Homo sapiens (human)
cellular response to hydroperoxideSerine/threonine-protein kinase D1Homo sapiens (human)
cellular response to norepinephrine stimulusSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of peptide hormone secretionSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of NLRP3 inflammasome complex assemblySerine/threonine-protein kinase D1Homo sapiens (human)
cellular response to angiotensinSerine/threonine-protein kinase D1Homo sapiens (human)
cellular response to phorbol 13-acetate 12-myristateSerine/threonine-protein kinase D1Homo sapiens (human)
cellular response to endothelinSerine/threonine-protein kinase D1Homo sapiens (human)
positive regulation of endothelial cell chemotaxisSerine/threonine-protein kinase D1Homo sapiens (human)
regulation of integrin-mediated signaling pathwaySerine/threonine-protein kinase D1Homo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwaySerine/threonine-protein kinase D1Homo sapiens (human)
cell divisionG2/mitotic-specific cyclin-B3Homo sapiens (human)
meiotic cell cycleG2/mitotic-specific cyclin-B3Homo sapiens (human)
regulation of cyclin-dependent protein serine/threonine kinase activityG2/mitotic-specific cyclin-B3Homo sapiens (human)
mitotic cell cycle phase transitionG2/mitotic-specific cyclin-B3Homo sapiens (human)
negative regulation of receptor internalizationAtaxin-2Homo sapiens (human)
regulation of translationAtaxin-2Homo sapiens (human)
RNA metabolic processAtaxin-2Homo sapiens (human)
P-body assemblyAtaxin-2Homo sapiens (human)
stress granule assemblyAtaxin-2Homo sapiens (human)
RNA transportAtaxin-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (137)

Processvia Protein(s)Taxonomy
iron ion bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
calcium ion bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
protein bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipid bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleate 13S-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonate 8(S)-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonate 15-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleate 9S-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activitySerine/threonine-protein kinase D3Homo sapiens (human)
protein bindingSerine/threonine-protein kinase D3Homo sapiens (human)
ATP bindingSerine/threonine-protein kinase D3Homo sapiens (human)
kinase activitySerine/threonine-protein kinase D3Homo sapiens (human)
metal ion bindingSerine/threonine-protein kinase D3Homo sapiens (human)
protein serine kinase activitySerine/threonine-protein kinase D3Homo sapiens (human)
protein serine/threonine kinase activitySerine/threonine-protein kinase D3Homo sapiens (human)
protein bindingG2/mitotic-specific cyclin-B2Homo sapiens (human)
cadherin bindingG2/mitotic-specific cyclin-B2Homo sapiens (human)
cyclin-dependent protein serine/threonine kinase regulator activityG2/mitotic-specific cyclin-B2Homo sapiens (human)
epidermal growth factor receptor activityEpidermal growth factor receptorHomo sapiens (human)
virus receptor activityEpidermal growth factor receptorHomo sapiens (human)
chromatin bindingEpidermal growth factor receptorHomo sapiens (human)
double-stranded DNA bindingEpidermal growth factor receptorHomo sapiens (human)
MAP kinase kinase kinase activityEpidermal growth factor receptorHomo sapiens (human)
protein tyrosine kinase activityEpidermal growth factor receptorHomo sapiens (human)
transmembrane receptor protein tyrosine kinase activityEpidermal growth factor receptorHomo sapiens (human)
transmembrane signaling receptor activityEpidermal growth factor receptorHomo sapiens (human)
epidermal growth factor receptor activityEpidermal growth factor receptorHomo sapiens (human)
integrin bindingEpidermal growth factor receptorHomo sapiens (human)
protein bindingEpidermal growth factor receptorHomo sapiens (human)
calmodulin bindingEpidermal growth factor receptorHomo sapiens (human)
ATP bindingEpidermal growth factor receptorHomo sapiens (human)
enzyme bindingEpidermal growth factor receptorHomo sapiens (human)
kinase bindingEpidermal growth factor receptorHomo sapiens (human)
protein kinase bindingEpidermal growth factor receptorHomo sapiens (human)
protein phosphatase bindingEpidermal growth factor receptorHomo sapiens (human)
protein tyrosine kinase activator activityEpidermal growth factor receptorHomo sapiens (human)
transmembrane receptor protein tyrosine kinase activator activityEpidermal growth factor receptorHomo sapiens (human)
ubiquitin protein ligase bindingEpidermal growth factor receptorHomo sapiens (human)
identical protein bindingEpidermal growth factor receptorHomo sapiens (human)
cadherin bindingEpidermal growth factor receptorHomo sapiens (human)
actin filament bindingEpidermal growth factor receptorHomo sapiens (human)
ATPase bindingEpidermal growth factor receptorHomo sapiens (human)
epidermal growth factor bindingEpidermal growth factor receptorHomo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingAmyloid-beta precursor proteinHomo sapiens (human)
DNA bindingAmyloid-beta precursor proteinHomo sapiens (human)
serine-type endopeptidase inhibitor activityAmyloid-beta precursor proteinHomo sapiens (human)
signaling receptor bindingAmyloid-beta precursor proteinHomo sapiens (human)
protein bindingAmyloid-beta precursor proteinHomo sapiens (human)
heparin bindingAmyloid-beta precursor proteinHomo sapiens (human)
enzyme bindingAmyloid-beta precursor proteinHomo sapiens (human)
identical protein bindingAmyloid-beta precursor proteinHomo sapiens (human)
transition metal ion bindingAmyloid-beta precursor proteinHomo sapiens (human)
receptor ligand activityAmyloid-beta precursor proteinHomo sapiens (human)
PTB domain bindingAmyloid-beta precursor proteinHomo sapiens (human)
protein serine/threonine kinase bindingAmyloid-beta precursor proteinHomo sapiens (human)
signaling receptor activator activityAmyloid-beta precursor proteinHomo sapiens (human)
fibroblast growth factor bindingIntegrin beta-3Homo sapiens (human)
C-X3-C chemokine bindingIntegrin beta-3Homo sapiens (human)
insulin-like growth factor I bindingIntegrin beta-3Homo sapiens (human)
neuregulin bindingIntegrin beta-3Homo sapiens (human)
virus receptor activityIntegrin beta-3Homo sapiens (human)
fibronectin bindingIntegrin beta-3Homo sapiens (human)
protease bindingIntegrin beta-3Homo sapiens (human)
protein disulfide isomerase activityIntegrin beta-3Homo sapiens (human)
protein kinase C bindingIntegrin beta-3Homo sapiens (human)
platelet-derived growth factor receptor bindingIntegrin beta-3Homo sapiens (human)
integrin bindingIntegrin beta-3Homo sapiens (human)
protein bindingIntegrin beta-3Homo sapiens (human)
coreceptor activityIntegrin beta-3Homo sapiens (human)
enzyme bindingIntegrin beta-3Homo sapiens (human)
identical protein bindingIntegrin beta-3Homo sapiens (human)
vascular endothelial growth factor receptor 2 bindingIntegrin beta-3Homo sapiens (human)
metal ion bindingIntegrin beta-3Homo sapiens (human)
cell adhesion molecule bindingIntegrin beta-3Homo sapiens (human)
extracellular matrix bindingIntegrin beta-3Homo sapiens (human)
fibrinogen bindingIntegrin beta-3Homo sapiens (human)
protein kinase activityProtein kinase C gamma typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C gamma typeHomo sapiens (human)
calcium,diacylglycerol-dependent serine/threonine kinase activityProtein kinase C gamma typeHomo sapiens (human)
protein serine/threonine/tyrosine kinase activityProtein kinase C gamma typeHomo sapiens (human)
protein bindingProtein kinase C gamma typeHomo sapiens (human)
ATP bindingProtein kinase C gamma typeHomo sapiens (human)
zinc ion bindingProtein kinase C gamma typeHomo sapiens (human)
protein serine kinase activityProtein kinase C gamma typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C gamma typeHomo sapiens (human)
chromatin bindingProtein kinase C beta typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C beta typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C beta typeHomo sapiens (human)
protein kinase C bindingProtein kinase C beta typeHomo sapiens (human)
calcium channel regulator activityProtein kinase C beta typeHomo sapiens (human)
protein bindingProtein kinase C beta typeHomo sapiens (human)
ATP bindingProtein kinase C beta typeHomo sapiens (human)
zinc ion bindingProtein kinase C beta typeHomo sapiens (human)
nuclear receptor coactivator activityProtein kinase C beta typeHomo sapiens (human)
histone H3T6 kinase activityProtein kinase C beta typeHomo sapiens (human)
histone bindingProtein kinase C beta typeHomo sapiens (human)
nuclear androgen receptor bindingProtein kinase C beta typeHomo sapiens (human)
protein serine kinase activityProtein kinase C beta typeHomo sapiens (human)
phosphotyrosine residue bindingTyrosine-protein kinase LckHomo sapiens (human)
protein tyrosine kinase activityTyrosine-protein kinase LckHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityTyrosine-protein kinase LckHomo sapiens (human)
protein serine/threonine phosphatase activityTyrosine-protein kinase LckHomo sapiens (human)
protein bindingTyrosine-protein kinase LckHomo sapiens (human)
ATP bindingTyrosine-protein kinase LckHomo sapiens (human)
phospholipase activator activityTyrosine-protein kinase LckHomo sapiens (human)
protein kinase bindingTyrosine-protein kinase LckHomo sapiens (human)
protein phosphatase bindingTyrosine-protein kinase LckHomo sapiens (human)
SH2 domain bindingTyrosine-protein kinase LckHomo sapiens (human)
T cell receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
CD4 receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
CD8 receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
identical protein bindingTyrosine-protein kinase LckHomo sapiens (human)
phospholipase bindingTyrosine-protein kinase LckHomo sapiens (human)
phosphatidylinositol 3-kinase bindingTyrosine-protein kinase LckHomo sapiens (human)
ATPase bindingTyrosine-protein kinase LckHomo sapiens (human)
signaling receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
protein tyrosine kinase activityTyrosine-protein kinase FynHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityTyrosine-protein kinase FynHomo sapiens (human)
protein bindingTyrosine-protein kinase FynHomo sapiens (human)
ATP bindingTyrosine-protein kinase FynHomo sapiens (human)
phospholipase activator activityTyrosine-protein kinase FynHomo sapiens (human)
enzyme bindingTyrosine-protein kinase FynHomo sapiens (human)
type 5 metabotropic glutamate receptor bindingTyrosine-protein kinase FynHomo sapiens (human)
identical protein bindingTyrosine-protein kinase FynHomo sapiens (human)
alpha-tubulin bindingTyrosine-protein kinase FynHomo sapiens (human)
phospholipase bindingTyrosine-protein kinase FynHomo sapiens (human)
transmembrane transporter bindingTyrosine-protein kinase FynHomo sapiens (human)
metal ion bindingTyrosine-protein kinase FynHomo sapiens (human)
ephrin receptor bindingTyrosine-protein kinase FynHomo sapiens (human)
tau protein bindingTyrosine-protein kinase FynHomo sapiens (human)
tau-protein kinase activityTyrosine-protein kinase FynHomo sapiens (human)
growth factor receptor bindingTyrosine-protein kinase FynHomo sapiens (human)
scaffold protein bindingTyrosine-protein kinase FynHomo sapiens (human)
disordered domain specific bindingTyrosine-protein kinase FynHomo sapiens (human)
signaling receptor bindingTyrosine-protein kinase FynHomo sapiens (human)
virus receptor activityCyclin-dependent kinase 1Homo sapiens (human)
chromatin bindingCyclin-dependent kinase 1Homo sapiens (human)
protein kinase activityCyclin-dependent kinase 1Homo sapiens (human)
protein serine/threonine kinase activityCyclin-dependent kinase 1Homo sapiens (human)
cyclin-dependent protein serine/threonine kinase activityCyclin-dependent kinase 1Homo sapiens (human)
protein bindingCyclin-dependent kinase 1Homo sapiens (human)
ATP bindingCyclin-dependent kinase 1Homo sapiens (human)
RNA polymerase II CTD heptapeptide repeat kinase activityCyclin-dependent kinase 1Homo sapiens (human)
kinase activityCyclin-dependent kinase 1Homo sapiens (human)
cyclin bindingCyclin-dependent kinase 1Homo sapiens (human)
Hsp70 protein bindingCyclin-dependent kinase 1Homo sapiens (human)
histone kinase activityCyclin-dependent kinase 1Homo sapiens (human)
cyclin-dependent protein kinase activityCyclin-dependent kinase 1Homo sapiens (human)
protein serine kinase activityCyclin-dependent kinase 1Homo sapiens (human)
protein tyrosine kinase activityTyrosine-protein kinase LynHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityTyrosine-protein kinase LynHomo sapiens (human)
platelet-derived growth factor receptor bindingTyrosine-protein kinase LynHomo sapiens (human)
integrin bindingTyrosine-protein kinase LynHomo sapiens (human)
protein bindingTyrosine-protein kinase LynHomo sapiens (human)
ATP bindingTyrosine-protein kinase LynHomo sapiens (human)
kinase activityTyrosine-protein kinase LynHomo sapiens (human)
SH3 domain bindingTyrosine-protein kinase LynHomo sapiens (human)
ubiquitin protein ligase bindingTyrosine-protein kinase LynHomo sapiens (human)
gamma-tubulin bindingTyrosine-protein kinase LynHomo sapiens (human)
glycosphingolipid bindingTyrosine-protein kinase LynHomo sapiens (human)
transmembrane transporter bindingTyrosine-protein kinase LynHomo sapiens (human)
ephrin receptor bindingTyrosine-protein kinase LynHomo sapiens (human)
phosphoprotein bindingTyrosine-protein kinase LynHomo sapiens (human)
scaffold protein bindingTyrosine-protein kinase LynHomo sapiens (human)
phosphorylation-dependent protein bindingTyrosine-protein kinase LynHomo sapiens (human)
phosphatidylinositol 3-kinase activator activityTyrosine-protein kinase LynHomo sapiens (human)
signaling receptor bindingTyrosine-protein kinase LynHomo sapiens (human)
protein bindingIntegrin alpha-IIbHomo sapiens (human)
identical protein bindingIntegrin alpha-IIbHomo sapiens (human)
metal ion bindingIntegrin alpha-IIbHomo sapiens (human)
extracellular matrix bindingIntegrin alpha-IIbHomo sapiens (human)
molecular adaptor activityIntegrin alpha-IIbHomo sapiens (human)
fibrinogen bindingIntegrin alpha-IIbHomo sapiens (human)
integrin bindingIntegrin alpha-IIbHomo sapiens (human)
protein kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein kinase C bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signaling receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
insulin receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
integrin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ATP bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phospholipase activator activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
enzyme bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
heme bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
nuclear estrogen receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
SH2 domain bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phospholipase bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transmembrane transporter bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cadherin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ephrin receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ATPase bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phosphoprotein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
BMP receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
connexin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
scaffold protein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
patched bindingG2/mitotic-specific cyclin-B1Homo sapiens (human)
protein bindingG2/mitotic-specific cyclin-B1Homo sapiens (human)
protein kinase bindingG2/mitotic-specific cyclin-B1Homo sapiens (human)
ubiquitin-like protein ligase bindingG2/mitotic-specific cyclin-B1Homo sapiens (human)
cyclin-dependent protein serine/threonine kinase activator activityG2/mitotic-specific cyclin-B1Homo sapiens (human)
cyclin-dependent protein serine/threonine kinase regulator activityG2/mitotic-specific cyclin-B1Homo sapiens (human)
protein kinase activityProtein kinase C alpha typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C alpha typeHomo sapiens (human)
calcium,diacylglycerol-dependent serine/threonine kinase activityProtein kinase C alpha typeHomo sapiens (human)
integrin bindingProtein kinase C alpha typeHomo sapiens (human)
protein bindingProtein kinase C alpha typeHomo sapiens (human)
ATP bindingProtein kinase C alpha typeHomo sapiens (human)
zinc ion bindingProtein kinase C alpha typeHomo sapiens (human)
enzyme bindingProtein kinase C alpha typeHomo sapiens (human)
histone H3T6 kinase activityProtein kinase C alpha typeHomo sapiens (human)
protein serine kinase activityProtein kinase C alpha typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C alpha typeHomo sapiens (human)
diacylglycerol bindingProtein kinase C alpha typeHomo sapiens (human)
protein kinase activityProtein kinase C eta typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C eta typeHomo sapiens (human)
diacylglycerol-dependent, calcium-independent serine/threonine kinase activityProtein kinase C eta typeHomo sapiens (human)
protein bindingProtein kinase C eta typeHomo sapiens (human)
ATP bindingProtein kinase C eta typeHomo sapiens (human)
enzyme bindingProtein kinase C eta typeHomo sapiens (human)
small GTPase bindingProtein kinase C eta typeHomo sapiens (human)
metal ion bindingProtein kinase C eta typeHomo sapiens (human)
protein serine kinase activityProtein kinase C eta typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C eta typeHomo sapiens (human)
protein tyrosine kinase activityVascular endothelial growth factor receptor 2Homo sapiens (human)
transmembrane receptor protein tyrosine kinase activityVascular endothelial growth factor receptor 2Homo sapiens (human)
vascular endothelial growth factor receptor activityVascular endothelial growth factor receptor 2Homo sapiens (human)
integrin bindingVascular endothelial growth factor receptor 2Homo sapiens (human)
protein bindingVascular endothelial growth factor receptor 2Homo sapiens (human)
ATP bindingVascular endothelial growth factor receptor 2Homo sapiens (human)
coreceptor activityVascular endothelial growth factor receptor 2Homo sapiens (human)
growth factor bindingVascular endothelial growth factor receptor 2Homo sapiens (human)
vascular endothelial growth factor bindingVascular endothelial growth factor receptor 2Homo sapiens (human)
identical protein bindingVascular endothelial growth factor receptor 2Homo sapiens (human)
cadherin bindingVascular endothelial growth factor receptor 2Homo sapiens (human)
Hsp90 protein bindingVascular endothelial growth factor receptor 2Homo sapiens (human)
protein tyrosine kinase activityTyrosine-protein kinase CSKHomo sapiens (human)
protein bindingTyrosine-protein kinase CSKHomo sapiens (human)
ATP bindingTyrosine-protein kinase CSKHomo sapiens (human)
protein phosphatase bindingTyrosine-protein kinase CSKHomo sapiens (human)
protein kinase A catalytic subunit bindingTyrosine-protein kinase CSKHomo sapiens (human)
identical protein bindingTyrosine-protein kinase CSKHomo sapiens (human)
metal ion bindingTyrosine-protein kinase CSKHomo sapiens (human)
proline-rich region bindingTyrosine-protein kinase CSKHomo sapiens (human)
protein tyrosine kinase bindingTyrosine-protein kinase CSKHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityTyrosine-protein kinase CSKHomo sapiens (human)
protein kinase activityProtein kinase C iota typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C iota typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C iota typeHomo sapiens (human)
protein bindingProtein kinase C iota typeHomo sapiens (human)
ATP bindingProtein kinase C iota typeHomo sapiens (human)
phospholipid bindingProtein kinase C iota typeHomo sapiens (human)
metal ion bindingProtein kinase C iota typeHomo sapiens (human)
protein serine kinase activityProtein kinase C iota typeHomo sapiens (human)
phosphotyrosine residue bindingTyrosine-protein kinase ZAP-70Homo sapiens (human)
protein tyrosine kinase activityTyrosine-protein kinase ZAP-70Homo sapiens (human)
non-membrane spanning protein tyrosine kinase activityTyrosine-protein kinase ZAP-70Homo sapiens (human)
protein bindingTyrosine-protein kinase ZAP-70Homo sapiens (human)
ATP bindingTyrosine-protein kinase ZAP-70Homo sapiens (human)
signaling receptor bindingTyrosine-protein kinase ZAP-70Homo sapiens (human)
actin monomer bindingProtein kinase C epsilon typeHomo sapiens (human)
protein kinase activityProtein kinase C epsilon typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C epsilon typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C epsilon typeHomo sapiens (human)
diacylglycerol-dependent, calcium-independent serine/threonine kinase activityProtein kinase C epsilon typeHomo sapiens (human)
protein bindingProtein kinase C epsilon typeHomo sapiens (human)
ATP bindingProtein kinase C epsilon typeHomo sapiens (human)
enzyme activator activityProtein kinase C epsilon typeHomo sapiens (human)
enzyme bindingProtein kinase C epsilon typeHomo sapiens (human)
signaling receptor activator activityProtein kinase C epsilon typeHomo sapiens (human)
ethanol bindingProtein kinase C epsilon typeHomo sapiens (human)
metal ion bindingProtein kinase C epsilon typeHomo sapiens (human)
14-3-3 protein bindingProtein kinase C epsilon typeHomo sapiens (human)
protein serine kinase activityProtein kinase C epsilon typeHomo sapiens (human)
protein kinase activityAngiopoietin-1 receptorHomo sapiens (human)
transmembrane receptor protein tyrosine kinase activityAngiopoietin-1 receptorHomo sapiens (human)
protein bindingAngiopoietin-1 receptorHomo sapiens (human)
ATP bindingAngiopoietin-1 receptorHomo sapiens (human)
growth factor bindingAngiopoietin-1 receptorHomo sapiens (human)
signaling receptor activityAngiopoietin-1 receptorHomo sapiens (human)
identical protein bindingAngiopoietin-1 receptorHomo sapiens (human)
protein kinase activityProtein kinase C theta typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C theta typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C theta typeHomo sapiens (human)
protein bindingProtein kinase C theta typeHomo sapiens (human)
ATP bindingProtein kinase C theta typeHomo sapiens (human)
metal ion bindingProtein kinase C theta typeHomo sapiens (human)
protein serine kinase activityProtein kinase C theta typeHomo sapiens (human)
protein kinase activityProtein kinase C zeta typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C zeta typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C zeta typeHomo sapiens (human)
protein bindingProtein kinase C zeta typeHomo sapiens (human)
ATP bindingProtein kinase C zeta typeHomo sapiens (human)
potassium channel regulator activityProtein kinase C zeta typeHomo sapiens (human)
protein kinase bindingProtein kinase C zeta typeHomo sapiens (human)
phospholipase bindingProtein kinase C zeta typeHomo sapiens (human)
insulin receptor substrate bindingProtein kinase C zeta typeHomo sapiens (human)
protein-containing complex bindingProtein kinase C zeta typeHomo sapiens (human)
metal ion bindingProtein kinase C zeta typeHomo sapiens (human)
14-3-3 protein bindingProtein kinase C zeta typeHomo sapiens (human)
protein serine kinase activityProtein kinase C zeta typeHomo sapiens (human)
protein kinase activityProtein kinase C delta typeHomo sapiens (human)
protein serine/threonine kinase activityProtein kinase C delta typeHomo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activityProtein kinase C delta typeHomo sapiens (human)
diacylglycerol-dependent, calcium-independent serine/threonine kinase activityProtein kinase C delta typeHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityProtein kinase C delta typeHomo sapiens (human)
protein bindingProtein kinase C delta typeHomo sapiens (human)
ATP bindingProtein kinase C delta typeHomo sapiens (human)
enzyme activator activityProtein kinase C delta typeHomo sapiens (human)
enzyme bindingProtein kinase C delta typeHomo sapiens (human)
protein kinase bindingProtein kinase C delta typeHomo sapiens (human)
insulin receptor substrate bindingProtein kinase C delta typeHomo sapiens (human)
metal ion bindingProtein kinase C delta typeHomo sapiens (human)
protein serine kinase activityProtein kinase C delta typeHomo sapiens (human)
protein tyrosine kinase activityTyrosine-protein kinase BTKHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityTyrosine-protein kinase BTKHomo sapiens (human)
protein bindingTyrosine-protein kinase BTKHomo sapiens (human)
ATP bindingTyrosine-protein kinase BTKHomo sapiens (human)
phosphatidylinositol-3,4,5-trisphosphate bindingTyrosine-protein kinase BTKHomo sapiens (human)
phospholipase activator activityTyrosine-protein kinase BTKHomo sapiens (human)
identical protein bindingTyrosine-protein kinase BTKHomo sapiens (human)
phospholipase bindingTyrosine-protein kinase BTKHomo sapiens (human)
metal ion bindingTyrosine-protein kinase BTKHomo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
protein serine/threonine kinase activitySerine/threonine-protein kinase D1Homo sapiens (human)
diacylglycerol-dependent serine/threonine kinase activitySerine/threonine-protein kinase D1Homo sapiens (human)
protein kinase C bindingSerine/threonine-protein kinase D1Homo sapiens (human)
protein bindingSerine/threonine-protein kinase D1Homo sapiens (human)
ATP bindingSerine/threonine-protein kinase D1Homo sapiens (human)
kinase activitySerine/threonine-protein kinase D1Homo sapiens (human)
heat shock protein bindingSerine/threonine-protein kinase D1Homo sapiens (human)
identical protein bindingSerine/threonine-protein kinase D1Homo sapiens (human)
metal ion bindingSerine/threonine-protein kinase D1Homo sapiens (human)
protein serine kinase activitySerine/threonine-protein kinase D1Homo sapiens (human)
phosphatidylinositol 3-kinase activator activitySerine/threonine-protein kinase D1Homo sapiens (human)
protein bindingG2/mitotic-specific cyclin-B3Homo sapiens (human)
cyclin-dependent protein serine/threonine kinase regulator activityG2/mitotic-specific cyclin-B3Homo sapiens (human)
RNA bindingAtaxin-2Homo sapiens (human)
epidermal growth factor receptor bindingAtaxin-2Homo sapiens (human)
protein bindingAtaxin-2Homo sapiens (human)
mRNA bindingAtaxin-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (161)

Processvia Protein(s)Taxonomy
nucleusPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cytosolPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cytoskeletonPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
plasma membranePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
adherens junctionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
focal adhesionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
membranePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
extracellular exosomePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
nucleoplasmSerine/threonine-protein kinase D3Homo sapiens (human)
cytosolSerine/threonine-protein kinase D3Homo sapiens (human)
plasma membraneSerine/threonine-protein kinase D3Homo sapiens (human)
cytosolSerine/threonine-protein kinase D3Homo sapiens (human)
centrosomeG2/mitotic-specific cyclin-B2Homo sapiens (human)
cytosolG2/mitotic-specific cyclin-B2Homo sapiens (human)
microtubule cytoskeletonG2/mitotic-specific cyclin-B2Homo sapiens (human)
membraneG2/mitotic-specific cyclin-B2Homo sapiens (human)
centrosomeG2/mitotic-specific cyclin-B2Homo sapiens (human)
cytoplasmG2/mitotic-specific cyclin-B2Homo sapiens (human)
cyclin-dependent protein kinase holoenzyme complexG2/mitotic-specific cyclin-B2Homo sapiens (human)
nucleusG2/mitotic-specific cyclin-B2Homo sapiens (human)
endosomeEpidermal growth factor receptorHomo sapiens (human)
plasma membraneEpidermal growth factor receptorHomo sapiens (human)
ruffle membraneEpidermal growth factor receptorHomo sapiens (human)
Golgi membraneEpidermal growth factor receptorHomo sapiens (human)
extracellular spaceEpidermal growth factor receptorHomo sapiens (human)
nucleusEpidermal growth factor receptorHomo sapiens (human)
cytoplasmEpidermal growth factor receptorHomo sapiens (human)
endosomeEpidermal growth factor receptorHomo sapiens (human)
endoplasmic reticulum membraneEpidermal growth factor receptorHomo sapiens (human)
plasma membraneEpidermal growth factor receptorHomo sapiens (human)
focal adhesionEpidermal growth factor receptorHomo sapiens (human)
cell surfaceEpidermal growth factor receptorHomo sapiens (human)
endosome membraneEpidermal growth factor receptorHomo sapiens (human)
membraneEpidermal growth factor receptorHomo sapiens (human)
basolateral plasma membraneEpidermal growth factor receptorHomo sapiens (human)
apical plasma membraneEpidermal growth factor receptorHomo sapiens (human)
cell junctionEpidermal growth factor receptorHomo sapiens (human)
clathrin-coated endocytic vesicle membraneEpidermal growth factor receptorHomo sapiens (human)
early endosome membraneEpidermal growth factor receptorHomo sapiens (human)
nuclear membraneEpidermal growth factor receptorHomo sapiens (human)
membrane raftEpidermal growth factor receptorHomo sapiens (human)
perinuclear region of cytoplasmEpidermal growth factor receptorHomo sapiens (human)
multivesicular body, internal vesicle lumenEpidermal growth factor receptorHomo sapiens (human)
intracellular vesicleEpidermal growth factor receptorHomo sapiens (human)
protein-containing complexEpidermal growth factor receptorHomo sapiens (human)
receptor complexEpidermal growth factor receptorHomo sapiens (human)
Shc-EGFR complexEpidermal growth factor receptorHomo sapiens (human)
basal plasma membraneEpidermal growth factor receptorHomo sapiens (human)
extracellular spaceAmyloid-beta precursor proteinHomo sapiens (human)
dendriteAmyloid-beta precursor proteinHomo sapiens (human)
extracellular regionAmyloid-beta precursor proteinHomo sapiens (human)
extracellular spaceAmyloid-beta precursor proteinHomo sapiens (human)
nuclear envelope lumenAmyloid-beta precursor proteinHomo sapiens (human)
cytoplasmAmyloid-beta precursor proteinHomo sapiens (human)
mitochondrial inner membraneAmyloid-beta precursor proteinHomo sapiens (human)
endosomeAmyloid-beta precursor proteinHomo sapiens (human)
early endosomeAmyloid-beta precursor proteinHomo sapiens (human)
endoplasmic reticulumAmyloid-beta precursor proteinHomo sapiens (human)
endoplasmic reticulum lumenAmyloid-beta precursor proteinHomo sapiens (human)
smooth endoplasmic reticulumAmyloid-beta precursor proteinHomo sapiens (human)
Golgi apparatusAmyloid-beta precursor proteinHomo sapiens (human)
Golgi lumenAmyloid-beta precursor proteinHomo sapiens (human)
Golgi-associated vesicleAmyloid-beta precursor proteinHomo sapiens (human)
cytosolAmyloid-beta precursor proteinHomo sapiens (human)
plasma membraneAmyloid-beta precursor proteinHomo sapiens (human)
clathrin-coated pitAmyloid-beta precursor proteinHomo sapiens (human)
cell-cell junctionAmyloid-beta precursor proteinHomo sapiens (human)
synaptic vesicleAmyloid-beta precursor proteinHomo sapiens (human)
cell surfaceAmyloid-beta precursor proteinHomo sapiens (human)
membraneAmyloid-beta precursor proteinHomo sapiens (human)
COPII-coated ER to Golgi transport vesicleAmyloid-beta precursor proteinHomo sapiens (human)
axonAmyloid-beta precursor proteinHomo sapiens (human)
growth coneAmyloid-beta precursor proteinHomo sapiens (human)
platelet alpha granule lumenAmyloid-beta precursor proteinHomo sapiens (human)
neuromuscular junctionAmyloid-beta precursor proteinHomo sapiens (human)
endosome lumenAmyloid-beta precursor proteinHomo sapiens (human)
trans-Golgi network membraneAmyloid-beta precursor proteinHomo sapiens (human)
ciliary rootletAmyloid-beta precursor proteinHomo sapiens (human)
dendritic spineAmyloid-beta precursor proteinHomo sapiens (human)
dendritic shaftAmyloid-beta precursor proteinHomo sapiens (human)
perikaryonAmyloid-beta precursor proteinHomo sapiens (human)
membrane raftAmyloid-beta precursor proteinHomo sapiens (human)
apical part of cellAmyloid-beta precursor proteinHomo sapiens (human)
synapseAmyloid-beta precursor proteinHomo sapiens (human)
perinuclear region of cytoplasmAmyloid-beta precursor proteinHomo sapiens (human)
presynaptic active zoneAmyloid-beta precursor proteinHomo sapiens (human)
spindle midzoneAmyloid-beta precursor proteinHomo sapiens (human)
recycling endosomeAmyloid-beta precursor proteinHomo sapiens (human)
extracellular exosomeAmyloid-beta precursor proteinHomo sapiens (human)
receptor complexAmyloid-beta precursor proteinHomo sapiens (human)
early endosomeAmyloid-beta precursor proteinHomo sapiens (human)
membrane raftAmyloid-beta precursor proteinHomo sapiens (human)
cell surfaceAmyloid-beta precursor proteinHomo sapiens (human)
Golgi apparatusAmyloid-beta precursor proteinHomo sapiens (human)
plasma membraneAmyloid-beta precursor proteinHomo sapiens (human)
glutamatergic synapseIntegrin beta-3Homo sapiens (human)
nucleusIntegrin beta-3Homo sapiens (human)
nucleoplasmIntegrin beta-3Homo sapiens (human)
plasma membraneIntegrin beta-3Homo sapiens (human)
cell-cell junctionIntegrin beta-3Homo sapiens (human)
focal adhesionIntegrin beta-3Homo sapiens (human)
external side of plasma membraneIntegrin beta-3Homo sapiens (human)
cell surfaceIntegrin beta-3Homo sapiens (human)
apical plasma membraneIntegrin beta-3Homo sapiens (human)
platelet alpha granule membraneIntegrin beta-3Homo sapiens (human)
lamellipodium membraneIntegrin beta-3Homo sapiens (human)
filopodium membraneIntegrin beta-3Homo sapiens (human)
microvillus membraneIntegrin beta-3Homo sapiens (human)
ruffle membraneIntegrin beta-3Homo sapiens (human)
integrin alphav-beta3 complexIntegrin beta-3Homo sapiens (human)
melanosomeIntegrin beta-3Homo sapiens (human)
synapseIntegrin beta-3Homo sapiens (human)
postsynaptic membraneIntegrin beta-3Homo sapiens (human)
extracellular exosomeIntegrin beta-3Homo sapiens (human)
integrin alphaIIb-beta3 complexIntegrin beta-3Homo sapiens (human)
glycinergic synapseIntegrin beta-3Homo sapiens (human)
integrin complexIntegrin beta-3Homo sapiens (human)
protein-containing complexIntegrin beta-3Homo sapiens (human)
alphav-beta3 integrin-PKCalpha complexIntegrin beta-3Homo sapiens (human)
alphav-beta3 integrin-IGF-1-IGF1R complexIntegrin beta-3Homo sapiens (human)
alphav-beta3 integrin-HMGB1 complexIntegrin beta-3Homo sapiens (human)
receptor complexIntegrin beta-3Homo sapiens (human)
alphav-beta3 integrin-vitronectin complexIntegrin beta-3Homo sapiens (human)
alpha9-beta1 integrin-ADAM8 complexIntegrin beta-3Homo sapiens (human)
focal adhesionIntegrin beta-3Homo sapiens (human)
cell surfaceIntegrin beta-3Homo sapiens (human)
synapseIntegrin beta-3Homo sapiens (human)
nucleusProtein kinase C gamma typeHomo sapiens (human)
cytosolProtein kinase C gamma typeHomo sapiens (human)
plasma membraneProtein kinase C gamma typeHomo sapiens (human)
cell-cell junctionProtein kinase C gamma typeHomo sapiens (human)
postsynaptic densityProtein kinase C gamma typeHomo sapiens (human)
dendriteProtein kinase C gamma typeHomo sapiens (human)
calyx of HeldProtein kinase C gamma typeHomo sapiens (human)
perinuclear region of cytoplasmProtein kinase C gamma typeHomo sapiens (human)
synaptic membraneProtein kinase C gamma typeHomo sapiens (human)
presynaptic cytosolProtein kinase C gamma typeHomo sapiens (human)
postsynaptic cytosolProtein kinase C gamma typeHomo sapiens (human)
nucleusProtein kinase C beta typeHomo sapiens (human)
nucleoplasmProtein kinase C beta typeHomo sapiens (human)
cytoplasmProtein kinase C beta typeHomo sapiens (human)
centrosomeProtein kinase C beta typeHomo sapiens (human)
cytosolProtein kinase C beta typeHomo sapiens (human)
plasma membraneProtein kinase C beta typeHomo sapiens (human)
brush border membraneProtein kinase C beta typeHomo sapiens (human)
calyx of HeldProtein kinase C beta typeHomo sapiens (human)
extracellular exosomeProtein kinase C beta typeHomo sapiens (human)
presynaptic cytosolProtein kinase C beta typeHomo sapiens (human)
spectrinProtein kinase C beta typeHomo sapiens (human)
pericentriolar materialTyrosine-protein kinase LckHomo sapiens (human)
immunological synapseTyrosine-protein kinase LckHomo sapiens (human)
cytosolTyrosine-protein kinase LckHomo sapiens (human)
plasma membraneTyrosine-protein kinase LckHomo sapiens (human)
membrane raftTyrosine-protein kinase LckHomo sapiens (human)
extracellular exosomeTyrosine-protein kinase LckHomo sapiens (human)
plasma membraneTyrosine-protein kinase LckHomo sapiens (human)
membrane raftTyrosine-protein kinase FynHomo sapiens (human)
dendriteTyrosine-protein kinase FynHomo sapiens (human)
nucleusTyrosine-protein kinase FynHomo sapiens (human)
mitochondrionTyrosine-protein kinase FynHomo sapiens (human)
endosomeTyrosine-protein kinase FynHomo sapiens (human)
cytosolTyrosine-protein kinase FynHomo sapiens (human)
actin filamentTyrosine-protein kinase FynHomo sapiens (human)
plasma membraneTyrosine-protein kinase FynHomo sapiens (human)
postsynaptic densityTyrosine-protein kinase FynHomo sapiens (human)
dendriteTyrosine-protein kinase FynHomo sapiens (human)
perikaryonTyrosine-protein kinase FynHomo sapiens (human)
cell bodyTyrosine-protein kinase FynHomo sapiens (human)
membrane raftTyrosine-protein kinase FynHomo sapiens (human)
perinuclear region of cytoplasmTyrosine-protein kinase FynHomo sapiens (human)
perinuclear endoplasmic reticulumTyrosine-protein kinase FynHomo sapiens (human)
glial cell projectionTyrosine-protein kinase FynHomo sapiens (human)
Schaffer collateral - CA1 synapseTyrosine-protein kinase FynHomo sapiens (human)
plasma membraneTyrosine-protein kinase FynHomo sapiens (human)
mitochondrial matrixCyclin-dependent kinase 1Homo sapiens (human)
chromosome, telomeric regionCyclin-dependent kinase 1Homo sapiens (human)
nucleusCyclin-dependent kinase 1Homo sapiens (human)
nucleoplasmCyclin-dependent kinase 1Homo sapiens (human)
mitochondrionCyclin-dependent kinase 1Homo sapiens (human)
endoplasmic reticulum membraneCyclin-dependent kinase 1Homo sapiens (human)
centrosomeCyclin-dependent kinase 1Homo sapiens (human)
cytosolCyclin-dependent kinase 1Homo sapiens (human)
spindle microtubuleCyclin-dependent kinase 1Homo sapiens (human)
membraneCyclin-dependent kinase 1Homo sapiens (human)
midbodyCyclin-dependent kinase 1Homo sapiens (human)
extracellular exosomeCyclin-dependent kinase 1Homo sapiens (human)
mitotic spindleCyclin-dependent kinase 1Homo sapiens (human)
cyclin A1-CDK1 complexCyclin-dependent kinase 1Homo sapiens (human)
cyclin A2-CDK1 complexCyclin-dependent kinase 1Homo sapiens (human)
cyclin B1-CDK1 complexCyclin-dependent kinase 1Homo sapiens (human)
cyclin-dependent protein kinase holoenzyme complexCyclin-dependent kinase 1Homo sapiens (human)
cytoplasmCyclin-dependent kinase 1Homo sapiens (human)
nucleusCyclin-dependent kinase 1Homo sapiens (human)
plasma membraneTyrosine-protein kinase LynHomo sapiens (human)
cytoplasmic side of plasma membraneTyrosine-protein kinase LynHomo sapiens (human)
nucleusTyrosine-protein kinase LynHomo sapiens (human)
cytoplasmTyrosine-protein kinase LynHomo sapiens (human)
lysosomal membraneTyrosine-protein kinase LynHomo sapiens (human)
Golgi apparatusTyrosine-protein kinase LynHomo sapiens (human)
cytosolTyrosine-protein kinase LynHomo sapiens (human)
plasma membraneTyrosine-protein kinase LynHomo sapiens (human)
adherens junctionTyrosine-protein kinase LynHomo sapiens (human)
mitochondrial cristaTyrosine-protein kinase LynHomo sapiens (human)
endocytic vesicle membraneTyrosine-protein kinase LynHomo sapiens (human)
intracellular membrane-bounded organelleTyrosine-protein kinase LynHomo sapiens (human)
membrane raftTyrosine-protein kinase LynHomo sapiens (human)
perinuclear region of cytoplasmTyrosine-protein kinase LynHomo sapiens (human)
extracellular exosomeTyrosine-protein kinase LynHomo sapiens (human)
glutamatergic synapseTyrosine-protein kinase LynHomo sapiens (human)
postsynaptic specialization, intracellular componentTyrosine-protein kinase LynHomo sapiens (human)
integrin alpha2-beta1 complexTyrosine-protein kinase LynHomo sapiens (human)
plasma membraneIntegrin alpha-IIbHomo sapiens (human)
focal adhesionIntegrin alpha-IIbHomo sapiens (human)
cell surfaceIntegrin alpha-IIbHomo sapiens (human)
platelet alpha granule membraneIntegrin alpha-IIbHomo sapiens (human)
extracellular exosomeIntegrin alpha-IIbHomo sapiens (human)
integrin alphaIIb-beta3 complexIntegrin alpha-IIbHomo sapiens (human)
blood microparticleIntegrin alpha-IIbHomo sapiens (human)
integrin complexIntegrin alpha-IIbHomo sapiens (human)
external side of plasma membraneIntegrin alpha-IIbHomo sapiens (human)
podosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
nucleoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cytoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
mitochondrionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
mitochondrial inner membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
lysosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
late endosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cytosolProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
actin filamentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
plasma membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
caveolaProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
focal adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell junctionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ruffle membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
neuronal cell bodyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
dendritic growth coneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
membrane raftProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
perinuclear region of cytoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
extracellular exosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
synaptic membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
glutamatergic synapseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
postsynaptic specialization, intracellular componentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
dendritic filopodiumProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
plasma membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
mitochondrial matrixG2/mitotic-specific cyclin-B1Homo sapiens (human)
spindle poleG2/mitotic-specific cyclin-B1Homo sapiens (human)
nucleusG2/mitotic-specific cyclin-B1Homo sapiens (human)
nucleoplasmG2/mitotic-specific cyclin-B1Homo sapiens (human)
cytoplasmG2/mitotic-specific cyclin-B1Homo sapiens (human)
centrosomeG2/mitotic-specific cyclin-B1Homo sapiens (human)
cytosolG2/mitotic-specific cyclin-B1Homo sapiens (human)
membraneG2/mitotic-specific cyclin-B1Homo sapiens (human)
cyclin B1-CDK1 complexG2/mitotic-specific cyclin-B1Homo sapiens (human)
outer kinetochoreG2/mitotic-specific cyclin-B1Homo sapiens (human)
cytoplasmG2/mitotic-specific cyclin-B1Homo sapiens (human)
nucleusG2/mitotic-specific cyclin-B1Homo sapiens (human)
centrosomeG2/mitotic-specific cyclin-B1Homo sapiens (human)
ciliary basal bodyProtein kinase C alpha typeHomo sapiens (human)
nucleoplasmProtein kinase C alpha typeHomo sapiens (human)
cytoplasmProtein kinase C alpha typeHomo sapiens (human)
mitochondrionProtein kinase C alpha typeHomo sapiens (human)
endoplasmic reticulumProtein kinase C alpha typeHomo sapiens (human)
cytosolProtein kinase C alpha typeHomo sapiens (human)
plasma membraneProtein kinase C alpha typeHomo sapiens (human)
mitochondrial membraneProtein kinase C alpha typeHomo sapiens (human)
perinuclear region of cytoplasmProtein kinase C alpha typeHomo sapiens (human)
extracellular exosomeProtein kinase C alpha typeHomo sapiens (human)
alphav-beta3 integrin-PKCalpha complexProtein kinase C alpha typeHomo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
cytoplasmProtein kinase C eta typeHomo sapiens (human)
cytosolProtein kinase C eta typeHomo sapiens (human)
plasma membraneProtein kinase C eta typeHomo sapiens (human)
cell-cell junctionProtein kinase C eta typeHomo sapiens (human)
extracellular exosomeProtein kinase C eta typeHomo sapiens (human)
extracellular regionVascular endothelial growth factor receptor 2Homo sapiens (human)
nucleusVascular endothelial growth factor receptor 2Homo sapiens (human)
endosomeVascular endothelial growth factor receptor 2Homo sapiens (human)
early endosomeVascular endothelial growth factor receptor 2Homo sapiens (human)
endoplasmic reticulumVascular endothelial growth factor receptor 2Homo sapiens (human)
Golgi apparatusVascular endothelial growth factor receptor 2Homo sapiens (human)
plasma membraneVascular endothelial growth factor receptor 2Homo sapiens (human)
external side of plasma membraneVascular endothelial growth factor receptor 2Homo sapiens (human)
cell junctionVascular endothelial growth factor receptor 2Homo sapiens (human)
membrane raftVascular endothelial growth factor receptor 2Homo sapiens (human)
anchoring junctionVascular endothelial growth factor receptor 2Homo sapiens (human)
sorting endosomeVascular endothelial growth factor receptor 2Homo sapiens (human)
plasma membraneVascular endothelial growth factor receptor 2Homo sapiens (human)
receptor complexVascular endothelial growth factor receptor 2Homo sapiens (human)
cytoplasmTyrosine-protein kinase CSKHomo sapiens (human)
cytosolTyrosine-protein kinase CSKHomo sapiens (human)
plasma membraneTyrosine-protein kinase CSKHomo sapiens (human)
cell-cell junctionTyrosine-protein kinase CSKHomo sapiens (human)
extracellular exosomeTyrosine-protein kinase CSKHomo sapiens (human)
plasma membraneTyrosine-protein kinase CSKHomo sapiens (human)
Golgi membraneProtein kinase C iota typeHomo sapiens (human)
nucleusProtein kinase C iota typeHomo sapiens (human)
nucleoplasmProtein kinase C iota typeHomo sapiens (human)
endosomeProtein kinase C iota typeHomo sapiens (human)
cytosolProtein kinase C iota typeHomo sapiens (human)
plasma membraneProtein kinase C iota typeHomo sapiens (human)
brush borderProtein kinase C iota typeHomo sapiens (human)
bicellular tight junctionProtein kinase C iota typeHomo sapiens (human)
microtubule cytoskeletonProtein kinase C iota typeHomo sapiens (human)
apical plasma membraneProtein kinase C iota typeHomo sapiens (human)
cell leading edgeProtein kinase C iota typeHomo sapiens (human)
Schmidt-Lanterman incisureProtein kinase C iota typeHomo sapiens (human)
intercellular bridgeProtein kinase C iota typeHomo sapiens (human)
extracellular exosomeProtein kinase C iota typeHomo sapiens (human)
tight junctionProtein kinase C iota typeHomo sapiens (human)
Schaffer collateral - CA1 synapseProtein kinase C iota typeHomo sapiens (human)
glutamatergic synapseProtein kinase C iota typeHomo sapiens (human)
PAR polarity complexProtein kinase C iota typeHomo sapiens (human)
membrane raftTyrosine-protein kinase ZAP-70Homo sapiens (human)
extrinsic component of cytoplasmic side of plasma membraneTyrosine-protein kinase ZAP-70Homo sapiens (human)
immunological synapseTyrosine-protein kinase ZAP-70Homo sapiens (human)
cytoplasmTyrosine-protein kinase ZAP-70Homo sapiens (human)
cytosolTyrosine-protein kinase ZAP-70Homo sapiens (human)
plasma membraneTyrosine-protein kinase ZAP-70Homo sapiens (human)
cell-cell junctionTyrosine-protein kinase ZAP-70Homo sapiens (human)
T cell receptor complexTyrosine-protein kinase ZAP-70Homo sapiens (human)
plasma membraneTyrosine-protein kinase ZAP-70Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
Golgi apparatusProtein kinase C epsilon typeHomo sapiens (human)
nucleusProtein kinase C epsilon typeHomo sapiens (human)
cytoplasmProtein kinase C epsilon typeHomo sapiens (human)
mitochondrionProtein kinase C epsilon typeHomo sapiens (human)
endoplasmic reticulumProtein kinase C epsilon typeHomo sapiens (human)
cytosolProtein kinase C epsilon typeHomo sapiens (human)
plasma membraneProtein kinase C epsilon typeHomo sapiens (human)
intracellular membrane-bounded organelleProtein kinase C epsilon typeHomo sapiens (human)
intermediate filament cytoskeletonProtein kinase C epsilon typeHomo sapiens (human)
synapseProtein kinase C epsilon typeHomo sapiens (human)
perinuclear region of cytoplasmProtein kinase C epsilon typeHomo sapiens (human)
cell peripheryProtein kinase C epsilon typeHomo sapiens (human)
stress fiberAngiopoietin-1 receptorHomo sapiens (human)
actin filamentAngiopoietin-1 receptorHomo sapiens (human)
extracellular regionAngiopoietin-1 receptorHomo sapiens (human)
cytoplasmAngiopoietin-1 receptorHomo sapiens (human)
plasma membraneAngiopoietin-1 receptorHomo sapiens (human)
microvillusAngiopoietin-1 receptorHomo sapiens (human)
cell-cell junctionAngiopoietin-1 receptorHomo sapiens (human)
focal adhesionAngiopoietin-1 receptorHomo sapiens (human)
basal plasma membraneAngiopoietin-1 receptorHomo sapiens (human)
cell surfaceAngiopoietin-1 receptorHomo sapiens (human)
basolateral plasma membraneAngiopoietin-1 receptorHomo sapiens (human)
apical plasma membraneAngiopoietin-1 receptorHomo sapiens (human)
centriolar satelliteAngiopoietin-1 receptorHomo sapiens (human)
membrane raftAngiopoietin-1 receptorHomo sapiens (human)
plasma membraneAngiopoietin-1 receptorHomo sapiens (human)
receptor complexAngiopoietin-1 receptorHomo sapiens (human)
immunological synapseProtein kinase C theta typeHomo sapiens (human)
cytosolProtein kinase C theta typeHomo sapiens (human)
plasma membraneProtein kinase C theta typeHomo sapiens (human)
aggresomeProtein kinase C theta typeHomo sapiens (human)
centriolar satelliteProtein kinase C theta typeHomo sapiens (human)
stress fiberProtein kinase C zeta typeHomo sapiens (human)
nuclear envelopeProtein kinase C zeta typeHomo sapiens (human)
cytoplasmProtein kinase C zeta typeHomo sapiens (human)
endosomeProtein kinase C zeta typeHomo sapiens (human)
microtubule organizing centerProtein kinase C zeta typeHomo sapiens (human)
cytosolProtein kinase C zeta typeHomo sapiens (human)
plasma membraneProtein kinase C zeta typeHomo sapiens (human)
cell-cell junctionProtein kinase C zeta typeHomo sapiens (human)
bicellular tight junctionProtein kinase C zeta typeHomo sapiens (human)
postsynaptic densityProtein kinase C zeta typeHomo sapiens (human)
membraneProtein kinase C zeta typeHomo sapiens (human)
apical plasma membraneProtein kinase C zeta typeHomo sapiens (human)
nuclear matrixProtein kinase C zeta typeHomo sapiens (human)
cell junctionProtein kinase C zeta typeHomo sapiens (human)
cell leading edgeProtein kinase C zeta typeHomo sapiens (human)
vesicleProtein kinase C zeta typeHomo sapiens (human)
myelin sheath abaxonal regionProtein kinase C zeta typeHomo sapiens (human)
axon hillockProtein kinase C zeta typeHomo sapiens (human)
apical cortexProtein kinase C zeta typeHomo sapiens (human)
perinuclear region of cytoplasmProtein kinase C zeta typeHomo sapiens (human)
extracellular exosomeProtein kinase C zeta typeHomo sapiens (human)
tight junctionProtein kinase C zeta typeHomo sapiens (human)
Schaffer collateral - CA1 synapseProtein kinase C zeta typeHomo sapiens (human)
glutamatergic synapseProtein kinase C zeta typeHomo sapiens (human)
PAR polarity complexProtein kinase C zeta typeHomo sapiens (human)
extracellular regionProtein kinase C delta typeHomo sapiens (human)
nucleusProtein kinase C delta typeHomo sapiens (human)
nucleoplasmProtein kinase C delta typeHomo sapiens (human)
cytoplasmProtein kinase C delta typeHomo sapiens (human)
mitochondrionProtein kinase C delta typeHomo sapiens (human)
endoplasmic reticulumProtein kinase C delta typeHomo sapiens (human)
cytosolProtein kinase C delta typeHomo sapiens (human)
plasma membraneProtein kinase C delta typeHomo sapiens (human)
cell-cell junctionProtein kinase C delta typeHomo sapiens (human)
nuclear matrixProtein kinase C delta typeHomo sapiens (human)
azurophil granule lumenProtein kinase C delta typeHomo sapiens (human)
endolysosomeProtein kinase C delta typeHomo sapiens (human)
perinuclear region of cytoplasmProtein kinase C delta typeHomo sapiens (human)
extracellular exosomeProtein kinase C delta typeHomo sapiens (human)
nucleusTyrosine-protein kinase BTKHomo sapiens (human)
cytoplasmTyrosine-protein kinase BTKHomo sapiens (human)
cytosolTyrosine-protein kinase BTKHomo sapiens (human)
plasma membraneTyrosine-protein kinase BTKHomo sapiens (human)
cytoplasmic vesicleTyrosine-protein kinase BTKHomo sapiens (human)
membrane raftTyrosine-protein kinase BTKHomo sapiens (human)
perinuclear region of cytoplasmTyrosine-protein kinase BTKHomo sapiens (human)
plasma membraneTyrosine-protein kinase BTKHomo sapiens (human)
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
autophagosome membraneSerine/threonine-protein kinase D1Homo sapiens (human)
nucleusSerine/threonine-protein kinase D1Homo sapiens (human)
trans-Golgi networkSerine/threonine-protein kinase D1Homo sapiens (human)
cytosolSerine/threonine-protein kinase D1Homo sapiens (human)
plasma membraneSerine/threonine-protein kinase D1Homo sapiens (human)
cell-cell junctionSerine/threonine-protein kinase D1Homo sapiens (human)
cell cortexSerine/threonine-protein kinase D1Homo sapiens (human)
Z discSerine/threonine-protein kinase D1Homo sapiens (human)
perinuclear region of cytoplasmSerine/threonine-protein kinase D1Homo sapiens (human)
Golgi apparatusSerine/threonine-protein kinase D1Homo sapiens (human)
cytosolSerine/threonine-protein kinase D1Homo sapiens (human)
nuclear speckG2/mitotic-specific cyclin-B3Homo sapiens (human)
cyclin-dependent protein kinase holoenzyme complexG2/mitotic-specific cyclin-B3Homo sapiens (human)
cytoplasmG2/mitotic-specific cyclin-B3Homo sapiens (human)
nucleusG2/mitotic-specific cyclin-B3Homo sapiens (human)
centrosomeG2/mitotic-specific cyclin-B3Homo sapiens (human)
cytoplasmAtaxin-2Homo sapiens (human)
Golgi apparatusAtaxin-2Homo sapiens (human)
trans-Golgi networkAtaxin-2Homo sapiens (human)
cytosolAtaxin-2Homo sapiens (human)
cytoplasmic stress granuleAtaxin-2Homo sapiens (human)
membraneAtaxin-2Homo sapiens (human)
perinuclear region of cytoplasmAtaxin-2Homo sapiens (human)
ribonucleoprotein complexAtaxin-2Homo sapiens (human)
cytoplasmic stress granuleAtaxin-2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (556)

Assay IDTitleYearJournalArticle
AID720121Millipore: Percentage of residual kinase activity of EGFR at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720437Millipore: Percentage of residual kinase activity of RPS6KB1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720479Millipore: Percentage of residual kinase activity of PRKCG at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720431Millipore: Percentage of residual kinase activity of EEF2K at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720359Millipore: Percentage of residual kinase activity of MYLK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720094Millipore: Percentage of residual kinase activity of CSK at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720029Millipore: Percentage of residual kinase activity of MAP3K5 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720434Millipore: Percentage of residual kinase activity of MTOR at 1uM relative to control. Control inhibitor: Rapamycin at 10.0uM. Buffer: 50 mM HEPES pH 7.5, 1 mM EGTA, 0.01% Tween 20, 10 uM FKBP122013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720122Millipore: Percentage of residual kinase activity of EGFR at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID216640Inhibition of Vascular endothelial growth factor receptor 22002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720335Millipore: Percentage of residual kinase activity of LCK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID114163Effective dose of orally administered compound to inhibit T-cell receptor stimulated (alpha CD3 mAb) IL-2 production in mice2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720355Millipore: Percentage of residual kinase activity of MAP2K6 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol, 0.1 mM Na3VO4, 1 mg/mL BSA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720484Millipore: Percentage of residual kinase activity of PRKCZ at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720374Millipore: Percentage of residual kinase activity of STK3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720481Millipore: Percentage of residual kinase activity of PRKCD at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID205329Inhibition of Src protein tyrosine kinase2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720128Millipore: Percentage of residual kinase activity of EPHA3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720371Millipore: Percentage of residual kinase activity of SRPK3 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720380Millipore: Percentage of residual kinase activity of MET at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720455Millipore: Percentage of residual kinase activity of MARK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720230Millipore: Percentage of residual kinase activity of PLK3 at 1uM relative to control. Control inhibitor: Wortmannin at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID524793Antiplasmodial activity against Plasmodium falciparum Dd2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID720378Millipore: Percentage of residual kinase activity of MERTK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: mM MOPS pH 7.0, 0.2 mM EDTA, 30 mM NaCl2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720159Millipore: Percentage of residual kinase activity of FES at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720201Millipore: Percentage of residual kinase activity of PRKCH at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720261Millipore: Percentage of residual kinase activity of MAPK11 at 10uM relative to control. Control inhibitor: SB203580 at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720277Millipore: Percentage of residual kinase activity of SRPK2 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720281Millipore: Percentage of residual kinase activity of PLK2 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720174Millipore: Percentage of residual kinase activity of GCK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 200 mM NaCl, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720154Millipore: Percentage of residual kinase activity of FGFR3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720472Millipore: Percentage of residual kinase activity of PRKCA at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720390Millipore: Percentage of residual kinase activity of NEK3 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID521220Inhibition of neurosphere proliferation of mouse neural precursor cells by MTT assay2007Nature chemical biology, May, Volume: 3, Issue:5
Chemical genetics reveals a complex functional ground state of neural stem cells.
AID720286Millipore: Percentage of residual kinase activity of TAOK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 50 mM NaCl2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720441Millipore: Percentage of residual kinase activity of NEK7 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720423Millipore: Percentage of residual kinase activity of DAPK3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720226Millipore: Percentage of residual kinase activity of PIM3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.1% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID72278Inhibition of Fyn protein kinase2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720115Millipore: Percentage of residual kinase activity of DMPK at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720079Millipore: Percentage of residual kinase activity of CSNK1G2 at 1uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720111Millipore: Percentage of residual kinase activity of DCLK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720124Millipore: Percentage of residual kinase activity of EPHA1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720100Millipore: Percentage of residual kinase activity of CAMK2G at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720243Millipore: Percentage of residual kinase activity of RET at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720068Millipore: Percentage of residual kinase activity of CDK6 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720097Millipore: Percentage of residual kinase activity of CAMK2B at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720387Millipore: Percentage of residual kinase activity of NEK11 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720228Millipore: Percentage of residual kinase activity of PLK1 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 20 mM DTT2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720330Millipore: Percentage of residual kinase activity of STK10 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720482Millipore: Percentage of residual kinase activity of PRKCE at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720106Millipore: Percentage of residual kinase activity of CAMK1D at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720098Millipore: Percentage of residual kinase activity of CAMK2B at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720366Millipore: Percentage of residual kinase activity of RPS6KA5 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720412Millipore: Percentage of residual kinase activity of VRK2 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720272Millipore: Percentage of residual kinase activity of SIK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720245Millipore: Percentage of residual kinase activity of MST1R at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID42949Inhibition of CDC2/CyB2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720055Millipore: Percentage of residual kinase activity of CDK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720173Millipore: Percentage of residual kinase activity of GCK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 200 mM NaCl, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720130Millipore: Percentage of residual kinase activity of EPHA4 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223970Inhibition of p56 Lck tyrosine kinase (catalytic domain)2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720104Millipore: Percentage of residual kinase activity of CAMK4 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 40 mM HEPES pH 7.4, 5 mM CaCl2, 30 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720413Millipore: Percentage of residual kinase activity of VRK2 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720264Millipore: Percentage of residual kinase activity of MAPK13 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720435Millipore: Percentage of residual kinase activity of MTOR at 10uM relative to control. Control inhibitor: Rapamycin at 10.0uM. Buffer: 50 mM HEPES pH 7.5, 1 mM EGTA, 0.01% Tween 20, 10 uM FKBP122013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720445Millipore: Percentage of residual kinase activity of PAK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720360Millipore: Percentage of residual kinase activity of MAP3K9 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720409Millipore: Percentage of residual kinase activity of ULK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID155705Inhibition of PKC2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720046Millipore: Percentage of residual kinase activity of BTK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720142Millipore: Percentage of residual kinase activity of EPHB3 at 10uM relative to control. Control inhibitor: PP2 at 30.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720315Millipore: Percentage of residual kinase activity of JAK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720452Millipore: Percentage of residual kinase activity of PAK6 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720241Millipore: Percentage of residual kinase activity of ROCK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720156Millipore: Percentage of residual kinase activity of FGFR4 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720235Millipore: Percentage of residual kinase activity of PTK2B at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720038Millipore: Percentage of residual kinase activity of AURKB at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 50 mM NaCl, 0.1% v/v Triton-X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720471Millipore: Percentage of residual kinase activity of AKT3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720077Millipore: Percentage of residual kinase activity of CSNK1G1 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID209357Inhibition of TIE-2 kinase2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720239Millipore: Percentage of residual kinase activity of ROCK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720040Millipore: Percentage of residual kinase activity of AURKC at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 50 mM NaCl, 0.1% v/v Triton-X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223966Inhibition of p56 Lck tyrosine kinase (catalytic domain), in presence of 1 mM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720089Millipore: Percentage of residual kinase activity of CLK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID220047Inhibition of Csk tyrosine kinase2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720075Millipore: Percentage of residual kinase activity of CHEK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720351Millipore: Percentage of residual kinase activity of MELK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720158Millipore: Percentage of residual kinase activity of FER at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720196Millipore: Percentage of residual kinase activity of HCK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720221Millipore: Percentage of residual kinase activity of PHKG2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720203Millipore: Percentage of residual kinase activity of PRKCQ at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720317Millipore: Percentage of residual kinase activity of JAK3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720227Millipore: Percentage of residual kinase activity of PIM3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.1% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720292Millipore: Percentage of residual kinase activity of TBK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720088Millipore: Percentage of residual kinase activity of CSNK2A2 at 10uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 20 mM HEPES pH 7.6, 0.15 M NaCl, 0.1 mM EDTA, 5 mM DTT, 0.1% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720047Millipore: Percentage of residual kinase activity of BLK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720084Millipore: Percentage of residual kinase activity of CSNK1D at 10uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720155Millipore: Percentage of residual kinase activity of FGFR4 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720050Millipore: Percentage of residual kinase activity of BMX at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720386Millipore: Percentage of residual kinase activity of NEK11 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720190Millipore: Percentage of residual kinase activity of HIPK3 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720420Millipore: Percentage of residual kinase activity of ZAP70 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720447Millipore: Percentage of residual kinase activity of PAK3 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720469Millipore: Percentage of residual kinase activity of AKT2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720251Millipore: Percentage of residual kinase activity of RPS6KA1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720045Millipore: Percentage of residual kinase activity of BTK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720223Millipore: Percentage of residual kinase activity of PIM1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720398Millipore: Percentage of residual kinase activity of TEC at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM Na3VO4, 5 mM Na-?-glycerophosphate2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID220418Inhibition of Zap 702000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720157Millipore: Percentage of residual kinase activity of FER at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720022Millipore: Percentage of residual kinase activity of ACVR1B at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720394Millipore: Percentage of residual kinase activity of TSSK1B at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720392Millipore: Percentage of residual kinase activity of TLK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720428Millipore: Percentage of residual kinase activity of SRC at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720432Millipore: Percentage of residual kinase activity of MTOR at 1uM relative to control. Control inhibitor: PI-103 at 30.0uM. Buffer: 50 mM HEPES pH 7.5, 1 mM EGTA, 0.01% Tween 202013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720271Millipore: Percentage of residual kinase activity of SGK3 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720028Millipore: Percentage of residual kinase activity of NUAK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720064Millipore: Percentage of residual kinase activity of CDK5 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720375Millipore: Percentage of residual kinase activity of STK3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720473Millipore: Percentage of residual kinase activity of PRKCA at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720179Millipore: Percentage of residual kinase activity of GRK7 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720183Millipore: Percentage of residual kinase activity of GSK3B at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720449Millipore: Percentage of residual kinase activity of PAK4 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID227681Inhibition of src, in presence of 1 mM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720112Millipore: Percentage of residual kinase activity of DCLK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720265Millipore: Percentage of residual kinase activity of MAPK13 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720300Millipore: Percentage of residual kinase activity of IKBKB at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720212Millipore: Percentage of residual kinase activity of PRKG1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 uM cGMP2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720326Millipore: Percentage of residual kinase activity of LIMK1 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720247Millipore: Percentage of residual kinase activity of ROS1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720314Millipore: Percentage of residual kinase activity of JAK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720260Millipore: Percentage of residual kinase activity of MAPK11 at 1uM relative to control. Control inhibitor: SB203580 at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720348Millipore: Percentage of residual kinase activity of MAP2K1 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 50 mM Tris pH 7.5, 0.2 mM EGTA, 0.1% ?-mercaptoethanol, 0.01% Brij-352013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720063Millipore: Percentage of residual kinase activity of CDK5 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720419Millipore: Percentage of residual kinase activity of YES1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720462Millipore: Percentage of residual kinase activity of PDPK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720401Millipore: Percentage of residual kinase activity of TEK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID524796Antiplasmodial activity against Plasmodium falciparum W2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID524791Antiplasmodial activity against Plasmodium falciparum 7G8 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID720244Millipore: Percentage of residual kinase activity of MST1R at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720295Millipore: Percentage of residual kinase activity of TGFBR1 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720303Millipore: Percentage of residual kinase activity of INSR at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720206Millipore: Percentage of residual kinase activity of PRKD1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: mM HEPES pH 7.4, 0.03% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720258Millipore: Percentage of residual kinase activity of MAPK14 at 1uM relative to control. Control inhibitor: SB203580 at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720274Millipore: Percentage of residual kinase activity of SRPK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720170Millipore: Percentage of residual kinase activity of CSF1R at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720383Millipore: Percentage of residual kinase activity of MKNK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720069Millipore: Percentage of residual kinase activity of CDK7 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720041Millipore: Percentage of residual kinase activity of AXL at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223977Inhibition of p56 Lck tyrosine kinase at 5 uM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720101Millipore: Percentage of residual kinase activity of CAMK2D at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720279Millipore: Percentage of residual kinase activity of STK33 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720457Millipore: Percentage of residual kinase activity of PASK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720328Millipore: Percentage of residual kinase activity of STK11 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.1% v/v Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720087Millipore: Percentage of residual kinase activity of CSNK2A2 at 1uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 20 mM HEPES pH 7.6, 0.15 M NaCl, 0.1 mM EDTA, 5 mM DTT, 0.1% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720092Millipore: Percentage of residual kinase activity of CLK3 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720343Millipore: Percentage of residual kinase activity of MAPKAPK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Na-?-glycerophosphate pH 7.5, 0.1 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720178Millipore: Percentage of residual kinase activity of GRK6 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720198Millipore: Percentage of residual kinase activity of IGF1R at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720280Millipore: Percentage of residual kinase activity of PLK2 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223978Inhibitory activity against p56 Lck tyrosine kinase at a concentration of 5 uM ATP.2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720296Millipore: Percentage of residual kinase activity of IGF1R at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM Na3VO4, 5 mM Na-?-glycerophosphate2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720020Millipore: Percentage of residual kinase activity of ALK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720168Millipore: Percentage of residual kinase activity of FLT4 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID129977Compound was evaluated for inhibition of interleukin - 2 (IL-2) production in anti -CD3 mAb stimulation in mice after intraperitoneal administration2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID38034Inhibition of B lymphoid tyrosine kinase (Blk)2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720364Millipore: Percentage of residual kinase activity of CDC42BPB at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720396Millipore: Percentage of residual kinase activity of TSSK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720147Millipore: Percentage of residual kinase activity of PTK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720176Millipore: Percentage of residual kinase activity of GRK5 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720095Millipore: Percentage of residual kinase activity of CAMK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720363Millipore: Percentage of residual kinase activity of CDC42BPA at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720246Millipore: Percentage of residual kinase activity of ROS1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720429Millipore: Percentage of residual kinase activity of SRC at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720080Millipore: Percentage of residual kinase activity of CSNK1G2 at 10uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223568Inhibition of PMA stimulated IL-2 production in Jurkat cells2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720195Millipore: Percentage of residual kinase activity of HCK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720167Millipore: Percentage of residual kinase activity of FLT4 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720340Millipore: Percentage of residual kinase activity of MAPK1 at 1uM relative to control. Control inhibitor: ERK Inhibitor II at 30.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720120Millipore: Percentage of residual kinase activity of DYRK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720194Millipore: Percentage of residual kinase activity of HCK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720162Millipore: Percentage of residual kinase activity of FGR at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID216764Inhibition of Vascular endothelial growth factor receptor 2 at 5 uM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720056Millipore: Percentage of residual kinase activity of CDK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID129978Compound was evaluated for inhibition of interleukin - 2 (IL-2) production in anti -CD3 mAb stimulation in mice after oral administration2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720483Millipore: Percentage of residual kinase activity of PRKCE at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720391Millipore: Percentage of residual kinase activity of NEK3 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720132Millipore: Percentage of residual kinase activity of EPHA5 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 2.5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720123Millipore: Percentage of residual kinase activity of EPHA1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720169Millipore: Percentage of residual kinase activity of CSF1R at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720306Millipore: Percentage of residual kinase activity of IRAK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720480Millipore: Percentage of residual kinase activity of PRKCD at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720129Millipore: Percentage of residual kinase activity of EPHA4 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720439Millipore: Percentage of residual kinase activity of NEK6 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720329Millipore: Percentage of residual kinase activity of STK11 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.1% v/v Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720309Millipore: Percentage of residual kinase activity of IRAK4 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720152Millipore: Percentage of residual kinase activity of FGFR2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 2.5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720440Millipore: Percentage of residual kinase activity of NEK7 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720414Millipore: Percentage of residual kinase activity of WNK2 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720408Millipore: Percentage of residual kinase activity of ULK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720442Millipore: Percentage of residual kinase activity of NLK at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720464Millipore: Percentage of residual kinase activity of PRKACA at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720321Millipore: Percentage of residual kinase activity of MAPK9 at 10uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID216765Inhibitory activity against vascular endothelial growth factor receptor 2 (VEGFR2) at a concentration of 5 uM ATP.2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720110Millipore: Percentage of residual kinase activity of DAPK2 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720019Millipore: Percentage of residual kinase activity of ALK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720135Millipore: Percentage of residual kinase activity of EPHA8 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720254Millipore: Percentage of residual kinase activity of RPS6KA2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720081Millipore: Percentage of residual kinase activity of CSNK1G3 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720320Millipore: Percentage of residual kinase activity of MAPK9 at 1uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID228419Inhibition of tie-2 at 5 uM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720381Millipore: Percentage of residual kinase activity of MET at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720023Millipore: Percentage of residual kinase activity of PRKAA1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 200 uM AMP2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720145Millipore: Percentage of residual kinase activity of ERBB4 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 2.5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720202Millipore: Percentage of residual kinase activity of PRKCQ at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720299Millipore: Percentage of residual kinase activity of CHUK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720067Millipore: Percentage of residual kinase activity of CDK6 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720180Millipore: Percentage of residual kinase activity of GRK7 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223973Inhibition of p56 Lck tyrosine kinase at 1 mM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720430Millipore: Percentage of residual kinase activity of EEF2K at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720458Millipore: Percentage of residual kinase activity of PDGFRA at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720133Millipore: Percentage of residual kinase activity of EPHA7 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720184Millipore: Percentage of residual kinase activity of GSK3B at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720070Millipore: Percentage of residual kinase activity of CDK7 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720249Millipore: Percentage of residual kinase activity of TYRO3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720102Millipore: Percentage of residual kinase activity of CAMK2D at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720114Millipore: Percentage of residual kinase activity of DDR2 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720037Millipore: Percentage of residual kinase activity of AURKB at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 50 mM NaCl, 0.1% v/v Triton-X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720204Millipore: Percentage of residual kinase activity of PRKCI at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720042Millipore: Percentage of residual kinase activity of AXL at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720189Millipore: Percentage of residual kinase activity of HIPK3 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720052Millipore: Percentage of residual kinase activity of BRSK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720218Millipore: Percentage of residual kinase activity of FRK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720231Millipore: Percentage of residual kinase activity of PLK3 at 10uM relative to control. Control inhibitor: Wortmannin at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720333Millipore: Percentage of residual kinase activity of LCK at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO42013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720334Millipore: Percentage of residual kinase activity of LCK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720422Millipore: Percentage of residual kinase activity of DAPK3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720060Millipore: Percentage of residual kinase activity of CDK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720475Millipore: Percentage of residual kinase activity of PRKCB at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720211Millipore: Percentage of residual kinase activity of PRKG1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 uM cGMP2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720237Millipore: Percentage of residual kinase activity of RIPK2 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720257Millipore: Percentage of residual kinase activity of RPS6KA6 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 30 mM NaCl2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720312Millipore: Percentage of residual kinase activity of ITK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID8583Compound was evaluated for the pharmacokinetic parameter, area under curve2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720256Millipore: Percentage of residual kinase activity of RPS6KA6 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 30 mM NaCl2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720318Millipore: Percentage of residual kinase activity of MAPK8 at 1uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ? -mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720108Millipore: Percentage of residual kinase activity of DAPK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720389Millipore: Percentage of residual kinase activity of NEK2 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720053Millipore: Percentage of residual kinase activity of BRSK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID524790Antiplasmodial activity against Plasmodium falciparum 3D7 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID223955Inhibition of human p56 Lck tyrosine kinase (lck64-509)2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720349Millipore: Percentage of residual kinase activity of MAP2K1 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 50 mM Tris pH 7.5, 0.2 mM EGTA, 0.1% ?-mercaptoethanol, 0.01% Brij-352013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720062Millipore: Percentage of residual kinase activity of CDK3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720395Millipore: Percentage of residual kinase activity of TSSK1B at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720220Millipore: Percentage of residual kinase activity of PHKG2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720411Millipore: Percentage of residual kinase activity of ULK3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720071Millipore: Percentage of residual kinase activity of CDK9 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720191Millipore: Percentage of residual kinase activity of GSG2 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720379Millipore: Percentage of residual kinase activity of MERTK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: mM MOPS pH 7.0, 0.2 mM EDTA, 30 mM NaCl2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720307Millipore: Percentage of residual kinase activity of IRAK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720137Millipore: Percentage of residual kinase activity of EPHB1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720331Millipore: Percentage of residual kinase activity of STK10 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720150Millipore: Percentage of residual kinase activity of FGFR1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720407Millipore: Percentage of residual kinase activity of TXK at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720210Millipore: Percentage of residual kinase activity of PRKG1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 uM cGMP2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720185Millipore: Percentage of residual kinase activity of HIPK1 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720285Millipore: Percentage of residual kinase activity of MAP3K7 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720043Millipore: Percentage of residual kinase activity of PTK6 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720301Millipore: Percentage of residual kinase activity of IKBKB at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720450Millipore: Percentage of residual kinase activity of PAK7 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720127Millipore: Percentage of residual kinase activity of EPHA3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720273Millipore: Percentage of residual kinase activity of SIK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720275Millipore: Percentage of residual kinase activity of SRPK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720216Millipore: Percentage of residual kinase activity of PKN2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID7650Compound was evaluated for the pharmacokinetic parameter, Terminal half life period2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720033Millipore: Percentage of residual kinase activity of ABL2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720207Millipore: Percentage of residual kinase activity of PRKD1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: mM HEPES pH 7.4, 0.03% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720289Millipore: Percentage of residual kinase activity of TAOK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID228420Inhibitory activity against tie-2 at a concentration of 5 uM ATP.2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720424Millipore: Percentage of residual kinase activity of RAF1 at 1uM relative to control. Control inhibitor: SB203580 at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720039Millipore: Percentage of residual kinase activity of AURKC at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 50 mM NaCl, 0.1% v/v Triton-X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720144Millipore: Percentage of residual kinase activity of EPHB4 at 10uM relative to control. Control inhibitor: PP2 at 30.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720240Millipore: Percentage of residual kinase activity of ROCK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720266Millipore: Percentage of residual kinase activity of SGK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720181Millipore: Percentage of residual kinase activity of GSK3A at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720385Millipore: Percentage of residual kinase activity of MUSK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720362Millipore: Percentage of residual kinase activity of CDC42BPA at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720255Millipore: Percentage of residual kinase activity of RPS6KA2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720073Millipore: Percentage of residual kinase activity of CHEK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720446Millipore: Percentage of residual kinase activity of PAK3 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720074Millipore: Percentage of residual kinase activity of CHEK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720093Millipore: Percentage of residual kinase activity of CSK at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720153Millipore: Percentage of residual kinase activity of FGFR3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720177Millipore: Percentage of residual kinase activity of GRK6 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720054Millipore: Percentage of residual kinase activity of BRSK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720096Millipore: Percentage of residual kinase activity of CAMK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720415Millipore: Percentage of residual kinase activity of WNK2 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720297Millipore: Percentage of residual kinase activity of IGF1R at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM Na3VO4, 5 mM Na-?-glycerophosphate2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720224Millipore: Percentage of residual kinase activity of PIM2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720186Millipore: Percentage of residual kinase activity of HIPK1 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720410Millipore: Percentage of residual kinase activity of ULK3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720453Millipore: Percentage of residual kinase activity of PAK6 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720308Millipore: Percentage of residual kinase activity of IRAK4 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720215Millipore: Percentage of residual kinase activity of MAPKAPK5 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Na-?-glycerophosphate pH 7.5, 0.1 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720134Millipore: Percentage of residual kinase activity of EPHA7 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720051Millipore: Percentage of residual kinase activity of BRSK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720036Millipore: Percentage of residual kinase activity of AURKA at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 50 mM NaCl, 0.1% v/v Triton-X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720388Millipore: Percentage of residual kinase activity of NEK2 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720143Millipore: Percentage of residual kinase activity of EPHB4 at 1uM relative to control. Control inhibitor: PP2 at 30.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720356Millipore: Percentage of residual kinase activity of MAP2K7 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol, 0.1 mM Na3VO42013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720125Millipore: Percentage of residual kinase activity of EPHA2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720461Millipore: Percentage of residual kinase activity of PDGFRB at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720282Millipore: Percentage of residual kinase activity of SYK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720030Millipore: Percentage of residual kinase activity of MAP3K5 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID69408Inhibition of Epidermal growth factor receptor2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID524792Antiplasmodial activity against Plasmodium falciparum D10 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID720214Millipore: Percentage of residual kinase activity of MAPKAPK5 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Na-?-glycerophosphate pH 7.5, 0.1 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720083Millipore: Percentage of residual kinase activity of CSNK1D at 1uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720393Millipore: Percentage of residual kinase activity of TLK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720146Millipore: Percentage of residual kinase activity of ERBB4 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 2.5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID524795Antiplasmodial activity against Plasmodium falciparum HB3 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID720163Millipore: Percentage of residual kinase activity of FLT1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720405Millipore: Percentage of residual kinase activity of NTRK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720160Millipore: Percentage of residual kinase activity of FES at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720376Millipore: Percentage of residual kinase activity of STK24 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720148Millipore: Percentage of residual kinase activity of PTK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720113Millipore: Percentage of residual kinase activity of DDR2 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720027Millipore: Percentage of residual kinase activity of NUAK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720338Millipore: Percentage of residual kinase activity of MAPK3 at 1uM relative to control. Control inhibitor: ERK Inhibitor II at 30.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720278Millipore: Percentage of residual kinase activity of STK33 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720270Millipore: Percentage of residual kinase activity of SGK3 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720438Millipore: Percentage of residual kinase activity of NEK6 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720357Millipore: Percentage of residual kinase activity of MAP2K7 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol, 0.1 mM Na3VO42013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720238Millipore: Percentage of residual kinase activity of ROCK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720172Millipore: Percentage of residual kinase activity of FYN at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO42013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720232Millipore: Percentage of residual kinase activity of PRKX at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720059Millipore: Percentage of residual kinase activity of CDK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720402Millipore: Percentage of residual kinase activity of NTRK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720233Millipore: Percentage of residual kinase activity of PRKX at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720368Millipore: Percentage of residual kinase activity of RPS6KA4 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720287Millipore: Percentage of residual kinase activity of TAOK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 50 mM NaCl2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720090Millipore: Percentage of residual kinase activity of CLK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223965Inhibition of p56 Lck tyrosine kinase catalytic domain at 1 mM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720031Millipore: Percentage of residual kinase activity of ABL1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720066Millipore: Percentage of residual kinase activity of CDK5 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720166Millipore: Percentage of residual kinase activity of FLT3 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720436Millipore: Percentage of residual kinase activity of RPS6KB1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720219Millipore: Percentage of residual kinase activity of FRK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720268Millipore: Percentage of residual kinase activity of SGK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223969Inhibition of p56 Lck tyrosine kinase catalytic domain at 5 uM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720373Millipore: Percentage of residual kinase activity of STK4 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720182Millipore: Percentage of residual kinase activity of GSK3A at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720350Millipore: Percentage of residual kinase activity of MELK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720165Millipore: Percentage of residual kinase activity of FLT3 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720433Millipore: Percentage of residual kinase activity of MTOR at 10uM relative to control. Control inhibitor: PI-103 at 30.0uM. Buffer: 50 mM HEPES pH 7.5, 1 mM EGTA, 0.01% Tween 202013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720103Millipore: Percentage of residual kinase activity of CAMK4 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 40 mM HEPES pH 7.4, 5 mM CaCl2, 30 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720460Millipore: Percentage of residual kinase activity of PDGFRB at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID114028Effective dose of intraperitoneally administered compound to inhibit T-cell receptor stimulated (alpha CD3 mAb) IL-2 production in mice2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720126Millipore: Percentage of residual kinase activity of EPHA2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID524794Antiplasmodial activity against Plasmodium falciparum GB4 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID720365Millipore: Percentage of residual kinase activity of CDC42BPB at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720332Millipore: Percentage of residual kinase activity of LCK at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO42013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720384Millipore: Percentage of residual kinase activity of MUSK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720018Millipore: Percentage of residual kinase activity of TNK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720082Millipore: Percentage of residual kinase activity of CSNK1G3 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720443Millipore: Percentage of residual kinase activity of NLK at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720229Millipore: Percentage of residual kinase activity of PLK1 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 20 mM DTT2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720205Millipore: Percentage of residual kinase activity of PRKCI at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720222Millipore: Percentage of residual kinase activity of PIM1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720327Millipore: Percentage of residual kinase activity of LIMK1 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720136Millipore: Percentage of residual kinase activity of EPHA8 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223974Inhibition of p56 Lck tyrosine kinase, in presence of 1 mM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720116Millipore: Percentage of residual kinase activity of DMPK at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720427Millipore: Percentage of residual kinase activity of KIT at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720425Millipore: Percentage of residual kinase activity of RAF1 at 10uM relative to control. Control inhibitor: SB203580 at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720284Millipore: Percentage of residual kinase activity of MAP3K7 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720468Millipore: Percentage of residual kinase activity of AKT2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720192Millipore: Percentage of residual kinase activity of GSG2 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720086Millipore: Percentage of residual kinase activity of CSNK2A1 at 10uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 20 mM HEPES pH 7.6, 0.15 M NaCl, 0.1 mM EDTA, 5 mM DTT, 0.1% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720305Millipore: Percentage of residual kinase activity of INSR at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM Na3VO4, 5 mM Na-?-glycerophosphate2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720404Millipore: Percentage of residual kinase activity of NTRK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720140Millipore: Percentage of residual kinase activity of EPHB2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720304Millipore: Percentage of residual kinase activity of INSR at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM Na3VO4, 5 mM Na-?-glycerophosphate2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720367Millipore: Percentage of residual kinase activity of RPS6KA5 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720175Millipore: Percentage of residual kinase activity of GRK5 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720217Millipore: Percentage of residual kinase activity of PKN2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720382Millipore: Percentage of residual kinase activity of MKNK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720035Millipore: Percentage of residual kinase activity of AURKA at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 50 mM NaCl, 0.1% v/v Triton-X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720141Millipore: Percentage of residual kinase activity of EPHB3 at 1uM relative to control. Control inhibitor: PP2 at 30.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720072Millipore: Percentage of residual kinase activity of CDK9 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID223570Inhibition of anti-CD3 stimulated IL-2 production by Jurkat cells2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720021Millipore: Percentage of residual kinase activity of ACVR1B at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720118Millipore: Percentage of residual kinase activity of STK17A at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720213Millipore: Percentage of residual kinase activity of PRKG1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 uM cGMP2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720017Millipore: Percentage of residual kinase activity of TNK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720313Millipore: Percentage of residual kinase activity of ITK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720302Millipore: Percentage of residual kinase activity of INSR at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720370Millipore: Percentage of residual kinase activity of SRPK3 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720061Millipore: Percentage of residual kinase activity of CDK3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720421Millipore: Percentage of residual kinase activity of ZAP70 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720478Millipore: Percentage of residual kinase activity of PRKCG at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720267Millipore: Percentage of residual kinase activity of SGK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720474Millipore: Percentage of residual kinase activity of PRKCB at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720456Millipore: Percentage of residual kinase activity of PASK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720467Millipore: Percentage of residual kinase activity of AKT1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID227683Inhibition of src at 5 mM ATP2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720044Millipore: Percentage of residual kinase activity of PTK6 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720193Millipore: Percentage of residual kinase activity of HCK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720290Millipore: Percentage of residual kinase activity of TAOK3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 200 mM NaCl, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720259Millipore: Percentage of residual kinase activity of MAPK14 at 10uM relative to control. Control inhibitor: SB203580 at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID7667Compound was evaluated for the pharmacokinetic parameter, maximum time constant2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720361Millipore: Percentage of residual kinase activity of MAP3K9 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720399Millipore: Percentage of residual kinase activity of TEC at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM Na3VO4, 5 mM Na-?-glycerophosphate2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720049Millipore: Percentage of residual kinase activity of BMX at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720032Millipore: Percentage of residual kinase activity of ABL1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720078Millipore: Percentage of residual kinase activity of CSNK1G1 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720316Millipore: Percentage of residual kinase activity of JAK3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720310Millipore: Percentage of residual kinase activity of INSRR at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720341Millipore: Percentage of residual kinase activity of MAPK1 at 10uM relative to control. Control inhibitor: ERK Inhibitor II at 30.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720403Millipore: Percentage of residual kinase activity of NTRK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720465Millipore: Percentage of residual kinase activity of PRKACA at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720459Millipore: Percentage of residual kinase activity of PDGFRA at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720451Millipore: Percentage of residual kinase activity of PAK7 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720208Millipore: Percentage of residual kinase activity of PRKD2 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720358Millipore: Percentage of residual kinase activity of MYLK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720339Millipore: Percentage of residual kinase activity of MAPK3 at 10uM relative to control. Control inhibitor: ERK Inhibitor II at 30.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720242Millipore: Percentage of residual kinase activity of RET at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720337Millipore: Percentage of residual kinase activity of LYN at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720091Millipore: Percentage of residual kinase activity of CLK3 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720406Millipore: Percentage of residual kinase activity of TXK at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720448Millipore: Percentage of residual kinase activity of PAK4 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720131Millipore: Percentage of residual kinase activity of EPHA5 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 2.5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720325Millipore: Percentage of residual kinase activity of KDR at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720199Millipore: Percentage of residual kinase activity of PRKCZ at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720322Millipore: Percentage of residual kinase activity of MAPK10 at 1uM relative to control. Control inhibitor: JAK Inhibitor I at 30.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720085Millipore: Percentage of residual kinase activity of CSNK2A1 at 1uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 20 mM HEPES pH 7.6, 0.15 M NaCl, 0.1 mM EDTA, 5 mM DTT, 0.1% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720076Millipore: Percentage of residual kinase activity of CHEK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720354Millipore: Percentage of residual kinase activity of MAP2K6 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol, 0.1 mM Na3VO4, 1 mg/mL BSA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720470Millipore: Percentage of residual kinase activity of AKT3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720319Millipore: Percentage of residual kinase activity of MAPK8 at 10uM relative to control. Control inhibitor: Jnk Inhibitor II at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ? -mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720293Millipore: Percentage of residual kinase activity of TBK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720269Millipore: Percentage of residual kinase activity of SGK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720105Millipore: Percentage of residual kinase activity of CAMK1D at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720344Millipore: Percentage of residual kinase activity of MAPKAPK3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Na-?-glycerophosphate pH 7.5, 0.1 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720294Millipore: Percentage of residual kinase activity of TGFBR1 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720058Millipore: Percentage of residual kinase activity of CDK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720477Millipore: Percentage of residual kinase activity of PRKCB at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720048Millipore: Percentage of residual kinase activity of BLK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720369Millipore: Percentage of residual kinase activity of RPS6KA4 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720139Millipore: Percentage of residual kinase activity of EPHB2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720397Millipore: Percentage of residual kinase activity of TSSK2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720236Millipore: Percentage of residual kinase activity of RIPK2 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID123613Percent inhibition of IFN-gamma production after peroral (twice daily) administration of 100 mg/kg of compound for 3 days2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720288Millipore: Percentage of residual kinase activity of TAOK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720324Millipore: Percentage of residual kinase activity of KDR at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720209Millipore: Percentage of residual kinase activity of PRKD2 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-1002013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720463Millipore: Percentage of residual kinase activity of PDPK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720283Millipore: Percentage of residual kinase activity of SYK at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720187Millipore: Percentage of residual kinase activity of HIPK2 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720454Millipore: Percentage of residual kinase activity of MARK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720346Millipore: Percentage of residual kinase activity of MARK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720345Millipore: Percentage of residual kinase activity of MAPKAPK3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Na-?-glycerophosphate pH 7.5, 0.1 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720024Millipore: Percentage of residual kinase activity of PRKAA1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 200 uM AMP2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID1576941Inhibition of N-terminal GST-tagged human EGFR (696 to end aminoacids) expressed in baculovirus infected Sf21 cells2019Journal of medicinal chemistry, 09-12, Volume: 62, Issue:17
Discovery of Evobrutinib: An Oral, Potent, and Highly Selective, Covalent Bruton's Tyrosine Kinase (BTK) Inhibitor for the Treatment of Immunological Diseases.
AID720336Millipore: Percentage of residual kinase activity of LYN at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720250Millipore: Percentage of residual kinase activity of RPS6KA1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720353Millipore: Percentage of residual kinase activity of MINK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720225Millipore: Percentage of residual kinase activity of PIM2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720117Millipore: Percentage of residual kinase activity of STK17A at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720119Millipore: Percentage of residual kinase activity of DYRK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720057Millipore: Percentage of residual kinase activity of CDK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720149Millipore: Percentage of residual kinase activity of FGFR1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720416Millipore: Percentage of residual kinase activity of WNK3 at 1uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720138Millipore: Percentage of residual kinase activity of EPHB1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720372Millipore: Percentage of residual kinase activity of STK4 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720444Millipore: Percentage of residual kinase activity of PAK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720262Millipore: Percentage of residual kinase activity of MAPK12 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720171Millipore: Percentage of residual kinase activity of FYN at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO42013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID1576940Covalent inhibition of N-terminal GST-fused human BTK (2-659(end) amino acids) expressed in baculovirus expression system using FITC-AHA-EEPLYWSFPAKKK-NH2 as substrate incubated for 90 mins by microfluidic off-Chip Mobility Shift Assay2019Journal of medicinal chemistry, 09-12, Volume: 62, Issue:17
Discovery of Evobrutinib: An Oral, Potent, and Highly Selective, Covalent Bruton's Tyrosine Kinase (BTK) Inhibitor for the Treatment of Immunological Diseases.
AID720161Millipore: Percentage of residual kinase activity of FGR at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720107Millipore: Percentage of residual kinase activity of DAPK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720164Millipore: Percentage of residual kinase activity of FLT1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720025Millipore: Percentage of residual kinase activity of PRKAA2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 200 uM AMP2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720377Millipore: Percentage of residual kinase activity of STK24 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID9606Compound was evaluated for the pharmacokinetic parameter, maximum plasma concentration2002Bioorganic & medicinal chemistry letters, Jun-17, Volume: 12, Issue:12
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.
AID720263Millipore: Percentage of residual kinase activity of MAPK12 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 25 mM Tris pH 7.5, 0.02 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720426Millipore: Percentage of residual kinase activity of KIT at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 10 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720253Millipore: Percentage of residual kinase activity of RPS6KA3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720026Millipore: Percentage of residual kinase activity of PRKAA2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 200 uM AMP2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720400Millipore: Percentage of residual kinase activity of TEK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720342Millipore: Percentage of residual kinase activity of MAPKAPK2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 50 mM Na-?-glycerophosphate pH 7.5, 0.1 mM EGTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720276Millipore: Percentage of residual kinase activity of SRPK2 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720466Millipore: Percentage of residual kinase activity of AKT1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720109Millipore: Percentage of residual kinase activity of DAPK2 at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720034Millipore: Percentage of residual kinase activity of ABL2 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720099Millipore: Percentage of residual kinase activity of CAMK2G at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.5 mM CaCl2, 16 ug/mL calmodulin2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720298Millipore: Percentage of residual kinase activity of CHUK at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720065Millipore: Percentage of residual kinase activity of CDK5 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720234Millipore: Percentage of residual kinase activity of PTK2B at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720417Millipore: Percentage of residual kinase activity of WNK3 at 10uM relative to control. Control inhibitor: Phosphoric acid* at 0.3uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720252Millipore: Percentage of residual kinase activity of RPS6KA3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720323Millipore: Percentage of residual kinase activity of MAPK10 at 10uM relative to control. Control inhibitor: JAK Inhibitor I at 30.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720476Millipore: Percentage of residual kinase activity of PRKCB at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720200Millipore: Percentage of residual kinase activity of PRKCH at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 20 mM HEPES pH 7.4, 0.03% Triton X-100, 0.1 mM CaCl2, 0.1 mg/mL phosphatidylserine, 10 ug/mL diacylglycerol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720151Millipore: Percentage of residual kinase activity of FGFR2 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 2.5 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720188Millipore: Percentage of residual kinase activity of HIPK2 at 10uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720311Millipore: Percentage of residual kinase activity of INSRR at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID164695Inhibition of Protein tyrosine kinase Lyn2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID720248Millipore: Percentage of residual kinase activity of TYRO3 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA, 1 mM MnCl22013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720291Millipore: Percentage of residual kinase activity of TAOK3 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 200 mM NaCl, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720197Millipore: Percentage of residual kinase activity of IGF1R at 1uM relative to control. Control inhibitor: Staurosporine at 100.0uM. Buffer: 50 mM Tris pH 7.5, 0.1 mM EGTA, 0.1 mM Na3VO4, 0.1% ?-mercaptoethanol2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720347Millipore: Percentage of residual kinase activity of MARK1 at 10uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720352Millipore: Percentage of residual kinase activity of MINK1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID720418Millipore: Percentage of residual kinase activity of YES1 at 1uM relative to control. Control inhibitor: Staurosporine at 10.0uM. Buffer: 8 mM MOPS pH 7.0, 0.2 mM EDTA2013The Biochemical journal, Apr-15, Volume: 451, Issue:2
A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
AID1508612NCATS Parallel Artificial Membrane Permeability Assay (PAMPA) Profiling2017Bioorganic & medicinal chemistry, 02-01, Volume: 25, Issue:3
Highly predictive and interpretable models for PAMPA permeability.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1508591NCATS Rat Liver Microsome Stability Profiling2020Scientific reports, 11-26, Volume: 10, Issue:1
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
AID1645848NCATS Kinetic Aqueous Solubility Profiling2019Bioorganic & medicinal chemistry, 07-15, Volume: 27, Issue:14
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID504836Inducers of the Endoplasmic Reticulum Stress Response (ERSR) in human glioma: Validation2002The Journal of biological chemistry, Apr-19, Volume: 277, Issue:16
Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells.
AID1347057CD47-SIRPalpha protein protein interaction - LANCE assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID588349qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay
AID1347045Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot counterscreen GloSensor control cell line2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347410qHTS for inhibitors of adenylyl cyclases using a fission yeast platform: a pilot screen against the NCATS LOPAC library2019Cellular signalling, 08, Volume: 60A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347049Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot screen2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID588378qHTS for Inhibitors of ATXN expression: Validation
AID1347405qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS LOPAC collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347050Natriuretic polypeptide receptor (hNpr2) antagonism - Pilot subtype selectivity assay2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347058CD47-SIRPalpha protein protein interaction - HTRF assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347059CD47-SIRPalpha protein protein interaction - Alpha assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
AID1801851LoxA HTP Assay from Article 10.1021/acs.biochem.6b00338: \\Biochemical and Cellular Characterization and Inhibitor Discovery of Pseudomonas aeruginosa 15-Lipoxygenase.\\2016Biochemistry, 06-14, Volume: 55, Issue:23
Biochemical and Cellular Characterization and Inhibitor Discovery of Pseudomonas aeruginosa 15-Lipoxygenase.
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID1345717Human LCK proto-oncogene, Src family tyrosine kinase (Src family)2000Bioorganic & medicinal chemistry letters, Oct-02, Volume: 10, Issue:19
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.
AID977608Experimentally measured binding affinity data (IC50) for protein-ligand complexes derived from PDB2013Science translational medicine, Apr-17, Volume: 5, Issue:181
A pyrrolo-pyrimidine derivative targets human primary AML stem cells in vivo.
AID977608Experimentally measured binding affinity data (IC50) for protein-ligand complexes derived from PDB2010Protein science : a publication of the Protein Society, Mar, Volume: 19, Issue:3
Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (29)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's6 (20.69)29.6817
2010's16 (55.17)24.3611
2020's7 (24.14)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 52.10

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be very strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index52.10 (24.57)
Research Supply Index3.40 (2.92)
Research Growth Index5.45 (4.65)
Search Engine Demand Index132.06 (26.88)
Search Engine Supply Index3.35 (0.95)

This Compound (52.10)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other29 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]