sulindac-sulfone and Adenocarcinoma-of-Lung

sulindac-sulfone has been researched along with Adenocarcinoma-of-Lung* in 2 studies

Reviews

1 review(s) available for sulindac-sulfone and Adenocarcinoma-of-Lung

ArticleYear
Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs).
    Prostaglandins & other lipid mediators, 2011, Volume: 96, Issue:1-4

    NSAIDs are known to be inhibitors of cyclooxygenase-2 (COX-2) accounting for their anti-inflammatory and anti-tumor activities. However, the anti-tumor activity cannot be totally attributed to their COX-2 inhibitory activity as these drugs can also inhibit the growth and tumor formation of COX-2-null cell lines. Several potential targets aside from COX-2 for NSAIDs have been proposed. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH), a key prostaglandin catabolic enzyme, was recently shown to be a tumor suppressor. Effects of NSAIDs on 15-PGDH expression were therefore studied. Flurbiprofen, indomethacin and other NSAIDs stimulated 15-PGDH activity in colon cancer HT29 cells as well as in lung cancer A549 cells and glioblastoma T98G cells. (R)-flurbiprofen and sulindac sulfone, COX-2 inactive analogs, also stimulated 15-PGDH activity indicating induction of 15-PGDH is independent of COX-2 inhibition. Stimulation of 15-PGDH expression and activity by NSAIDs was examined in detail in colon cancer HT29 cells using flurbiprofen as a stimulant. Flurbiprofen stimulated 15-PGDH expression and activity by increasing transcription and translation and by decreasing the turnover of 15-PGDH. Mechanism of stimulation of 15-PGDH expression is not clear. Protease(s) involved in the turnover of 15-PGDH remains to be identified. However, flurbiprofen down-regulated matrix metalloproteinase-9 (MMP-9) which was shown to degrade 15-PGDH, but up-regulated tissue inhibitor of metalloproteinase-1 (TIMP-1), an inhibitor of MMP-9 contributing further to a slower turnover of 15-PGDH. Taken together, NSAIDs may up-regulate 15-PGDH by increasing the protein expression as well as decreasing the turnover of 15-PGDH in cancer cells.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Line, Tumor; Colonic Neoplasms; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Enzyme Activation; Flurbiprofen; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Hydroxyprostaglandin Dehydrogenases; Indomethacin; Kinetics; Lung Neoplasms; Matrix Metalloproteinase 9; Matrix Metalloproteinase Inhibitors; Mice; Signal Transduction; Sulindac; Tissue Inhibitor of Metalloproteinase-1; Up-Regulation

2011

Other Studies

1 other study(ies) available for sulindac-sulfone and Adenocarcinoma-of-Lung

ArticleYear
Sulindac compounds facilitate the cytotoxicity of β-lapachone by up-regulation of NAD(P)H quinone oxidoreductase in human lung cancer cells.
    PloS one, 2014, Volume: 9, Issue:2

    β-lapachone, a major component in an ethanol extract of Tabebuia avellanedae bark, is a promising potential therapeutic drug for various tumors, including lung cancer, the leading cause of cancer-related deaths worldwide. In the first part of this study, we found that apoptotic cell death induced in lung cancer cells by high concentrations of β-lapachone was mediated by increased activation of the pro-apoptotic factor JNK and decreased activation of the cell survival/proliferation factors PI3K, AKT, and ERK. In addition, β-lapachone toxicity was positively correlated with the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in the tumor cells. In the second part, we found that the FDA-approved non-steroidal anti-inflammatory drug sulindac and its metabolites, sulindac sulfide and sulindac sulfone, increased NQO1 expression and activity in the lung adenocarcinoma cell lines CL1-1 and CL1-5, which have lower NQO1 levels and lower sensitivity to β-lapachone treatment than the A549 cell lines, and that inhibition of NQO1 by either dicoumarol treatment or NQO1 siRNA knockdown inhibited this sulindac-induced increase in β-lapachone cytotoxicity. In conclusion, sulindac and its metabolites synergistically increase the anticancer effects of β-lapachone primarily by increasing NQO1 activity and expression, and these two drugs may provide a novel combination therapy for lung cancers.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Cell Line, Tumor; Drug Synergism; Humans; Lung Neoplasms; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Sulindac; Up-Regulation

2014