sulindac-sulfone has been researched along with Disease-Models--Animal* in 6 studies
1 review(s) available for sulindac-sulfone and Disease-Models--Animal
Article | Year |
---|---|
Preclinical and clinical studies of docetaxel and exisulind in the treatment of human lung cancer.
Lung cancer is the leading cause of cancer death in the United States. The majority of patients with non-small cell lung cancers present with inoperable disease because of the presence of metastases to regional lymph nodes or other metastatic sites. About one third of patients have stage IV disease with metastases to distant organs at the time of diagnosis. The prognosis for these patients is very poor. With best supportive care the median survival is only 4 months and the 1-year survival rate is 10% to 15%. Current chemotherapy combinations improve the survival and quality of life for patients with advanced non-small cell lung cancer. With two-drug combinations, median survival is increased to 8 months or more and 1-year survival is increased to 35% to 40%. Still, complete response rates are low and more than 80% of patients die within 1 year of diagnosis. The improvements created by current therapies led to studies of chemotherapy in the second-line setting. Docetaxel has been shown to improve survival of patients who failed platinum-based chemotherapy and was approved by the U.S. Food and Drug Administration for therapy in this setting. However, response rates were very low and survival very short. Therefore, new therapies are urgently needed. Exisulind is a novel oral anticancer agent that holds promise for the treatment of patients with advanced non-small cell lung cancer. Exisulind was originally developed as a chemoprevention agent for colorectal cancer. Preclinical studies showed that exisulind could prevent polyp formation and inhibit the growth of colorectal cancers. Subsequent preclinical studies showed that exisulind also inhibited the growth of human breast, prostate, and lung cancers. Phase I clinical studies showed that twice-daily oral doses could be given safely and would provide peak concentrations that were equivalent to those required for in vitro effects. These observations lead to the studies of the combination of exisulind and docetaxel in preclinical and clinical studies in human lung cancer described in this article. Topics: Administration, Oral; Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Disease Models, Animal; Docetaxel; Humans; Immunohistochemistry; Lung Neoplasms; Mice; Paclitaxel; Rats; Sulindac; Survival Analysis; Taxoids; Treatment Outcome; Tumor Cells, Cultured | 2002 |
5 other study(ies) available for sulindac-sulfone and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch. Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries | 2019 |
Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice.
Cerebral cavernous malformation (CCM) is a disease of the central nervous system causing hemorrhage-prone multiple lumen vascular malformations and very severe neurological consequences. At present, the only recommended treatment of CCM is surgical. Because surgery is often not applicable, pharmacological treatment would be highly desirable. We describe here a murine model of the disease that develops after endothelial-cell-selective ablation of the CCM3 gene. We report an early, cell-autonomous, Wnt-receptor-independent stimulation of β-catenin transcription activity in CCM3-deficient endothelial cells both in vitro and in vivo and a triggering of a β-catenin-driven transcription program that leads to endothelial-to-mesenchymal transition. TGF-β/BMP signaling is then required for the progression of the disease. We also found that the anti-inflammatory drugs sulindac sulfide and sulindac sulfone, which attenuate β-catenin transcription activity, reduce vascular malformations in endothelial CCM3-deficient mice. This study opens previously unidentified perspectives for an effective pharmacological therapy of intracranial vascular cavernomas. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis Regulatory Proteins; beta Catenin; Central Nervous System Neoplasms; Disease Models, Animal; Endothelial Cells; Gene Expression Regulation, Neoplastic; Hemangioma, Cavernous, Central Nervous System; Immunohistochemistry; Intracellular Signaling Peptides and Proteins; Mice, Knockout; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Sulindac; Transforming Growth Factor beta | 2015 |
The geminal dimethyl analogue of Flurbiprofen as a novel Abeta42 inhibitor and potential Alzheimer's disease modifying agent.
The subtle modification of a selection of Abeta42 inhibiting non-steroidal anti-inflammatory drugs (NSAIDs), through synthesis of the geminal dimethyl analogues, was anticipated to ablate their cyclooxygenase activity whilst maintaining Abeta42 inhibition. Methylflurbiprofen 6 exhibited similar in vitro Abeta42 inhibition to its parent NSAID Flurbiprofen and was further evaluated in the Tg2576 mouse model of Alzheimer's disease and an animal model of gastro-intestinal (GI) impairment, but proved unviable for further clinical development. Topics: Administration, Oral; Alzheimer Disease; Amyloid beta-Peptides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Brain; Cyclooxygenase Inhibitors; Disease Models, Animal; Flurbiprofen; Mice; Peptide Fragments | 2006 |
Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model.
Epidemiologic studies have revealed a decreased risk of colon cancer among people who have regularly taken cyclooxygenase (COX)-2 inhibitors such as aspirin or other nonsteroidal anti-inflammatory drugs (NSAIDs). Whereas the selective COX-2 inhibitor celecoxib and exisulind, a metabolic product of sulindac, have gained increasing attention as efficacious chemopreventive agents against colon and prostate cancer, not much is known about the underlying molecular targets and mechanisms. Moreover, the side effects of NSAIDs are a major obstacle for large-scale application to the prevention of cancer in humans; for example, in the United States in 1998, there were 16,550 deaths from NSAID-induced gastrointestinal complications. The toxicity associated with these compounds is raising concerns, and more needs to be known about their mode of action and molecular targets.. We used the transgenic mouse prostate (TRAMP) model, which exhibits similarities with human prostate cancer, including epithelial origin, progression from the PIN stage to adenocarcinoma, and metastasis by a transgene that is hormonally regulated by androgens. In addition to histologically analyzing the PIN lesions of the dorsolateral prostate from TRAMP mice, we delineated the molecular targets and mechanisms of celecoxib and exisulind against mouse PIN lesions. We performed Western blot analysis of the total protein lysate from the tissues of mouse PIN lesions to measure the level of expression of androgen receptor, vascular endothelial growth factor, nuclear factor-kappaB p65, BclII, AKT (total and phosphorylated Ser473), p53, cyclin-dependent kinase inhibitor p21WAF1/CIP1, p27, BAX, and caspase-3 to demonstrate the COX-2-independent mechanism involved in the inhibition of PIN lesions of the dorsolateral prostate by both celecoxib and exisulind.. We found for the first time that (a) both celecoxib and exisulind as dietary supplements induce strong inhibitory effects against prostate cancer at doses of 800 and 500 ppm, respectively, after 16 weeks; (b) the histologic analysis of the dorsolateral prostate after 2 weeks of treatment indicated a reduction of PIN lesions from 75% to 19% with celecoxib and to 16% with exisulind; (c) more importantly, those few PINs and adenocarcinomas in the groups treated with celecoxib or exisulind showed more apoptotic cells, lower levels of proliferating cell nuclear antigen, and a lower number of mitotic cells. To understand the molecular mechanisms involved in the inhibition of PIN lesions, first, we examined the expression of molecular targets involved in angiogenesis and inflammatory processes. It was clearly evident from Western blot analysis of the total protein lysate derived from the dorsolateral prostate tissues with PIN lesions that expression of androgen receptor, vascular endothelial growth factor, nuclear factor-kappaB p65, and BclII is down-regulated more effectively by celecoxib. Down-regulation of AKT protein (total and phosphorylated at Ser473) signaling by celecoxib clearly indicates an inhibition of the survival gene and the pathological process that could otherwise lead to adenocarcinoma.. Overall, the findings from this study clearly show the effectiveness of celecoxib and exisulind in reducing the PIN lesions by modulating a cascade of molecular targets involved in COX-2-dependent and -independent mechanisms. Whereas these agents are already in clinical trial or in use as chemopreventive agents, findings from this study demonstrate the difference in their mode of action, thus helping us to understand the side effects. Topics: Adenocarcinoma; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Blotting, Western; Celecoxib; Dietary Supplements; Dinoprostone; Disease Models, Animal; Immunohistochemistry; Male; Mice; Mice, Transgenic; Models, Biological; Phosphorylation; Prostatic Intraepithelial Neoplasia; Prostatic Neoplasms; Pyrazoles; Sulfonamides; Sulindac; Time Factors; Transgenes | 2004 |