Page last updated: 2024-11-06

2-chlorodiazepam

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID76168
CHEMBL ID268248
SCHEMBL ID7486030
MeSH IDM0075343

Synonyms (30)

Synonym
7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1-methyl-2h-1,4-benzodiazepin-2-one
diclazepam
2h-1,4-benzodiazepin-2-one, 7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1-methyl-
2-chlorodiazepam
2'-chlorodiazepam
unii-070818r7pb
hsdb 6959
070818r7pb ,
ro 5-3448
CHEMBL268248
7-chloro-5-(2-chlorophenyl)-1-methyl-3h-1,4-benzodiazepin-2-one
2894-68-0
2-chlorodiazepam [hsdb]
1-methyl-7-chloro-5-(2-chlorophenyl)-1h-1,4-benzodiazepine-2(3h)-one
CS-3556
AKOS024258091
VPAYQWRBBOGGPY-UHFFFAOYSA-N
7-chloro-5-(2'-chlorophenyl)-1,3-dihydro-1-methyl-2h-1,4-benzodiazepin-2-one
SCHEMBL7486030
HY-18631
o-chlorodiazepam
7-chloro-5-(2-chlorophenyl)-1-methyl-1,3-dihydro-2h-1,4-benzodiazepin-2-one
DTXSID30183138
7-chloro-5-(o-chlorophenyl)-1,3-dihydro-1-methyl-2h-1,4-benzodiazepin-2-one; 2'-chlorodiazepam; 7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1-methyl-2h-1,4-benzodiazepin-2-one; chlorodiazepam; ro 5-3448; 2h-1,4-benzodiazepin-2-one, 7-chloro-5-(2-chlorophenyl)
diclazepam 1.0 mg/ml in methanol
NCGC00371636-03
ro5-3448
BCP09420
Q15408412
CAA89468

Research Excerpts

Pharmacokinetics

ExcerptReferenceRelevance
" However, as data regarding pharmacokinetic parameters, metabolism, and detectability in biological fluids are limited, they present a challenge for forensic laboratories."( Characterization of the designer benzodiazepine diclazepam and preliminary data on its metabolism and pharmacokinetics.
Auwärter, V; Bisel, P; Moosmann, B,
)
0.13

Bioavailability

ExcerptReferenceRelevance
"Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule."( Highly predictive and interpretable models for PAMPA permeability.
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR, 2017
)
0.46
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

ExcerptRelevanceReference
" Causing concern for safety is the lack of dosage information resulting in users self-medicating, often leading to unintended overdoses, coma or death at higher doses."( Validation of an LC-MS/MS Method for the Quantification of 13 Designer Benzodiazepines in Blood.
Concheiro, M; Cooper, G; Mei, V; Pardi, J, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (6)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency33.78580.01237.983543.2770AID1645841
GVesicular stomatitis virusPotency21.31740.01238.964839.8107AID1645842
Interferon betaHomo sapiens (human)Potency21.31740.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency21.31740.01238.964839.8107AID1645842
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency21.31740.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency21.31740.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (45)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (18)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (22)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (27)

Assay IDTitleYearJournalArticle
AID1150161Sedative activity in mouse1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID1150165Muscle relaxant activity in cat suspended by scruff of neck assessed as relaxation of body and hind legs1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID13308-Log C was determined by performing the pentylenetetrazole test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID13307-Log C was determined by performing the maximum electroshock test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID227698Evaluation for the Anti-pentylenetetrazole effect.1990Journal of medicinal chemistry, Sep, Volume: 33, Issue:9
Neural networks applied to quantitative structure-activity relationship analysis.
AID1660982Inhibition of Escherichia coli Stx2 in human HeLa cells assessed as stimulation of protein synthesis by measuring increase in [14C]-leucine incorporation at 30 uM incubated with cells for 4 hrs prior to Stx2 addition and further incubated for 20 hrs and s2020Journal of medicinal chemistry, 08-13, Volume: 63, Issue:15
Structure-Activity Relationship Studies of Retro-1 Analogues against Shiga Toxin.
AID227697Compound was evaluated for the Anti-fighting behavior.1990Journal of medicinal chemistry, Sep, Volume: 33, Issue:9
Neural networks applied to quantitative structure-activity relationship analysis.
AID139100Logarithm of effective dose evaluated using the foot-shock test in mice1983Journal of medicinal chemistry, Aug, Volume: 26, Issue:8
Quantitative structure-activity relationships employing independent quantum chemical indices.
AID194132Fourfod increase in lever pressing in punished rats, ED50 value reported as log1/C1980Journal of medicinal chemistry, Feb, Volume: 23, Issue:2
Rm values and structure-activity relationship of benzodiazepines.
AID13306-Log C was determined by performing the incl screen test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID194131ED50 value was reported as log1/C, which is the concentration required to reduce locomotor activity by 50% in rats1980Journal of medicinal chemistry, Feb, Volume: 23, Issue:2
Rm values and structure-activity relationship of benzodiazepines.
AID13304-Log C was determined by performing the electroshock minimum test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID1150164Anticonvulsion activity in mouse assessed as protection against pentylenetetrazole-induced convulsion1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID1150162Muscle relaxant activity in mouse1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID13305-Log C was determined by performing the foot shock test1980Journal of medicinal chemistry, Apr, Volume: 23, Issue:4
Decomposition of pharmacological activity indices into mutually independent components using principal component analysis.
AID1150163Taming activity in mouse assessed as suppression of electrical current-induced aggressive behavior by foot-shock test1977Journal of medicinal chemistry, Sep, Volume: 20, Issue:9
Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones.
AID23479Partition coefficient (logP)1980Journal of medicinal chemistry, Feb, Volume: 23, Issue:2
Rm values and structure-activity relationship of benzodiazepines.
AID228469Evaluation of inclined screen test.1990Journal of medicinal chemistry, Sep, Volume: 33, Issue:9
Neural networks applied to quantitative structure-activity relationship analysis.
AID194134Halving of lever pressing in non punished rats, ED50 value reported as log 1/C1980Journal of medicinal chemistry, Feb, Volume: 23, Issue:2
Rm values and structure-activity relationship of benzodiazepines.
AID1508591NCATS Rat Liver Microsome Stability Profiling2020Scientific reports, 11-26, Volume: 10, Issue:1
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1645848NCATS Kinetic Aqueous Solubility Profiling2019Bioorganic & medicinal chemistry, 07-15, Volume: 27, Issue:14
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1508612NCATS Parallel Artificial Membrane Permeability Assay (PAMPA) Profiling2017Bioorganic & medicinal chemistry, 02-01, Volume: 25, Issue:3
Highly predictive and interpretable models for PAMPA permeability.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (22)

TimeframeStudies, This Drug (%)All Drugs %
pre-19905 (22.73)18.7374
1990's1 (4.55)18.2507
2000's0 (0.00)29.6817
2010's8 (36.36)24.3611
2020's8 (36.36)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 16.14

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index16.14 (24.57)
Research Supply Index3.26 (2.92)
Research Growth Index4.21 (4.65)
Search Engine Demand Index10.37 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (16.14)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials2 (8.70%)5.53%
Reviews2 (8.70%)6.00%
Case Studies2 (8.70%)4.05%
Observational0 (0.00%)0.25%
Other17 (73.91%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]