Page last updated: 2024-12-05

2,5-dihydroxybenzoic acid

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

2,5-Dihydroxybenzoic acid, also known as gentisic acid, is a naturally occurring phenolic compound found in various plants. It is a white crystalline solid that is soluble in water and organic solvents.

Gentisic acid is synthesized through a number of pathways, including the degradation of salicylic acid and the biosynthesis of catechol. It is also produced commercially by the oxidation of hydroquinone.

Gentisic acid exhibits various biological activities, including antioxidant, anti-inflammatory, and anti-cancer properties. It acts as a potent scavenger of reactive oxygen species, reducing oxidative stress in cells. Its anti-inflammatory effects are attributed to its inhibition of pro-inflammatory mediators such as cyclooxygenase and lipoxygenase enzymes. Research suggests that gentisic acid may possess anti-cancer properties by inducing apoptosis in cancer cells and inhibiting their growth.

Gentisic acid is studied for its potential therapeutic applications in various diseases, including diabetes, cardiovascular disease, and cancer. Its antioxidant and anti-inflammatory properties make it a promising candidate for treating these conditions.

In addition to its medical applications, gentisic acid is also used in the synthesis of dyes, pharmaceuticals, and other chemicals. It is a valuable intermediate in the production of various organic compounds.'

2,5-dihydroxybenzoic acid: RN given refers to parent cpd; a oxidative product of saligenin [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

2,5-dihydroxybenzoic acid : A dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID3469
CHEMBL ID1461
CHEBI ID17189
SCHEMBL ID3690
MeSH IDM0056827

Synonyms (122)

Synonym
smr000393742
MLS002207134
bdbm50335808
2,5-dihydroxybenzoate, vi
2,5-dihydroxy-benzoic acid
CHEBI:17189 ,
nsc-49098
nsc49098
2,5-dioxybenzoic acid
5-hydroxysalicylic acid
nsc-27224
nsc27224
gensigen
salicylic acid, 5-hydroxy-
wln: qvr bq eq
gensigon
DIVK1C_000538
KBIO1_000538
NCIOPEN2_000913
SPECTRUM_001241
SPECTRUM4_001821
kyselina gentisinova [czech]
kyselina 2,5-dihydroxybenzoova [czech]
2,5-dhba
acide gentisique [inn-french]
acido gentisico [inn-spanish]
ai3-60431
acidum gentisicum [inn-latin]
brn 2209119
acido 2,5-diidrossibenzoico [italian]
nsc 27224
einecs 207-718-5
SPECTRUM5_000581
NCGC00178325-01
sodium-gent
nsc8512
resorcyllic acid, alphaodium 2,5-dihydroxybenzoate
gentisinic acid
OPREA1_039290
IDI1_000538
BSPBIO_003051
inchi=1/c7h6o4/c8-4-1-2-6(9)5(3-4)7(10)11/h1-3,8-9h,(h,10,11
benzoic acid, 2,5-dihydroxy-
genop
benzoic acid,2,5-dihydroxy
STK426343
C00628
gentisic acid
2,5-dihydroxybenzoic acid
gentisate
hydroquinonecarboxylic acid
490-79-9
2,5-dihydroxybenzoic acid, 98%
KBIOGR_002487
KBIO2_001721
KBIO3_002271
KBIOSS_001721
KBIO2_004289
KBIO2_006857
SPBIO_000846
SPECTRUM2_000773
NINDS_000538
SPECTRUM3_001326
3,6-dihydroxybenzoic acid
26A2CD0F-7EBD-431F-8BDA-168766205AE1
gtq ,
D2933
D0569
CHEMBL1461 ,
BMSE000326
HMS501K20
FT-0667079
AKOS003267857
EN300-81715
AE-562/40605400
BBL013232
S3799
CCG-40154
kyselina gentisinova
gentisic acid [inn]
acidum gentisicum
unii-vp36v95o3t
acido gentisico
kyselina 2,5-dihydroxybenzoova
acide gentisique
vp36v95o3t ,
acido 2,5-diidrossibenzoico
4-10-00-01441 (beilstein handbook reference)
FT-0610382
PS-6232
gentisic acid [who-dd]
2,5-dihydroxybenzoic acid [inci]
gentisic acid [mi]
mesalazine impurity g [ep impurity]
gentisic acid [ii]
carboxyhydroquinone
2,5-dihydroxy benzoic acid
SCHEMBL3690
2,5dihydroxybenzoic acid
gentisinate
2,5,dihydroxybenzoic acid
DTXSID4060078
W-106033
AC-23625
mfcd00002460
Z275164274
2,5-dihydroxybenzoic acid, matrix substance for maldi-ms, >99.0% (hplc)
2,5-dihydroxybenzoic acid, analytical standard
CS-W001179
2,5-dihydroxybenzoic acid, matrix substance for maldi-ms, >=99.5% (hplc), ultra pure
gentisicacid
gentisic acid (2,5-dihydroxybenzoic acid)
5-hydroxy-salicylate
3,6-dihydroxybenzoate
dihydroxybenzoicacid
2,5-dioxybenzoate
5-hydroxy-salicylic acid
HY-W001179
SY014321
Q417831
AMY18270
CK2181

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" Toxic effects of either metabolite were not evident beyond 24 h, and toxicity of 2,5-DIOH was significantly greater in comparison to 2,3-DIOH."( Comparative acute nephrotoxicity of salicylic acid, 2,3-dihydroxybenzoic acid, and 2,5-dihydroxybenzoic acid in young and middle aged Fischer 344 rats.
Birnbaum, LS; Blair, PC; Clark, AM; McMahon, TF; Stefanski, SA; Wilson, RE, 1991
)
0.51
"Reproductive toxicity is a serious side effect of cisplatin (CP) chemotherapy."( Gentisic acid ameliorates cisplatin-induced reprotoxicity through suppressing endoplasmic reticulum stress and upregulating Nrf2 pathway.
Alemdar, NT; Aliyazicioglu, Y; Demir, EA; Demir, S; Mentese, A; Mungan, SA, 2023
)
0.91

Pharmacokinetics

ExcerptReferenceRelevance
" The study illustrates the need for pharmacokinetic data to establish the individual doses of drugs, particularly in conditions that alter nutritional status."( Influence of nutritional status on the pharmacokinetics of acetylsalicylic acid and its metabolites in children with autoimmune disease.
Carbajal-Rodríguez, L; Flores-Pérez, J; Juárez-Olguín, H; Lares-Asseff, I; Loredo-Abdalá, A; Ramírez-Lacayo, M, 1999
)
0.3
"The maximum plasma concentration, half-life time, area under the curve and the amount of salicylates excreted were statistically different between the JRA and the RF groups, as well as between the RF group and the controls, however, there were no significant differences between the JRA group and the controls."( Comparative pharmacokinetics of acetyl salicylic acid and its metabolites in children suffering from autoimmune diseases.
Carbajal Rodríguez, L; Flores Pérez, J; Juárez Olguín, H; Lares Asseff, I; Loredo Abdalá, A, 2004
)
0.32
" However, due to ample variability of pharmacokinetic parameters it is recommended that dose schemes are individualized on the type of autoimmune disease considered."( Comparative pharmacokinetics of acetyl salicylic acid and its metabolites in children suffering from autoimmune diseases.
Carbajal Rodríguez, L; Flores Pérez, J; Juárez Olguín, H; Lares Asseff, I; Loredo Abdalá, A, 2004
)
0.32
" The plasma concentrations of its metabolites, aspirin (ASA), salicylic acid (SA) and gentisic acid (GA) were determined by LC-MS/MS method and the pharmacokinetic parameters were calculated by noncompartmental analysis."( Analytical determination and pharmacokinetics of major metabolites of carbasalate calcium in broilers following oral administration.
Chen, DM; Huang, LL; Ihsan, A; Wang, X; Yuan, ZH, 2011
)
0.37

Compound-Compound Interactions

ExcerptReferenceRelevance
" Here we describe a rapid and sensitive HPLC method using ultraviolet absorbance (UV) and electrochemical detection (EC) to detect SA (UV), its hydroxylated adducts 2,3- and 2,5-dihydroxybenzoic acids (DHBA) and catechol in combination with catechol- and indoleamines and related metabolites (EC) in one isocratic run."( Detection of salicylate and its hydroxylated adducts 2,3- and 2,5-dihydroxybenzoic acids as possible indices for in vivo hydroxyl radical formation in combination with catechol- and indoleamines and their metabolites in cerebrospinal fluid and brain tissu
Gramsbergen, JB; Sloot, WN, 1995
)
0.73
" The nanoparticle-assisted MALDI-TOF MS combined with seed-layer surface preparation provides a rapid, efficient and accurate platform for the quantification of small molecules in urine samples."( Nanoparticle-assisted MALDI-TOF MS combined with seed-layer surface preparation for quantification of small molecules.
Chen, YJ; Fuh, MR; Ho, YC; Lin, CC; Lu, YW; Tseng, MC, 2011
)
0.37

Bioavailability

ExcerptReferenceRelevance
" This method has been applied to human bioavailability studies and the data are presented."( Improved method for the determination of aspirin and its metabolites in biological fluids by high-performance liquid chromatography: applications to human and animal studies.
Beach, CA; Bianchine, JR; Gerber, N; Kershaw, RA; Mays, DC; Sharp, DE, 1984
)
0.27
"Glucoconjugates of (+/-)-ibuprofen, (+/-)-alpha-tocopherol (vitamin E), gentisic acid, gallic acid, 2,6-bis(tert-butyl)-4-thiophenol, and N-acetyl-L-cysteine were prepared with the objective of increasing the bioavailability of such antioxidant and anti-inflammatory drugs."( Synthesis of antioxidative and anti-inflammatory drugs glucoconjugates.
Beyreuther, K; Picard, MA; Uhrig, RK; Wiessler, M, 2000
)
0.31

Dosage Studied

ExcerptRelevanceReference
" Effects of these treatments on functional integrity of renal tissue was assessed from 0--72 h after dosing by measurement of urinary creatinine, GLU, and PRO, as well as excretion of proximal and distal tubular renal enzymes."( Comparative acute nephrotoxicity of salicylic acid, 2,3-dihydroxybenzoic acid, and 2,5-dihydroxybenzoic acid in young and middle aged Fischer 344 rats.
Birnbaum, LS; Blair, PC; Clark, AM; McMahon, TF; Stefanski, SA; Wilson, RE, 1991
)
0.51
" When steady state was achieved patients were hospitalized, and blood and urine specimens were obtained during three dosing intervals and during the washout period that followed."( Availability of salicylate from salsalate and aspirin.
Cassell, S; Dromgoole, SH; Furst, DE; Paulus, HE, 1983
)
0.27
" According to the results, gentisic acid, gallic acid and p-coumaric acid in a dosage of 100 mg/kg of body weight for 14 consecutive days significantly increased P-form PST (PST-P) activity as compared with that of the control rats (P<."( Modulation of hepatic phase II phenol sulfotransferase and antioxidant status by phenolic acids in rats.
Yeh, CT; Yen, GC, 2006
)
0.33
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (5)

RoleDescription
MALDI matrix materialA compound used to form the matrix for MALDI (matrix-assisted laser desorption/ionization) mass spectrometry. MALDI matrix materials are crystalline compounds with a fairly low molecular weight, so as to allow facile vaporization, have strong absorption at UV or IR wavelengths (to rapidly and efficiently absorb laser irradiation), generally contain polar groups (enabling them to be used in aqueous solutions) and are frequently acidic (so assisting ionisation of the compound being studied, which is contained within the matrix material).
EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitorA lipoxygenase inhibitor that interferes with the action of arachidonate 15-lipoxygenase (EC 1.13.11.33).
human metaboliteAny mammalian metabolite produced during a metabolic reaction in humans (Homo sapiens).
fungal metaboliteAny eukaryotic metabolite produced during a metabolic reaction in fungi, the kingdom that includes microorganisms such as the yeasts and moulds.
mouse metaboliteAny mammalian metabolite produced during a metabolic reaction in a mouse (Mus musculus).
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (1)

ClassDescription
dihydroxybenzoic acidAny member of the class of hydroxybenzoic acids carrying two phenolic hydroxy groups on the benzene ring and its derivatives.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Pathways (6)

PathwayProteinsCompounds
Transport of small molecules39295
Iron uptake and transport2919
Immune System91482
Innate Immune System41475
Antimicrobial peptides3818
Metal sequestration by antimicrobial proteins47

Protein Targets (18)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
thioredoxin reductaseRattus norvegicus (Norway rat)Potency50.11870.100020.879379.4328AID588456
chromobox protein homolog 1Homo sapiens (human)Potency100.00000.006026.168889.1251AID540317
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency89.12510.050127.073689.1251AID588590
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Carbonic anhydrase 12Homo sapiens (human)Ki7.30000.00021.10439.9000AID729534
Carbonic anhydrase 1Homo sapiens (human)Ki4.20000.00001.372610.0000AID729538
Carbonic anhydrase 2Homo sapiens (human)IC50 (µMol)5,000.00000.00021.10608.3000AID1324614
Carbonic anhydrase 2Homo sapiens (human)Ki4.10000.00000.72369.9200AID729537
72 kDa type IV collagenaseHomo sapiens (human)IC50 (µMol)115.00000.00001.284810.0000AID1799773
MatrilysinHomo sapiens (human)IC50 (µMol)115.00000.00142.085910.0000AID1799773
Polyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)IC50 (µMol)75.00000.00011.68479.3200AID566710
Aminopeptidase NSus scrofa (pig)IC50 (µMol)100.00000.00053.53548.9000AID616190
Prolyl 4-hydroxylase subunit alpha-1Gallus gallus (chicken)Ki1,400.00005.00007.66679.0000AID1799825
Tyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)IC50 (µMol)100.00000.00053.49849.7600AID616190
Carbonic anhydrase 7Homo sapiens (human)Ki68.00000.00021.37379.9000AID729536
4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)IC50 (µMol)115.00000.06003.89568.3000AID1799773
Alpha-(1,3)-fucosyltransferase 7Homo sapiens (human)IC50 (µMol)115.00000.06003.89568.3000AID1799773
CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)IC50 (µMol)115.00000.06003.89568.3000AID1799773
Carbonic anhydrase 9Homo sapiens (human)Ki6.60000.00010.78749.9000AID729535
Carbonic anhydrase 14Homo sapiens (human)Ki67.00000.00021.50999.9000AID729533
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (162)

Processvia Protein(s)Taxonomy
estrous cycleCarbonic anhydrase 12Homo sapiens (human)
chloride ion homeostasisCarbonic anhydrase 12Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 12Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 1Homo sapiens (human)
morphogenesis of an epitheliumCarbonic anhydrase 2Homo sapiens (human)
positive regulation of synaptic transmission, GABAergicCarbonic anhydrase 2Homo sapiens (human)
positive regulation of cellular pH reductionCarbonic anhydrase 2Homo sapiens (human)
angiotensin-activated signaling pathwayCarbonic anhydrase 2Homo sapiens (human)
regulation of monoatomic anion transportCarbonic anhydrase 2Homo sapiens (human)
secretionCarbonic anhydrase 2Homo sapiens (human)
regulation of intracellular pHCarbonic anhydrase 2Homo sapiens (human)
neuron cellular homeostasisCarbonic anhydrase 2Homo sapiens (human)
positive regulation of dipeptide transmembrane transportCarbonic anhydrase 2Homo sapiens (human)
regulation of chloride transportCarbonic anhydrase 2Homo sapiens (human)
carbon dioxide transportCarbonic anhydrase 2Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 2Homo sapiens (human)
angiogenesis72 kDa type IV collagenaseHomo sapiens (human)
ovarian follicle development72 kDa type IV collagenaseHomo sapiens (human)
ovulation from ovarian follicle72 kDa type IV collagenaseHomo sapiens (human)
luteinization72 kDa type IV collagenaseHomo sapiens (human)
blood vessel maturation72 kDa type IV collagenaseHomo sapiens (human)
intramembranous ossification72 kDa type IV collagenaseHomo sapiens (human)
proteolysis72 kDa type IV collagenaseHomo sapiens (human)
negative regulation of cell adhesion72 kDa type IV collagenaseHomo sapiens (human)
heart development72 kDa type IV collagenaseHomo sapiens (human)
embryo implantation72 kDa type IV collagenaseHomo sapiens (human)
parturition72 kDa type IV collagenaseHomo sapiens (human)
response to xenobiotic stimulus72 kDa type IV collagenaseHomo sapiens (human)
response to mechanical stimulus72 kDa type IV collagenaseHomo sapiens (human)
peripheral nervous system axon regeneration72 kDa type IV collagenaseHomo sapiens (human)
response to activity72 kDa type IV collagenaseHomo sapiens (human)
protein metabolic process72 kDa type IV collagenaseHomo sapiens (human)
extracellular matrix disassembly72 kDa type IV collagenaseHomo sapiens (human)
protein catabolic process72 kDa type IV collagenaseHomo sapiens (human)
positive regulation of cell migration72 kDa type IV collagenaseHomo sapiens (human)
collagen catabolic process72 kDa type IV collagenaseHomo sapiens (human)
response to retinoic acid72 kDa type IV collagenaseHomo sapiens (human)
cellular response to reactive oxygen species72 kDa type IV collagenaseHomo sapiens (human)
response to nicotine72 kDa type IV collagenaseHomo sapiens (human)
endodermal cell differentiation72 kDa type IV collagenaseHomo sapiens (human)
response to hydrogen peroxide72 kDa type IV collagenaseHomo sapiens (human)
response to estrogen72 kDa type IV collagenaseHomo sapiens (human)
negative regulation of vasoconstriction72 kDa type IV collagenaseHomo sapiens (human)
ephrin receptor signaling pathway72 kDa type IV collagenaseHomo sapiens (human)
macrophage chemotaxis72 kDa type IV collagenaseHomo sapiens (human)
response to electrical stimulus72 kDa type IV collagenaseHomo sapiens (human)
response to hyperoxia72 kDa type IV collagenaseHomo sapiens (human)
face morphogenesis72 kDa type IV collagenaseHomo sapiens (human)
bone trabecula formation72 kDa type IV collagenaseHomo sapiens (human)
prostate gland epithelium morphogenesis72 kDa type IV collagenaseHomo sapiens (human)
cellular response to amino acid stimulus72 kDa type IV collagenaseHomo sapiens (human)
cellular response to interleukin-172 kDa type IV collagenaseHomo sapiens (human)
cellular response to estradiol stimulus72 kDa type IV collagenaseHomo sapiens (human)
cellular response to UV-A72 kDa type IV collagenaseHomo sapiens (human)
cellular response to fluid shear stress72 kDa type IV collagenaseHomo sapiens (human)
positive regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathway72 kDa type IV collagenaseHomo sapiens (human)
response to amyloid-beta72 kDa type IV collagenaseHomo sapiens (human)
positive regulation of vascular associated smooth muscle cell proliferation72 kDa type IV collagenaseHomo sapiens (human)
extracellular matrix organization72 kDa type IV collagenaseHomo sapiens (human)
response to hypoxia72 kDa type IV collagenaseHomo sapiens (human)
tissue remodeling72 kDa type IV collagenaseHomo sapiens (human)
membrane protein ectodomain proteolysisMatrilysinHomo sapiens (human)
membrane protein intracellular domain proteolysisMatrilysinHomo sapiens (human)
antibacterial peptide secretionMatrilysinHomo sapiens (human)
antibacterial peptide biosynthetic processMatrilysinHomo sapiens (human)
proteolysisMatrilysinHomo sapiens (human)
response to xenobiotic stimulusMatrilysinHomo sapiens (human)
extracellular matrix disassemblyMatrilysinHomo sapiens (human)
positive regulation of cell migrationMatrilysinHomo sapiens (human)
collagen catabolic processMatrilysinHomo sapiens (human)
regulation of cell population proliferationMatrilysinHomo sapiens (human)
defense response to Gram-negative bacteriumMatrilysinHomo sapiens (human)
defense response to Gram-positive bacteriumMatrilysinHomo sapiens (human)
extracellular matrix organizationMatrilysinHomo sapiens (human)
negative regulation of endothelial cell proliferationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukocyte chemotaxis involved in inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukocyte migration involved in inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukotriene production involved in inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukotriene metabolic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
humoral immune responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of angiogenesisPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukotriene biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
lipoxygenase pathwayPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
positive regulation of bone mineralizationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
dendritic cell migrationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
glucose homeostasisPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
long-chain fatty acid biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of fat cell differentiationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of insulin secretionPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of vascular wound healingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of wound healingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of inflammatory response to woundingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of cytokine production involved in inflammatory responsePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of cellular response to oxidative stressPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
leukotriene A4 biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
regulation of reactive oxygen species biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of response to endoplasmic reticulum stressPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
negative regulation of sprouting angiogenesisPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
positive regulation of leukocyte adhesion to arterial endothelial cellPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
lipoxin biosynthetic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
arachidonic acid metabolic processPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
lipid oxidationPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
peptidyl-proline hydroxylation to 4-hydroxy-L-prolineProlyl 4-hydroxylase subunit alpha-1Gallus gallus (chicken)
positive regulation of JUN kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein dephosphorylationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of signal transductionTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of signal transductionTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
actin cytoskeleton organizationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of endocytosisTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of vascular endothelial growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulum unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of intracellular protein transportTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cellular response to unfolded proteinTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
peptidyl-tyrosine dephosphorylationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
platelet-derived growth factor receptor-beta signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
IRE1-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor recyclingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of MAP kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of insulin receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of type I interferon-mediated signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
growth hormone receptor signaling pathway via JAK-STATTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of protein tyrosine kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of ERK1 and ERK2 cascadeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of hepatocyte growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of IRE1-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of PERK-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
peptidyl-tyrosine dephosphorylation involved in inactivation of protein kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of receptor catabolic processTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of synaptic transmission, GABAergicCarbonic anhydrase 7Homo sapiens (human)
positive regulation of cellular pH reductionCarbonic anhydrase 7Homo sapiens (human)
neuron cellular homeostasisCarbonic anhydrase 7Homo sapiens (human)
regulation of chloride transportCarbonic anhydrase 7Homo sapiens (human)
regulation of intracellular pHCarbonic anhydrase 7Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 7Homo sapiens (human)
protein glycosylation4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
protein N-linked glycosylation4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
protein O-linked glycosylation4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
ceramide metabolic process4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
glycosphingolipid biosynthetic process4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
oligosaccharide biosynthetic process4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
N-glycan fucosylation4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
L-fucose catabolic process4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
oocyte axis specification4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
regulation of type IV hypersensitivityAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiationAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
leukocyte migration involved in immune responseAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
leukocyte migration involved in inflammatory responseAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
protein glycosylationAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
ceramide metabolic processAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
inflammatory responseAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
embryo implantationAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
oligosaccharide biosynthetic processAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
regulation of cell-cell adhesionAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
positive regulation of cell-cell adhesionAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
L-fucose catabolic processAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
positive regulation of cell adhesionAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
regulation of insulin receptor signaling pathwayAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
regulation of cell adhesion molecule productionAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
T cell migrationAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
lymphocyte migration into lymph nodeAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
positive regulation of neutrophil migrationAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
regulation of leukocyte cell-cell adhesionAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
regulation of leukocyte tethering or rollingAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
positive regulation of leukocyte tethering or rollingAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
positive regulation of leukocyte adhesion to vascular endothelial cellAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
regulation of neutrophil extravasationAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
fucosylationAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
memory B cell differentiationCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
N-acetylneuraminate metabolic processCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
protein N-linked glycosylationCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
ganglioside biosynthetic process via lactosylceramideCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
O-glycan processingCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
keratan sulfate biosynthetic processCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
viral protein processingCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
protein modification processCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
sialylationCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
negative regulation of activated CD8-positive, alpha-beta T cell apoptotic processCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
protein sialylationCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
protein glycosylationCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
response to hypoxiaCarbonic anhydrase 9Homo sapiens (human)
morphogenesis of an epitheliumCarbonic anhydrase 9Homo sapiens (human)
response to xenobiotic stimulusCarbonic anhydrase 9Homo sapiens (human)
response to testosteroneCarbonic anhydrase 9Homo sapiens (human)
secretionCarbonic anhydrase 9Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 9Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 14Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (35)

Processvia Protein(s)Taxonomy
zinc ion bindingCarbonic anhydrase 12Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 12Homo sapiens (human)
arylesterase activityCarbonic anhydrase 1Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 1Homo sapiens (human)
protein bindingCarbonic anhydrase 1Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 1Homo sapiens (human)
hydro-lyase activityCarbonic anhydrase 1Homo sapiens (human)
cyanamide hydratase activityCarbonic anhydrase 1Homo sapiens (human)
arylesterase activityCarbonic anhydrase 2Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 2Homo sapiens (human)
protein bindingCarbonic anhydrase 2Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 2Homo sapiens (human)
cyanamide hydratase activityCarbonic anhydrase 2Homo sapiens (human)
fibronectin binding72 kDa type IV collagenaseHomo sapiens (human)
endopeptidase activity72 kDa type IV collagenaseHomo sapiens (human)
metalloendopeptidase activity72 kDa type IV collagenaseHomo sapiens (human)
serine-type endopeptidase activity72 kDa type IV collagenaseHomo sapiens (human)
protein binding72 kDa type IV collagenaseHomo sapiens (human)
metallopeptidase activity72 kDa type IV collagenaseHomo sapiens (human)
zinc ion binding72 kDa type IV collagenaseHomo sapiens (human)
endopeptidase activityMatrilysinHomo sapiens (human)
metalloendopeptidase activityMatrilysinHomo sapiens (human)
serine-type endopeptidase activityMatrilysinHomo sapiens (human)
protein bindingMatrilysinHomo sapiens (human)
metallopeptidase activityMatrilysinHomo sapiens (human)
zinc ion bindingMatrilysinHomo sapiens (human)
arachidonate 5-lipoxygenase activityPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
arachidonate 12(S)-lipoxygenase activityPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
iron ion bindingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
protein bindingPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
hydrolase activityPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
arachidonate 8(S)-lipoxygenase activityPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
procollagen-proline 4-dioxygenase activityProlyl 4-hydroxylase subunit alpha-1Gallus gallus (chicken)
iron ion bindingProlyl 4-hydroxylase subunit alpha-1Gallus gallus (chicken)
L-ascorbic acid bindingProlyl 4-hydroxylase subunit alpha-1Gallus gallus (chicken)
RNA bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein tyrosine phosphatase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
zinc ion bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
enzyme bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein kinase bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
receptor tyrosine kinase bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cadherin bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
ephrin receptor bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein phosphatase 2A bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
non-membrane spanning protein tyrosine phosphatase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 7Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 7Homo sapiens (human)
fucosyltransferase activity4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase activity4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
alpha-(1->3)-fucosyltransferase activity4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
protein bindingAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
fucosyltransferase activityAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase activityAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
alpha-(1->3)-fucosyltransferase activityAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
beta-galactoside (CMP) alpha-2,3-sialyltransferase activityCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
sialyltransferase activityCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
beta-D-galactosyl-(1->3)-N-acetyl-beta-D-galactosaminide alpha-2,3- sialyltransferaseCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 9Homo sapiens (human)
protein bindingCarbonic anhydrase 9Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 9Homo sapiens (human)
molecular function activator activityCarbonic anhydrase 9Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 14Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 14Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (43)

Processvia Protein(s)Taxonomy
plasma membraneCarbonic anhydrase 12Homo sapiens (human)
membraneCarbonic anhydrase 12Homo sapiens (human)
basolateral plasma membraneCarbonic anhydrase 12Homo sapiens (human)
apical plasma membraneCarbonic anhydrase 12Homo sapiens (human)
plasma membraneCarbonic anhydrase 12Homo sapiens (human)
cytosolCarbonic anhydrase 1Homo sapiens (human)
extracellular exosomeCarbonic anhydrase 1Homo sapiens (human)
cytoplasmCarbonic anhydrase 2Homo sapiens (human)
cytosolCarbonic anhydrase 2Homo sapiens (human)
plasma membraneCarbonic anhydrase 2Homo sapiens (human)
myelin sheathCarbonic anhydrase 2Homo sapiens (human)
apical part of cellCarbonic anhydrase 2Homo sapiens (human)
extracellular exosomeCarbonic anhydrase 2Homo sapiens (human)
cytoplasmCarbonic anhydrase 2Homo sapiens (human)
plasma membraneCarbonic anhydrase 2Homo sapiens (human)
apical part of cellCarbonic anhydrase 2Homo sapiens (human)
collagen-containing extracellular matrix72 kDa type IV collagenaseHomo sapiens (human)
extracellular region72 kDa type IV collagenaseHomo sapiens (human)
extracellular space72 kDa type IV collagenaseHomo sapiens (human)
nucleus72 kDa type IV collagenaseHomo sapiens (human)
mitochondrion72 kDa type IV collagenaseHomo sapiens (human)
plasma membrane72 kDa type IV collagenaseHomo sapiens (human)
sarcomere72 kDa type IV collagenaseHomo sapiens (human)
collagen-containing extracellular matrix72 kDa type IV collagenaseHomo sapiens (human)
extracellular space72 kDa type IV collagenaseHomo sapiens (human)
extracellular regionMatrilysinHomo sapiens (human)
extracellular matrixMatrilysinHomo sapiens (human)
extracellular exosomeMatrilysinHomo sapiens (human)
extracellular spaceMatrilysinHomo sapiens (human)
extracellular regionPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
extracellular spacePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear envelopePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear envelope lumenPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nucleoplasmPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
cytosolPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear matrixPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear membranePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
secretory granule lumenPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
perinuclear region of cytoplasmPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
ficolin-1-rich granule lumenPolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
nuclear envelopePolyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)
endoplasmic reticulum lumenProlyl 4-hydroxylase subunit alpha-1Gallus gallus (chicken)
endoplasmic reticulumProlyl 4-hydroxylase subunit alpha-1Gallus gallus (chicken)
plasma membraneTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
mitochondrial matrixTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
early endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulumTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytosolTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
mitochondrial cristaTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endosome lumenTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
sorting endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmic side of endoplasmic reticulum membraneTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein-containing complexTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulumTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
early endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytosolCarbonic anhydrase 7Homo sapiens (human)
cytoplasmCarbonic anhydrase 7Homo sapiens (human)
Golgi membrane4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
extracellular region4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
Golgi apparatus4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
Golgi cisterna membrane4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
extracellular exosome4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
methylosome4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT6Homo sapiens (human)
Golgi membraneAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
Golgi apparatusAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
trans-Golgi networkAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
membraneAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
Golgi cisterna membraneAlpha-(1,3)-fucosyltransferase 7Homo sapiens (human)
Golgi membraneCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
membraneCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
trans-Golgi network membraneCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
extracellular exosomeCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
Golgi medial cisterna membraneCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
Golgi trans cisterna membraneCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
membraneCMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1Homo sapiens (human)
nucleolusCarbonic anhydrase 9Homo sapiens (human)
plasma membraneCarbonic anhydrase 9Homo sapiens (human)
membraneCarbonic anhydrase 9Homo sapiens (human)
basolateral plasma membraneCarbonic anhydrase 9Homo sapiens (human)
microvillus membraneCarbonic anhydrase 9Homo sapiens (human)
plasma membraneCarbonic anhydrase 9Homo sapiens (human)
plasma membraneCarbonic anhydrase 14Homo sapiens (human)
membraneCarbonic anhydrase 14Homo sapiens (human)
basolateral plasma membraneCarbonic anhydrase 14Homo sapiens (human)
apical plasma membraneCarbonic anhydrase 14Homo sapiens (human)
plasma membraneCarbonic anhydrase 14Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (56)

Assay IDTitleYearJournalArticle
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID566707Inhibition of mouse recombinant iNOS at 1 mM after 40 mins by colorimetric assay2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566700Inhibition of human recombinant 5-lipoxygenase at 1 mM after 10 mins by fluorescence assay2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID1449688Cytotoxicity against HEK293 cells harboring pendrin P123S mutant after 72 hrs by MTT assay2017Bioorganic & medicinal chemistry, 05-01, Volume: 25, Issue:9
Discovery of (2-aminophenyl)methanol as a new molecular chaperone that rescues the localization of P123S mutant pendrin stably expressed in HEK293 cells.
AID1424231Antioxidant activity assessed as DPPH free radical scavenging activity2017European journal of medicinal chemistry, Jun-16, Volume: 133Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases.
AID334586Antioxidant activity assessed as DPPH radical scavenging activity after 30 mins by spectrophotometry2002Journal of natural products, May, Volume: 65, Issue:5
2,3,4-Trimethyl-5,7-dihydroxy-2,3-dihydrobenzofuran, a novel antioxidant, from Penicillium citrinum F5.
AID1145614Dissociation constant, pKa of the compound1977Journal of medicinal chemistry, Jan, Volume: 20, Issue:1
Use of distribution coefficients in quantitative structure-activity relationships.
AID729534Inhibition of human carbonic anhydrase 12 preincubated for 15 mins by CO2 hydration stopped-flow assay2013Bioorganic & medicinal chemistry, Mar-15, Volume: 21, Issue:6
Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV.
AID566705Inhibition of human recombinant MMP8 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566706Inhibition of human recombinant MMP9 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID1324614Inhibition of human carbonic anhydrase isozyme 2 pre-incubated for 10 mins before 4-nitrophenylacetate substrate addition2017Journal of medicinal chemistry, 01-12, Volume: 60, Issue:1
When Does Chemical Elaboration Induce a Ligand To Change Its Binding Mode?
AID1449696Chaperone activity at recombinant human C-terminal FLAG-tagged pendrin P123S mutant expressed in HEK293 cells assessed as increase in localization of protein mutant in plasma membrane at 1 to 30 mM after 12 hrs by DAPI staining based immunofluorescence mi2017Bioorganic & medicinal chemistry, 05-01, Volume: 25, Issue:9
Discovery of (2-aminophenyl)methanol as a new molecular chaperone that rescues the localization of P123S mutant pendrin stably expressed in HEK293 cells.
AID729533Inhibition of human carbonic anhydrase 14 preincubated for 15 mins by CO2 hydration stopped-flow assay2013Bioorganic & medicinal chemistry, Mar-15, Volume: 21, Issue:6
Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV.
AID1145607Octanol-aqueous phase distribution coefficient, log D of the compound1977Journal of medicinal chemistry, Jan, Volume: 20, Issue:1
Use of distribution coefficients in quantitative structure-activity relationships.
AID1202489Cytotoxicity against mouse J774 cells assessed as cell viability after 48 hrs by resazurin assay2015European journal of medicinal chemistry, , Volume: 96Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening.
AID566710Inhibition of human recombinant 5-lipoxygenase after 10 mins by fluorescence assay2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID729537Inhibition of human carbonic anhydrase 2 preincubated for 15 mins by CO2 hydration stopped-flow assay2013Bioorganic & medicinal chemistry, Mar-15, Volume: 21, Issue:6
Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV.
AID338333Antiplatelet activity against rat platelet rich plasma assessed as inhibition of arachidonic acid-induced platelet aggregation at 0.5 mg/ml pretreated 2 mins before arachidonic acid challenge
AID1145616Increase in membrane potential in mollusc neurons assessed as conductance of potassium at pH 7.8 relative to salicylic acid1977Journal of medicinal chemistry, Jan, Volume: 20, Issue:1
Use of distribution coefficients in quantitative structure-activity relationships.
AID1449742Selectivity ratio of Ki for recombinant human carbonic anhydrase 2 to Ki for recombinant Malassezia globosa beta-carbonic anhydrase2017Bioorganic & medicinal chemistry, 05-01, Volume: 25, Issue:9
Inhibition of Malassezia globosa carbonic anhydrase with phenols.
AID566703Inhibition of human recombinant MMP2 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID1252320Antioxidant activity assessed as DPPH free radical scavenging activity at 0.01 to 1 mM after 30 mins2015Bioorganic & medicinal chemistry letters, Nov-01, Volume: 25, Issue:21
The antioxidant properties of salicylate derivatives: A possible new mechanism of anti-inflammatory activity.
AID1145615Dissociation constant, pKa of the compound at pH 7.81977Journal of medicinal chemistry, Jan, Volume: 20, Issue:1
Use of distribution coefficients in quantitative structure-activity relationships.
AID338339Antiplatelet activity against rat platelet rich plasma assessed as inhibition of ADP-induced platelet aggregation at 1 mg/ml pretreated 2 mins before ADP challenge
AID566699Inhibition of mushroom tyrosinase at 1 mM after 10 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID729538Inhibition of human carbonic anhydrase 1 preincubated for 15 mins by CO2 hydration stopped-flow assay2013Bioorganic & medicinal chemistry, Mar-15, Volume: 21, Issue:6
Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV.
AID566704Inhibition of human recombinant MMP3 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566702Inhibition of human recombinant MMP1 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID1449741Selectivity ratio of Ki for recombinant human carbonic anhydrase 1 to Ki for recombinant Malassezia globosa beta-carbonic anhydrase2017Bioorganic & medicinal chemistry, 05-01, Volume: 25, Issue:9
Inhibition of Malassezia globosa carbonic anhydrase with phenols.
AID1449689Cytotoxicity against HEK293 cells harboring pendrin P123S mutant assessed as decrease in cell viability at 15 mM after 72 hrs by MTT assay2017Bioorganic & medicinal chemistry, 05-01, Volume: 25, Issue:9
Discovery of (2-aminophenyl)methanol as a new molecular chaperone that rescues the localization of P123S mutant pendrin stably expressed in HEK293 cells.
AID293934Inhibition of pieris rapae Phenoloxidase2007Bioorganic & medicinal chemistry, Mar-01, Volume: 15, Issue:5
3D-QSAR and molecular docking studies of benzaldehyde thiosemicarbazone, benzaldehyde, benzoic acid, and their derivatives as phenoloxidase inhibitors.
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID616190Inhibition of human recombinant PTP1B expressed in CHO cells assessed as p-nitorphenol production after 2 mins by microplate reader2011European journal of medicinal chemistry, Sep, Volume: 46, Issue:9
Click to a focused library of benzyl 6-triazolo(hydroxy)benzoic glucosides: novel construction of PTP1B inhibitors on a sugar scaffold.
AID1145605Octanol-water partition coefficient, log P of the compound1977Journal of medicinal chemistry, Jan, Volume: 20, Issue:1
Use of distribution coefficients in quantitative structure-activity relationships.
AID1202488Trypanosomicidal activity against epimastigote stage of Trypanosoma cruzi CL-B5 after 72 hrs by beta-galactosidase reporter gene assay2015European journal of medicinal chemistry, , Volume: 96Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening.
AID385427Inhibition of soybean 15-lipoxygenase2008Bioorganic & medicinal chemistry, Apr-15, Volume: 16, Issue:8
Inhibition of 15-lipoxygenase-catalysed oxygenation of arachidonic acid by substituted benzoic acids.
AID338336Antiplatelet activity against rat platelet rich plasma assessed as inhibition of collagen-induced platelet aggregation at 0.25 mg/ml pretreated 2 mins before collagen challenge
AID729535Inhibition of human carbonic anhydrase 9 preincubated for 15 mins by CO2 hydration stopped-flow assay2013Bioorganic & medicinal chemistry, Mar-15, Volume: 21, Issue:6
Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV.
AID566701Inhibition of recombinant anthrax lethal factor at 1 mM after 30 mins by fluorescence assay2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID729536Inhibition of human carbonic anhydrase 7 preincubated for 15 mins by CO2 hydration stopped-flow assay2013Bioorganic & medicinal chemistry, Mar-15, Volume: 21, Issue:6
Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV.
AID1449738Inhibition of Malassezia globosa recombinant beta-carbonic anhydrase preincubated for 15 mins prior to testing measured for 10 to 100 secs by phenol red-based stopped-flow CO2 hydration assay2017Bioorganic & medicinal chemistry, 05-01, Volume: 25, Issue:9
Inhibition of Malassezia globosa carbonic anhydrase with phenols.
AID1799773SPA Assay from Article 10.1016/j.abb.2004.02.039: \\Inhibition of fucosyltransferase VII by gallic acid and its derivatives.\\2004Archives of biochemistry and biophysics, May-01, Volume: 425, Issue:1
Inhibition of fucosyltransferase VII by gallic acid and its derivatives.
AID1799825Inhibition Assay from Article : \\Partial identity of the 2-oxoglutarate and ascorbate binding sites of prolyl 4-hydroxylase.\\1986The Journal of biological chemistry, Jun-15, Volume: 261, Issue:17
Partial identity of the 2-oxoglutarate and ascorbate binding sites of prolyl 4-hydroxylase.
AID1159607Screen for inhibitors of RMI FANCM (MM2) intereaction2016Journal of biomolecular screening, Jul, Volume: 21, Issue:6
A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.
AID1159550Human Phosphogluconate dehydrogenase (6PGD) Inhibitor Screening2015Nature cell biology, Nov, Volume: 17, Issue:11
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (526)

TimeframeStudies, This Drug (%)All Drugs %
pre-199083 (15.78)18.7374
1990's126 (23.95)18.2507
2000's140 (26.62)29.6817
2010's143 (27.19)24.3611
2020's34 (6.46)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 35.33

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index35.33 (24.57)
Research Supply Index6.30 (2.92)
Research Growth Index4.66 (4.65)
Search Engine Demand Index51.48 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (35.33)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials3 (0.56%)5.53%
Reviews9 (1.67%)6.00%
Case Studies2 (0.37%)4.05%
Observational0 (0.00%)0.25%
Other524 (97.40%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]