Proteins > Mitogen-activated protein kinase 1
Page last updated: 2024-08-07 16:21:08
Mitogen-activated protein kinase 1
A mitogen-activated protein kinase 1 that is encoded in the genome of human. [PRO:CNA, UniProtKB:P28482]
Synonyms
MAP kinase 1;
MAPK 1;
EC 2.7.11.24;
ERT1;
Extracellular signal-regulated kinase 2;
ERK-2;
MAP kinase isoform p42;
p42-MAPK;
Mitogen-activated protein kinase 2;
MAP kinase 2;
MAPK 2
Research
Bioassay Publications (77)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 31 (40.26) | 29.6817 |
2010's | 45 (58.44) | 24.3611 |
2020's | 1 (1.30) | 2.80 |
Compounds (299)
Drugs with Inhibition Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
benzbromarone | Homo sapiens (human) | IC50 | 1.9460 | 1 | 0 |
bithionol | Homo sapiens (human) | IC50 | 0.3850 | 1 | 0 |
hexachlorophene | Homo sapiens (human) | IC50 | 0.1960 | 1 | 0 |
iodoquinol | Homo sapiens (human) | IC50 | 0.2940 | 1 | 0 |
nsc 664704 | Homo sapiens (human) | IC50 | 9.0000 | 1 | 1 |
meclofenamic acid | Homo sapiens (human) | IC50 | 3.1440 | 1 | 0 |
niclosamide | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
olomoucine | Homo sapiens (human) | IC50 | 7.0000 | 1 | 1 |
pd 98059 | Homo sapiens (human) | IC50 | 2.8000 | 1 | 1 |
sb 220025 | Homo sapiens (human) | IC50 | 19.0000 | 1 | 1 |
sulfasalazine | Homo sapiens (human) | IC50 | 6.3320 | 1 | 0 |
troglitazone | Homo sapiens (human) | IC50 | 1.2380 | 1 | 0 |
ici 204,219 | Homo sapiens (human) | IC50 | 0.5380 | 1 | 0 |
3,3',4',5-tetrachlorosalicylanilide | Homo sapiens (human) | IC50 | 0.8860 | 1 | 0 |
tribromsalan | Homo sapiens (human) | IC50 | 0.6230 | 1 | 0 |
antimycin a | Homo sapiens (human) | IC50 | 2.1160 | 1 | 0 |
nafenopin | Homo sapiens (human) | IC50 | 0.8151 | 1 | 0 |
closantel | Homo sapiens (human) | IC50 | 1.4280 | 1 | 0 |
staurosporine | Homo sapiens (human) | IC50 | 5.5321 | 11 | 11 |
aceclofenac | Homo sapiens (human) | IC50 | 5.9270 | 1 | 0 |
5-iodotubercidin | Homo sapiens (human) | IC50 | 1.2000 | 1 | 1 |
5-iodotubercidin | Homo sapiens (human) | Ki | 0.5300 | 1 | 1 |
birb 796 | Homo sapiens (human) | IC50 | 9.2000 | 1 | 1 |
cyc 202 | Homo sapiens (human) | IC50 | 26.1950 | 5 | 10 |
sorafenib | Homo sapiens (human) | IC50 | 0.1095 | 1 | 1 |
tretinoin | Homo sapiens (human) | IC50 | 0.5760 | 1 | 0 |
7-n-butyl-6-(4'-hydroxyphenyl)-5h-pyrrolo(2,3b)pyrazine | Homo sapiens (human) | IC50 | 22.0000 | 1 | 1 |
vx-745 | Homo sapiens (human) | IC50 | 5.0000 | 1 | 1 |
aldisine | Homo sapiens (human) | IC50 | 2.5000 | 1 | 1 |
gtp 14564 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
caffeic acid phenethyl ester | Homo sapiens (human) | IC50 | 0.6860 | 1 | 0 |
isotretinoin | Homo sapiens (human) | IC50 | 0.4620 | 1 | 0 |
aftin-4 | Homo sapiens (human) | IC50 | 556.6667 | 1 | 6 |
jnj-7706621 | Homo sapiens (human) | IC50 | 19.4000 | 1 | 1 |
sulindac sulfide | Homo sapiens (human) | IC50 | 1.0920 | 1 | 0 |
sulindac sulfone | Homo sapiens (human) | IC50 | 13.8250 | 1 | 0 |
2-tert-butyl-9-fluoro-3,6-dihydro-7h-benz(h)imidazo(4,5-f)isoquinoline-7-one | Homo sapiens (human) | IC50 | 1.7800 | 1 | 1 |
oroidin | Homo sapiens (human) | IC50 | 2.5000 | 1 | 1 |
cyc 116 | Homo sapiens (human) | Ki | 10.0000 | 1 | 1 |
jnj 10198409 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | IC50 | 15.0062 | 4 | 4 |
fr 148083 | Homo sapiens (human) | IC50 | 2.5393 | 3 | 3 |
3,5-bis(2-fluorobenzylidene)piperidin-4-one | Homo sapiens (human) | IC50 | 13.0000 | 1 | 1 |
ct52923 | Homo sapiens (human) | IC50 | 30.0000 | 1 | 1 |
chir 99021 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
l 783277 | Homo sapiens (human) | IC50 | 0.9500 | 1 | 1 |
danusertib | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
nvp-aew541 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
fr 180204 | Homo sapiens (human) | IC50 | 1.5500 | 2 | 2 |
fr 180204 | Homo sapiens (human) | Ki | 0.3100 | 2 | 2 |
ch 4987655 | Homo sapiens (human) | IC50 | 0.0058 | 1 | 1 |
gw 2580 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
4-[2-(2-chloro-4-fluoroanilino)-5-methyl-4-pyrimidinyl]-N-[(1S)-1-(3-chlorophenyl)-2-hydroxyethyl]-1H-pyrrole-2-carboxamide | Homo sapiens (human) | Ki | 0.3582 | 2 | 5 |
pha 767491 | Homo sapiens (human) | IC50 | 12.7033 | 2 | 6 |
GDC-0879 | Homo sapiens (human) | IC50 | 0.0630 | 1 | 1 |
2-({2-[(3-hydroxyphenyl)amino]pyrimidin-4-yl}amino)benzamide | Homo sapiens (human) | IC50 | 25.0000 | 1 | 1 |
tannins | Homo sapiens (human) | IC50 | 0.1850 | 1 | 0 |
pha 848125 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
sch772984 | Homo sapiens (human) | IC50 | 0.0052 | 13 | 13 |
bs 194 | Homo sapiens (human) | IC50 | 3.1100 | 1 | 1 |
entrectinib | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
1-[3-methoxy-4-[[4-(2-propan-2-ylsulfonylanilino)-1H-pyrrolo[2,3-b]pyridin-6-yl]amino]phenyl]-4-piperidinol | Homo sapiens (human) | IC50 | 2.9000 | 1 | 0 |
4-[6-[4-(methoxycarbonylamino)phenyl]-4-(4-morpholinyl)-1-pyrazolo[3,4-d]pyrimidinyl]-1-piperidinecarboxylic acid methyl ester | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
pha 793887 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
gsk143 | Homo sapiens (human) | IC50 | 0.0794 | 1 | 1 |
nms p937 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
longdaysin | Homo sapiens (human) | IC50 | 59.0000 | 1 | 1 |
nms-p118 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
chir 98014 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
dicumarol | Homo sapiens (human) | IC50 | 4.4260 | 1 | 0 |
lfm a13 | Homo sapiens (human) | IC50 | 500.0000 | 1 | 1 |
urmc-099 | Homo sapiens (human) | IC50 | 6.2900 | 1 | 1 |
MK-8353 | Homo sapiens (human) | IC50 | 0.0070 | 1 | 1 |
ro 3306 | Homo sapiens (human) | Ki | 2.0000 | 1 | 1 |
hymenialdisine | Homo sapiens (human) | IC50 | 0.0075 | 2 | 2 |
debromohymenialdisine | Homo sapiens (human) | IC50 | 0.8240 | 2 | 2 |
nms-e973 | Homo sapiens (human) | IC50 | 0.0100 | 1 | 1 |
Drugs with Activation Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
ha 1004 | Homo sapiens (human) | Kd | 5.0000 | 1 | 1 |
fasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 202190 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
zoxazolamine | Homo sapiens (human) | Kd | 940.0000 | 1 | 1 |
triciribine phosphate | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
staurosporine | Homo sapiens (human) | Kd | 7.3000 | 2 | 2 |
benzylaminopurine | Homo sapiens (human) | Kd | 247.0000 | 1 | 1 |
picropodophyllin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gefitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lestaurtinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
perifosine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vatalanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ruboxistaurin | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
canertinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
birb 796 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
cyc 202 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
sb 203580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
enzastaurin | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
erlotinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
lapatinib | Homo sapiens (human) | Kd | 20.0000 | 3 | 4 |
sorafenib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
pd 173955 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
s 1033 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione | Homo sapiens (human) | Kd | 5.0000 | 1 | 1 |
xl147 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sf 2370 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tandutinib | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
vx-745 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
dasatinib | Homo sapiens (human) | Kd | 20.0000 | 3 | 4 |
ha 1100 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
7-epi-hydroxystaurosporine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
zd 6474 | Homo sapiens (human) | Kd | 20.0000 | 3 | 4 |
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imd 0354 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alvocidib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bosutinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
orantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 11248 | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
palbociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj-7706621 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
vx680 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
cyc 116 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
everolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
trk 820 | Homo sapiens (human) | EC50 | 0.0006 | 1 | 1 |
ekb 569 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
axitinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
temsirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 184352 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
on 01910 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
av 412 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
telatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
y-39983 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 547632 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms345541 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
lenvatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
midostaurin | Homo sapiens (human) | Kd | 15.0000 | 4 | 4 |
px-866 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ripasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osi 930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ki 20227 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
scio-469 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 724714 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
pi103 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
hmn-214 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tivozanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
hki 272 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
tofacitinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
n-(6-chloro-7-methoxy-9h-beta-carbolin-8-yl)-2-methylnicotinamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
cediranib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
masitinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
ly-2157299 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pazopanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 6244 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
su 14813 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bibw 2992 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
binimetinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
aee 788 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
saracatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx 702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crenolanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100-115 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
cc 401 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 599626 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
exel-7647 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volasertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 665752 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
azd 7762 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
regorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | EC50 | 0.0100 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
brivanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
mp470 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
np 031112 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 7519 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms-690514 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bi 2536 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
inno-406 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
nvp-ast487 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
kw 2449 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
danusertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abt 869 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 8931 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fr 180204 | Homo sapiens (human) | Kd | 0.8500 | 1 | 1 |
arq 197 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ridaforolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cc-930 | Homo sapiens (human) | Kd | 1.2330 | 1 | 1 |
gw 2580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
tak 285 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
idelalisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crizotinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
osi 906 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
chir-265 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
motesanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
fostamatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
trametinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln8054 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
pf-562,271 | Homo sapiens (human) | Kd | 1.2370 | 1 | 1 |
GDC-0879 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
jnj-26483327 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2603618 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100801 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dactolisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bgt226 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 461364 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
azd 1152-hqpa | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
nvp-tae684 | Homo sapiens (human) | Kd | 0.3000 | 1 | 1 |
enmd 2076 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
e 7050 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc-0973 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
buparlisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1480 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8330 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 848125 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ro5126766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fedratinib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
gsk690693 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd5438 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 04217903 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0941 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
icotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ph 797804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kx-01 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx 4720 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
mk 5108 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cx 4945 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cudc 101 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arry-614 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 593 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln 8237 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgx 523 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms 754807 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 777607 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pci 32765 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ponatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
amg 900 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-1775 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sch772984 | Homo sapiens (human) | Kd | 0.0001 | 2 | 2 |
quizartinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
at13148 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 733 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2206 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sns 314 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
lucitanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf-04691502 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dcc-2036 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
cabozantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
defactinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
ly2584702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
incb-018424 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
poziotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
asp3026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
entrectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pexidartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
TAK-580 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
emd1214063 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1838705a | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
pf 3758309 | Homo sapiens (human) | Kd | 1.9650 | 1 | 1 |
gdc 0980 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd2014 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
(5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx4032 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
gsk 1363089 | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
arry-334543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kin-193 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2461 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 869766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
as 703026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
baricitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dabrafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
pki 587 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(3-fluoro-4-((1-methyl-6-(1h-pyrazol-4-yl)-1h-indazol-5 yl)oxy)phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ribociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8033 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 793887 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 1518 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
afuresertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1070916 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj38877605 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dinaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gilteritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
alectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
glpg0634 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
encorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms-911543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk2141795 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8186 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
byl719 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
rociletinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vx-509 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
debio 1347 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osimertinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 9283 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
otssp167 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
chir 258 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
osi 027 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bay 80-6946 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pp242 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells.European journal of medicinal chemistry, , Jan-01, Volume: 161, 2019
Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.Bioorganic & medicinal chemistry, , 05-01, Volume: 26, Issue:8, 2018
Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders.European journal of medicinal chemistry, , Dec-01, Volume: 141, 2017
Synthesis and biological evaluation of new [1,2,4]triazolo[4,3-a]pyridine derivatives as potential c-Met inhibitors.Bioorganic & medicinal chemistry, , 08-15, Volume: 24, Issue:16, 2016
Syntheses of phenylpyrazolodiazepin-7-ones as conformationally rigid analogs of aminopyrazole amide scaffold and their antiproliferative effects on cancer cells.Bioorganic & medicinal chemistry, , Nov-15, Volume: 19, Issue:22, 2011
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Synthesis, activity, and pharmacophore development for isatin-beta-thiosemicarbazones with selective activity toward multidrug-resistant cells.Journal of medicinal chemistry, , May-28, Volume: 52, Issue:10, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of trans-3,4'-bispyridinylethylenes as potent and novel inhibitors of protein kinase B (PKB/Akt) for the treatment of cancer: Synthesis and biological evaluation.Bioorganic & medicinal chemistry letters, , Mar-15, Volume: 16, Issue:6, 2006
Synthesis and structure-activity relationship of 3,4'-bispyridinylethylenes: discovery of a potent 3-isoquinolinylpyridine inhibitor of protein kinase B (PKB/Akt) for the treatment of cancer.Bioorganic & medicinal chemistry letters, , Apr-01, Volume: 16, Issue:7, 2006
Macrocyclic bisindolylmaleimides as inhibitors of protein kinase C and glycogen synthase kinase-3.Bioorganic & medicinal chemistry letters, , Sep-15, Volume: 13, Issue:18, 2003
Identification of orally active, potent, and selective 4-piperazinylquinazolines as antagonists of the platelet-derived growth factor receptor tyrosine kinase family.Journal of medicinal chemistry, , Aug-15, Volume: 45, Issue:17, 2002
Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1).Journal of medicinal chemistry, , Jan-17, Volume: 45, Issue:2, 2002
Identification of allosteric ERK2 inhibitors through in silico biased screening and competitive binding assay.Bioorganic & medicinal chemistry letters, , Feb-01, Volume: 26, Issue:3, 2016
A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.Proceedings of the National Academy of Sciences of the United States of America, , Dec-18, Volume: 104, Issue:51, 2007
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD).Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 21, Issue:23, 2011
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Chemical Control of Mammalian Circadian Behavior through Dual Inhibition of Casein Kinase Iα and δ.Journal of medicinal chemistry, , 02-28, Volume: 62, Issue:4, 2019
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Design, synthesis and biological evaluation of 6-pyridylmethylaminopurines as CDK inhibitors.Bioorganic & medicinal chemistry, , Nov-15, Volume: 19, Issue:22, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.Proceedings of the National Academy of Sciences of the United States of America, , Dec-18, Volume: 104, Issue:51, 2007
Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives.The Journal of biological chemistry, , Sep-02, Volume: 280, Issue:35, 2005
Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: target family landscapes.Journal of medicinal chemistry, , Jun-06, Volume: 45, Issue:12, 2002
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Design and synthesis of potent 1,2,4-trisubstituted imidazolinone derivatives with dual p38αMAPK and ERK1/2 inhibitory activity.European journal of medicinal chemistry, , Apr-13, Volume: 94, 2015
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor.ACS medicinal chemistry letters, , Oct-13, Volume: 2, Issue:10, 2011
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
1-Acyl-1H-[1,2,4]triazole-3,5-diamine analogues as novel and potent anticancer cyclin-dependent kinase inhibitors: synthesis and evaluation of biological activities.Journal of medicinal chemistry, , Jun-30, Volume: 48, Issue:13, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors.Journal of medicinal chemistry, , Jun-10, Volume: 53, Issue:11, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of novel, dual mechanism ERK inhibitors by affinity selection screening of an inactive kinase.Journal of medicinal chemistry, , Nov-13, Volume: 57, Issue:21, 2014
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Structure-guided development of covalent TAK1 inhibitors.Bioorganic & medicinal chemistry, , 02-01, Volume: 25, Issue:3, 2017
5Z-7-Oxozeaenol covalently binds to MAP2K7 at Cys218 in an unprecedented manner.Bioorganic & medicinal chemistry letters, , Feb-01, Volume: 25, Issue:3, 2015
Irreversible protein kinase inhibitors: balancing the benefits and risks.Journal of medicinal chemistry, , Jul-26, Volume: 55, Issue:14, 2012
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery and development of spleen tyrosine kinase (SYK) inhibitors.Journal of medicinal chemistry, , Apr-26, Volume: 55, Issue:8, 2012
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile.Journal of medicinal chemistry, , Nov-30, Volume: 49, Issue:24, 2006
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors.ACS medicinal chemistry letters, , Jul-13, Volume: 8, Issue:7, 2017
Incorporation of rapid thermodynamic data in fragment-based drug discovery.Journal of medicinal chemistry, , Mar-14, Volume: 56, Issue:5, 2013
A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.Proceedings of the National Academy of Sciences of the United States of America, , Dec-18, Volume: 104, Issue:51, 2007
Crystal structure of human ERK2 complexed with a pyrazolo[3,4-c]pyridazine derivative.Bioorganic & medicinal chemistry letters, , Jan-01, Volume: 16, Issue:1, 2006
Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design.Journal of medicinal chemistry, , 07-26, Volume: 61, Issue:14, 2018
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580.Proceedings of the National Academy of Sciences of the United States of America, , Nov-01, Volume: 102, Issue:44, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Potent and selective pyrazole-based inhibitors of B-Raf kinase.Bioorganic & medicinal chemistry letters, , Aug-15, Volume: 18, Issue:16, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.Journal of medicinal chemistry, , Aug-27, Volume: 52, Issue:16, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Targeting Extracellular Signal-Regulated Protein Kinase 1/2 (ERK1/2) in Cancer: An Update on Pharmacological Small-Molecule Inhibitors.Journal of medicinal chemistry, , 10-27, Volume: 65, Issue:20, 2022
Discovery of a Potent and Selective Oral Inhibitor of ERK1/2 (AZD0364) That Is Efficacious in Both Monotherapy and Combination Therapy in Models of Nonsmall Cell Lung Cancer (NSCLC).Journal of medicinal chemistry, , 12-26, Volume: 62, Issue:24, 2019
[no title available]ACS medicinal chemistry letters, , Jul-12, Volume: 9, Issue:7, 2018
Discovery of 3(S)-thiomethyl pyrrolidine ERK inhibitors for oncology.Bioorganic & medicinal chemistry letters, , 06-15, Volume: 28, Issue:11, 2018
Structure-Guided Discovery of Potent and Selective Inhibitors of ERK1/2 from a Modestly Active and Promiscuous Chemical Start Point.Journal of medicinal chemistry, , 04-27, Volume: 60, Issue:8, 2017
Discovery of 1-(1H-Pyrazolo[4,3-c]pyridin-6-yl)urea Inhibitors of Extracellular Signal-Regulated Kinase (ERK) for the Treatment of Cancers.Journal of medicinal chemistry, , 07-14, Volume: 59, Issue:13, 2016
Recent progress on MAP kinase pathway inhibitors.Bioorganic & medicinal chemistry letters, , Oct-01, Volume: 25, Issue:19, 2015
Structure-Guided Design of Highly Selective and Potent Covalent Inhibitors of ERK1/2.Journal of medicinal chemistry, , Jun-11, Volume: 58, Issue:11, 2015
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor.Journal of medicinal chemistry, , Apr-14, Volume: 59, Issue:7, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing.Bioorganic & medicinal chemistry, , Mar-01, Volume: 18, Issue:5, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Identification of 1-(3-(6,7-dimethoxyquinazolin-4-yloxy)phenyl)-3-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)urea hydrochloride (CEP-32496), a highly potent and orally efficacious inhibitor of V-RAF murine sarcoma viral oncogene homologue B1 (BJournal of medicinal chemistry, , Feb-09, Volume: 55, Issue:3, 2012
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Potent inhibition of checkpoint kinase activity by a hymenialdisine-derived indoloazepine.Bioorganic & medicinal chemistry letters, , Aug-16, Volume: 14, Issue:16, 2004
Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1).Journal of medicinal chemistry, , Jan-17, Volume: 45, Issue:2, 2002
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Potent inhibition of checkpoint kinase activity by a hymenialdisine-derived indoloazepine.Bioorganic & medicinal chemistry letters, , Aug-16, Volume: 14, Issue:16, 2004
Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mitogen-activated protein kinase kinase-1 (MEK-1).Journal of medicinal chemistry, , Jan-17, Volume: 45, Issue:2, 2002
Enables
This protein enables 10 target(s):
Target | Category | Definition |
phosphotyrosine residue binding | molecular function | Binding to a phosphorylated tyrosine residue within a protein. [PMID:14636584] |
DNA binding | molecular function | Any molecular function by which a gene product interacts selectively and non-covalently with DNA (deoxyribonucleic acid). [GOC:dph, GOC:jl, GOC:tb, GOC:vw] |
protein serine/threonine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate, and ATP + protein threonine = ADP + protein threonine phosphate. [GOC:bf, MetaCyc:PROTEIN-KINASE-RXN, PMID:2956925] |
MAP kinase activity | molecular function | Catalysis of the reaction: protein + ATP = protein phosphate + ADP. This reaction is the phosphorylation of proteins. Mitogen-activated protein kinase; a family of protein kinases that perform a crucial step in relaying signals from the plasma membrane to the nucleus. They are activated by a wide range of proliferation- or differentiation-inducing signals; activation is strong with agonists such as polypeptide growth factors and tumor-promoting phorbol esters, but weak (in most cell backgrounds) by stress stimuli. [GOC:ma, ISBN:0198547684] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
ATP binding | molecular function | Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. [ISBN:0198506732] |
RNA polymerase II CTD heptapeptide repeat kinase activity | molecular function | Catalysis of the reaction: ATP + RNA polymerase II large subunit CTD heptapeptide repeat (consensus YSPTSPS) = ADP + H+ + phosphorylated RNA polymerase II. [EC:2.7.11.23, GOC:mah, PMID:28248323] |
phosphatase binding | molecular function | Binding to a phosphatase. [GOC:jl] |
identical protein binding | molecular function | Binding to an identical protein or proteins. [GOC:jl] |
protein serine kinase activity | molecular function | Catalysis of the reactions: ATP + protein serine = ADP + protein serine phosphate. [RHEA:17989] |
Located In
This protein is located in 20 target(s):
Target | Category | Definition |
extracellular region | cellular component | The space external to the outermost structure of a cell. For cells without external protective or external encapsulating structures this refers to space outside of the plasma membrane. This term covers the host cell environment outside an intracellular parasite. [GOC:go_curators] |
nucleus | cellular component | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. [GOC:go_curators] |
nucleoplasm | cellular component | That part of the nuclear content other than the chromosomes or the nucleolus. [GOC:ma, ISBN:0124325653] |
cytoplasm | cellular component | The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. [ISBN:0198547684] |
mitochondrion | cellular component | A semiautonomous, self replicating organelle that occurs in varying numbers, shapes, and sizes in the cytoplasm of virtually all eukaryotic cells. It is notably the site of tissue respiration. [GOC:giardia, ISBN:0198506732] |
early endosome | cellular component | A membrane-bounded organelle that receives incoming material from primary endocytic vesicles that have been generated by clathrin-dependent and clathrin-independent endocytosis; vesicles fuse with the early endosome to deliver cargo for sorting into recycling or degradation pathways. [GOC:mah, NIF_Subcellular:nlx_subcell_20090701, PMID:19696797] |
late endosome | cellular component | A prelysosomal endocytic organelle differentiated from early endosomes by lower lumenal pH and different protein composition. Late endosomes are more spherical than early endosomes and are mostly juxtanuclear, being concentrated near the microtubule organizing center. [NIF_Subcellular:nlx_subcell_20090702, PMID:11964142, PMID:2557062] |
endoplasmic reticulum lumen | cellular component | The volume enclosed by the membranes of the endoplasmic reticulum. [ISBN:0198547684] |
Golgi apparatus | cellular component | A membrane-bound cytoplasmic organelle of the endomembrane system that further processes the core oligosaccharides (e.g. N-glycans) added to proteins in the endoplasmic reticulum and packages them into membrane-bound vesicles. The Golgi apparatus operates at the intersection of the secretory, lysosomal, and endocytic pathways. [ISBN:0198506732] |
centrosome | cellular component | A structure comprised of a core structure (in most organisms, a pair of centrioles) and peripheral material from which a microtubule-based structure, such as a spindle apparatus, is organized. Centrosomes occur close to the nucleus during interphase in many eukaryotic cells, though in animal cells it changes continually during the cell-division cycle. [GOC:mah, ISBN:0198547684] |
cytosol | cellular component | The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes. [GOC:hjd, GOC:jl] |
cytoskeleton | cellular component | A cellular structure that forms the internal framework of eukaryotic and prokaryotic cells. The cytoskeleton includes intermediate filaments, microfilaments, microtubules, the microtrabecular lattice, and other structures characterized by a polymeric filamentous nature and long-range order within the cell. The various elements of the cytoskeleton not only serve in the maintenance of cellular shape but also have roles in other cellular functions, including cellular movement, cell division, endocytosis, and movement of organelles. [GOC:mah, PMID:16959967, PMID:27419875] |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
caveola | cellular component | A membrane raft that forms small pit, depression, or invagination that communicates with the outside of a cell and extends inward, indenting the cytoplasm and the cell membrane. Examples include flask-shaped invaginations of the plasma membrane in adipocytes associated with caveolin proteins, and minute pits or incuppings of the cell membrane formed during pinocytosis. Caveolae may be pinched off to form free vesicles within the cytoplasm. [GOC:mah, ISBN:0721662544, PMID:16645198] |
focal adhesion | cellular component | A cell-substrate junction that anchors the cell to the extracellular matrix and that forms a point of termination of actin filaments. In insects focal adhesion has also been referred to as hemi-adherens junction (HAJ). [GOC:aruk, GOC:bc, ISBN:0124325653, ISBN:0815316208, PMID:10419689, PMID:12191915, PMID:15246682, PMID:1643657, PMID:16805308, PMID:19197329, PMID:23033047, PMID:26923917, PMID:28796323, PMID:8314002] |
pseudopodium | cellular component | A temporary protrusion or retractile process of a cell, associated with flowing movements of the protoplasm, and serving for locomotion and feeding. [ISBN:0198506732] |
azurophil granule lumen | cellular component | The volume enclosed by the membrane of an azurophil granule, a primary lysosomal granule found in neutrophil granulocytes that contains a wide range of hydrolytic enzymes and is released into the extracellular fluid. [GOC:bf, PMID:17152095] |
synapse | cellular component | The junction between an axon of one neuron and a dendrite of another neuron, a muscle fiber or a glial cell. As the axon approaches the synapse it enlarges into a specialized structure, the presynaptic terminal bouton, which contains mitochondria and synaptic vesicles. At the tip of the terminal bouton is the presynaptic membrane; facing it, and separated from it by a minute cleft (the synaptic cleft) is a specialized area of membrane on the receiving cell, known as the postsynaptic membrane. In response to the arrival of nerve impulses, the presynaptic terminal bouton secretes molecules of neurotransmitters into the synaptic cleft. These diffuse across the cleft and transmit the signal to the postsynaptic membrane. [GOC:aruk, ISBN:0198506732, PMID:24619342, PMID:29383328, PMID:31998110] |
mitotic spindle | cellular component | A spindle that forms as part of mitosis. Mitotic and meiotic spindles contain distinctive complements of proteins associated with microtubules. [GOC:mah, GOC:vw, PMID:11408572, PMID:18367542, PMID:8027178] |
ficolin-1-rich granule lumen | cellular component | Any membrane-enclosed lumen that is part of a ficolin-1-rich granule. [GO_REF:0000064, GOC:TermGenie, PMID:23650620] |
Active In
This protein is active in 2 target(s):
Target | Category | Definition |
cytoplasm | cellular component | The contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. [ISBN:0198547684] |
nucleus | cellular component | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. [GOC:go_curators] |
Involved In
This protein is involved in 58 target(s):
Target | Category | Definition |
regulation of transcription by RNA polymerase II | biological process | Any process that modulates the frequency, rate or extent of transcription mediated by RNA polymerase II. [GOC:go_curators, GOC:txnOH] |
protein phosphorylation | biological process | The process of introducing a phosphate group on to a protein. [GOC:hb] |
apoptotic process | biological process | A programmed cell death process which begins when a cell receives an internal (e.g. DNA damage) or external signal (e.g. an extracellular death ligand), and proceeds through a series of biochemical events (signaling pathway phase) which trigger an execution phase. The execution phase is the last step of an apoptotic process, and is typically characterized by rounding-up of the cell, retraction of pseudopodes, reduction of cellular volume (pyknosis), chromatin condensation, nuclear fragmentation (karyorrhexis), plasma membrane blebbing and fragmentation of the cell into apoptotic bodies. When the execution phase is completed, the cell has died. [GOC:cjm, GOC:dhl, GOC:ecd, GOC:go_curators, GOC:mtg_apoptosis, GOC:tb, ISBN:0198506732, PMID:18846107, PMID:21494263] |
chemotaxis | biological process | The directed movement of a motile cell or organism, or the directed growth of a cell guided by a specific chemical concentration gradient. Movement may be towards a higher concentration (positive chemotaxis) or towards a lower concentration (negative chemotaxis). [ISBN:0198506732] |
DNA damage response | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism. [GOC:go_curators] |
signal transduction | biological process | The cellular process in which a signal is conveyed to trigger a change in the activity or state of a cell. Signal transduction begins with reception of a signal (e.g. a ligand binding to a receptor or receptor activation by a stimulus such as light), or for signal transduction in the absence of ligand, signal-withdrawal or the activity of a constitutively active receptor. Signal transduction ends with regulation of a downstream cellular process, e.g. regulation of transcription or regulation of a metabolic process. Signal transduction covers signaling from receptors located on the surface of the cell and signaling via molecules located within the cell. For signaling between cells, signal transduction is restricted to events at and within the receiving cell. [GOC:go_curators, GOC:mtg_signaling_feb11] |
chemical synaptic transmission | biological process | The vesicular release of classical neurotransmitter molecules from a presynapse, across a chemical synapse, the subsequent activation of neurotransmitter receptors at the postsynapse of a target cell (neuron, muscle, or secretory cell) and the effects of this activation on the postsynaptic membrane potential and ionic composition of the postsynaptic cytosol. This process encompasses both spontaneous and evoked release of neurotransmitter and all parts of synaptic vesicle exocytosis. Evoked transmission starts with the arrival of an action potential at the presynapse. [GOC:jl, MeSH:D009435] |
learning or memory | biological process | The acquisition and processing of information and/or the storage and retrieval of this information over time. [GOC:jid, PMID:8938125] |
insulin receptor signaling pathway | biological process | The series of molecular signals generated as a consequence of the insulin receptor binding to insulin. [GOC:ceb] |
positive regulation of peptidyl-threonine phosphorylation | biological process | Any process that increases the frequency, rate or extent of peptidyl-threonine phosphorylation. Peptidyl-threonine phosphorylation is the phosphorylation of peptidyl-threonine to form peptidyl-O-phospho-L-threonine. [GOC:dph, GOC:tb] |
Schwann cell development | biological process | The process aimed at the progression of a Schwann cell over time, from initial commitment of the cell to a specific fate, to the fully functional differentiated cell. Schwann cells are found in the peripheral nervous system, where they insulate neurons and axons, and regulate the environment in which neurons function. [GOC:dgh, GOC:ef] |
peptidyl-serine phosphorylation | biological process | The phosphorylation of peptidyl-serine to form peptidyl-O-phospho-L-serine. [RESID:AA0037] |
peptidyl-threonine phosphorylation | biological process | The phosphorylation of peptidyl-threonine to form peptidyl-O-phospho-L-threonine. [RESID:AA0038] |
cytosine metabolic process | biological process | The chemical reactions and pathways involving cytosine, 4-amino-2-hydroxypyrimidine, a pyrimidine derivative that is one of the five main bases found in nucleic acids; it occurs widely in cytidine derivatives. [GOC:ai] |
regulation of ossification | biological process | Any process that modulates the frequency, rate or extent of ossification, the formation of bone or of a bony substance or the conversion of fibrous tissue or of cartilage into bone or a bony substance. [GOC:go_curators] |
androgen receptor signaling pathway | biological process | The series of molecular signals initiated by androgen binding to its receptor, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:mah] |
regulation of cellular pH | biological process | Any process involved in the maintenance of an internal equilibrium of hydrogen ions (protons) within a cell or between a cell and its external environment. [GOC:dph, GOC:mah, GOC:tb] |
thyroid gland development | biological process | The process whose specific outcome is the progression of the thyroid gland over time, from its formation to the mature structure. The thyroid gland is an endoderm-derived gland that produces thyroid hormone. [GOC:dgh] |
regulation of protein stability | biological process | Any process that affects the structure and integrity of a protein, altering the likelihood of its degradation or aggregation. [GOC:dph, GOC:mah, GOC:tb] |
lipopolysaccharide-mediated signaling pathway | biological process | The series of molecular signals initiated by the binding of a lipopolysaccharide (LPS) to a receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. Lipopolysaccharides are major components of the outer membrane of Gram-negative bacteria, making them prime targets for recognition by the immune system. [GOC:mah, GOC:signaling, PMID:15379975] |
positive regulation of telomere maintenance via telomerase | biological process | Any process that activates or increases the frequency, rate or extent of the addition of telomeric repeats by telomerase. [GOC:mah] |
regulation of stress-activated MAPK cascade | biological process | Any process that modulates the frequency, rate or extent of signal transduction mediated by the stress-activated MAPK cascade. [GOC:mah] |
mammary gland epithelial cell proliferation | biological process | The multiplication or reproduction of mammary gland epithelial cells, resulting in the expansion of a cell population. Mammary gland epithelial cells make up the covering of surfaces of the mammary gland. The mammary gland is a large compound sebaceous gland that in female mammals is modified to secrete milk. [GOC:dph, GOC:mah] |
cellular response to amino acid starvation | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of deprivation of amino acids. [GOC:ecd] |
cellular response to reactive oxygen species | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a reactive oxygen species stimulus. Reactive oxygen species include singlet oxygen, superoxide, and oxygen free radicals. [GOC:mah] |
response to nicotine | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a nicotine stimulus. [GOC:bf, GOC:ef, ISBN:0198506732, ISBN:0582227089] |
ERBB signaling pathway | biological process | The series of molecular signals initiated by binding of a ligand to a member of the ERBB family of receptor tyrosine kinases on the surface of a cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:jc, PMID:16460914, Wikipedia:ErbB] |
ERBB2-ERBB3 signaling pathway | biological process | The series of molecular signals initiated by binding of a ligand to a ERBB3 receptor on the surface of a cell, followed by transmission of the signal by a heterodimeric complex of ERBB2 and ERBB3. ERBB2, which does not bind any known ligand, is activated through formation of a heterodimer with another ligand-activated ERBB family member such as ERBB3. ERBB3 also has impaired kinase activity and relies on ERBB2 for activation and signal transmission. [GOC:signaling, PMID:16460914, Reactome:R-HSA-1963589] |
outer ear morphogenesis | biological process | The process in which the anatomical structures of the outer ear are generated and organized. The outer ear is the part of the ear external to the tympanum (eardrum). It consists of a tube (the external auditory meatus) that directs sound waves on to the tympanum, and may also include the external pinna, which extends beyond the skull. [GOC:jl, ISBN:0192801023] |
myelination | biological process | The process in which myelin sheaths are formed and maintained around neurons. Oligodendrocytes in the brain and spinal cord and Schwann cells in the peripheral nervous system wrap axons with compact layers of their plasma membrane. Adjacent myelin segments are separated by a non-myelinated stretch of axon called a node of Ranvier. [GOC:dgh, GOC:mah] |
response to exogenous dsRNA | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an exogenous double-stranded RNA stimulus. [GOC:go_curators] |
steroid hormone mediated signaling pathway | biological process | The series of molecular signals mediated by a steroid hormone binding to a receptor. [PMID:12606724] |
negative regulation of cell differentiation | biological process | Any process that stops, prevents, or reduces the frequency, rate or extent of cell differentiation. [GOC:go_curators] |
insulin-like growth factor receptor signaling pathway | biological process | The series of molecular signals initiated by a ligand binding to an insulin-like growth factor receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:ceb] |
thymus development | biological process | The process whose specific outcome is the progression of the thymus over time, from its formation to the mature structure. The thymus is a symmetric bi-lobed organ involved primarily in the differentiation of immature to mature T cells, with unique vascular, nervous, epithelial, and lymphoid cell components. [GOC:add, ISBN:0781735149] |
progesterone receptor signaling pathway | biological process | The series of molecular signals initiated by progesterone binding to its receptor in the cytoplasm. [GOC:ai, GOC:mah, PMID:14744870] |
T cell receptor signaling pathway | biological process | The series of molecular signals initiated by the cross-linking of an antigen receptor on a T cell. [GOC:add] |
B cell receptor signaling pathway | biological process | The series of molecular signals initiated by the cross-linking of an antigen receptor on a B cell. [GOC:add] |
stress-activated MAPK cascade | biological process | A MAPK cascade that starts with the activation of a stress-activated MAP kinase cascade. [GOC:ai, PMID:15936270] |
regulation of cytoskeleton organization | biological process | Any process that modulates the frequency, rate or extent of the formation, arrangement of constituent parts, or disassembly of cytoskeletal structures. [GOC:ai] |
positive regulation of telomerase activity | biological process | Any process that activates or increases the frequency, rate or extent of telomerase activity, the catalysis of the reaction: deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1). [GOC:ai] |
Bergmann glial cell differentiation | biological process | The process in which neuroepithelial cells of the neural tube give rise to Brgmann glial cells, specialized bipotential progenitors cells of the cerebellum. Differentiation includes the processes involved in commitment of a cell to a specific fate. [GOC:dph, PMID:10375501] |
long-term synaptic potentiation | biological process | A process that modulates synaptic plasticity such that synapses are changed resulting in the increase in the rate, or frequency of synaptic transmission at the synapse. [GOC:dgh, GOC:dph] |
face development | biological process | The biological process whose specific outcome is the progression of a face from an initial condition to its mature state. The face is the ventral division of the head. [GOC:dph] |
lung morphogenesis | biological process | The process in which the anatomical structures of the lung are generated and organized. [GOC:dph] |
trachea formation | biological process | The process pertaining to the initial formation of a trachea from unspecified parts. The process begins with the specific processes that contribute to the appearance of the discrete structure and ends when the trachea is recognizable. The trachea is the portion of the airway that attaches to the bronchi as it branches. [GOC:dph] |
labyrinthine layer blood vessel development | biological process | The process whose specific outcome is the progression of a blood vessel of the labyrinthine layer of the placenta over time, from its formation to the mature structure. The embryonic vessels grow through the layer to come in close contact with the maternal blood supply. [GOC:dph] |
cardiac neural crest cell development involved in heart development | biological process | The process aimed at the progression of a cardiac neural crest cell over time, from initial commitment of the cell to its specific fate, to the fully functional differentiated cell that contributes to the development of the heart. [GOC:dph, GOC:mtg_heart] |
ERK1 and ERK2 cascade | biological process | A MAPK cascade containing at least the ERK1 or ERK2 MAP kinases. It starts with the activation of a MAP3K, and the consecutive activation of a MPK2K and of ERK1 or ERK2. The cascade can also contain an additional tier: the upstream MAP4K. The kinases in each tier phosphorylate and activate the kinase in the downstream tier. The ERK1/ERK2 cascade is activated by mitogens, growth factors, G protein-coupled receptors, and results in cellular responses such as cell proliferation, cell differentiation and development. [PMID:20811974, PMID:23125017, PMID:28903453] |
response to epidermal growth factor | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of an epidermal growth factor stimulus. [GOC:BHF, GOC:mah] |
cellular response to cadmium ion | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a cadmium (Cd) ion stimulus. [GOC:mah] |
cellular response to tumor necrosis factor | biological process | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a tumor necrosis factor stimulus. [GOC:mah] |
caveolin-mediated endocytosis | biological process | An endocytosis process that begins when material is taken up into plasma membrane caveolae, which then pinch off to form endocytic caveolar carriers. [GOC:BHF, GOC:mah, PMID:17318224, PMID:18498251, PMID:8970738, PMID:9234965] |
regulation of Golgi inheritance | biological process | Any process that modulates the rate, frequency or extent of Golgi inheritance. Golgi inheritance is the partitioning of Golgi apparatus between daughter cells at cell division. [GOC:ascb_2009, GOC:dph, GOC:tb] |
positive regulation of telomere capping | biological process | Any process that activates or increases the frequency, rate or extent of telomere capping. [GO_REF:0000058, GOC:BHF, GOC:BHF_telomere, GOC:nc, GOC:TermGenie, PMID:23959892] |
regulation of early endosome to late endosome transport | biological process | Any process that modulates the frequency, rate or extent of early endosome to late endosome transport. [GOC:BHF] |
cell surface receptor signaling pathway | biological process | The series of molecular signals initiated by an extracellular ligand binding to a receptor located on the cell surface. The pathway ends with regulation of a downstream cellular process, e.g. transcription. [GOC:signaling] |
intracellular signal transduction | biological process | The process in which a signal is passed on to downstream components within the cell, which become activated themselves to further propagate the signal and finally trigger a change in the function or state of the cell. [GOC:bf, GOC:jl, GOC:signaling, ISBN:3527303782] |