Page last updated: 2024-11-13

cudc-907

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID54575456
CHEMBL ID3622533
SCHEMBL ID1284705
MeSH IDM0579779

Synonyms (53)

Synonym
chembl3622533 ,
bdbm50188961
JOWXJLIFIIOYMS-UHFFFAOYSA-N
n-hydroxy-2-(((2-(6-methoxypyridin-3-yl)-4-morpholinothieno[3,2-d]pyrimidin-6-yl)methyl)(methyl)amino)pyrimidine-5-carboxamide
1339928-25-4
cudc 907
CUDC-907 ,
cudc907
NCGC00346692-01
S2759
fimepinostat
HY-13522
CS-1610
MLS006010994
smr004702794
SCHEMBL1284705
n-hydroxy-2-[[2-(6-methoxypyridin-3-yl)-4-morpholin-4-ylthieno[3,2-d]pyrimidin-6-yl]methyl-methylamino]pyrimidine-5-carboxamide
fimepinostat [who-dd]
n-hydroxy-2-[{[2-(6-methoxypyridin-3-yl)-4-(morpholin-4-yl)thieno[3,2-d]pyrimidin-6-yl]methyl}(methyl)amino]pyrimidine-5-carboxamide
5-pyrimidinecarboxamide, n-hydroxy-2-(((2-(6-methoxy-3-pyridinyl)-4-(4-morpholinyl)thieno(3,2-d)pyrimidin-6-yl)methyl)methylamino)-
pi3k/hdac inhibitor cudc-907
fimepinostat [inn]
fimepinostat [usan]
unii-3s9rx35s5x
3s9rx35s5x ,
AC-30227
pi3k/hdac inhibitor centn
gtpl8952
J-690133
DTXSID90712307
AKOS026750340
EX-A742
pi3k/hdac inhibitor
5-pyrimidinecarboxamide, n-hydroxy-2-[[[2-(6-methoxy-3-pyridinyl)-4-(4-morpholinyl)thieno[3,2-d]pyrimidin-6-yl]methyl]methylamino]-
HMS3656H04
mfcd22420823
cudc-907 (pi3k/hdac inhibitori)
SW219871-1
DB11891
FT-0700168
BCP06870
Q27076926
fimepinostat (usan/inn)
D11319
SB16569
HMS3673E03
CCG-269763
NCGC00346692-11
AS-57131
NCGC00346692-04
nsc771751
nsc-771751
fimepinostat (cudc-907)

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" Grade 3 or worse adverse events occurred in 19 (43%) of 44 patients, the most common of which were thrombocytopenia (in nine [20%] of 44 patients), neutropenia (three [7%]), and hyperglycaemia (three [7%])."( Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial.
Akins, A; Berdeja, JG; Clancy, MS; Copeland, AR; Flinn, I; Gerecitano, JF; Gong, L; Kelly, KR; Ma, A; Neelapu, SS; Oki, Y; Patel, MR; Viner, JL; Wang, J; Younes, A, 2016
)
0.69

Compound-Compound Interactions

CUDC-907 (a dual inhibitor of histone deacetylase and phosphatidylinositide 3-kinase) in combination with 5-FU against CRC cells. Data revealed enhanced toxicity of CUDC -907 against HCT116, RKO, COLO-205, and HT-29.

ExcerptReferenceRelevance
" Therefore, the aim of the current study was to assess the efficacy of CUDC-907 (a dual inhibitor of histone deacetylase and phosphatidylinositide 3-kinase) in combination with 5-FU against CRC cells."( Enhanced efficacy of 5-fluorouracil in combination with a dual histone deacetylase and phosphatidylinositide 3-kinase inhibitor (CUDC-907) in colorectal cancer cells.
Alajez, NM; Aldahmash, A; Alfayez, M; Ali, D; Alsaaran, ZF; Chalisserry, EP; Hamam, R; Vishnubalaji, R,
)
0.57
"Our data revealed enhanced toxicity of CUDC-907 against HCT116, RKO, COLO-205, and HT-29 CRC cells when combined with 5-FU."( Enhanced efficacy of 5-fluorouracil in combination with a dual histone deacetylase and phosphatidylinositide 3-kinase inhibitor (CUDC-907) in colorectal cancer cells.
Alajez, NM; Aldahmash, A; Alfayez, M; Ali, D; Alsaaran, ZF; Chalisserry, EP; Hamam, R; Vishnubalaji, R,
)
0.61
"Our data revealed, for the first time, the enhanced inhibitory effect of CUDC-907 against CRC cells when combined with 5-FU, supporting the application of this combination as a potential therapeutic strategy in CRC treatment."( Enhanced efficacy of 5-fluorouracil in combination with a dual histone deacetylase and phosphatidylinositide 3-kinase inhibitor (CUDC-907) in colorectal cancer cells.
Alajez, NM; Aldahmash, A; Alfayez, M; Ali, D; Alsaaran, ZF; Chalisserry, EP; Hamam, R; Vishnubalaji, R,
)
0.57

Bioavailability

ExcerptReferenceRelevance
"Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule."( Highly predictive and interpretable models for PAMPA permeability.
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR, 2017
)
0.46
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

CUDC-907 was orally administered in a standard 3 + 3 dose-escalation design at four different dosing schedules. Participants were sequentially assigned as follows: once daily, intermittently (twice or three times weekly; simultaneous enrolment), and daily for 5 days followed by a 2-day break (5/2)

ExcerptRelevanceReference
" We used these screening methods to evaluate the dependencies of seven patient-derived cell models: three grown on laminin and four grown as neurospheres, against 56 agents in 17-point dose-response curves in 384-well format in triplicate."( High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
deCarvalho, AC; Mikkelsen, T; Quartararo, CE; Reznik, E; Stockwell, BR, 2015
)
0.42
" CUDC-907 was orally administered in a standard 3 + 3 dose-escalation design at four different dosing schedules, to which participants were sequentially assigned as follows: once daily, intermittently (twice or three times weekly; simultaneous enrolment), and daily for 5 days followed by a 2-day break (5/2), in 21-day cycles."( Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial.
Akins, A; Berdeja, JG; Clancy, MS; Copeland, AR; Flinn, I; Gerecitano, JF; Gong, L; Kelly, KR; Ma, A; Neelapu, SS; Oki, Y; Patel, MR; Viner, JL; Wang, J; Younes, A, 2016
)
1.6
"Between Jan 23, 2013, and July 27, 2015, we enrolled 44 patients, of whom ten were sequentially assigned to CUDC-907 once-daily (MTD 60 mg), 12 to twice-weekly (MTD 150 mg), 15 to three-times-weekly (MTD 150 mg), and seven to the 5/2 dosing schedule (MTD 60 mg)."( Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial.
Akins, A; Berdeja, JG; Clancy, MS; Copeland, AR; Flinn, I; Gerecitano, JF; Gong, L; Kelly, KR; Ma, A; Neelapu, SS; Oki, Y; Patel, MR; Viner, JL; Wang, J; Younes, A, 2016
)
0.9
"The safety and tolerability profile of CUDC-907 and the promising preliminary evidence of response support continued development of CUDC-907 at the 60 mg 5/2 dosing schedule, alone and in combination with other therapies."( Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial.
Akins, A; Berdeja, JG; Clancy, MS; Copeland, AR; Flinn, I; Gerecitano, JF; Gong, L; Kelly, KR; Ma, A; Neelapu, SS; Oki, Y; Patel, MR; Viner, JL; Wang, J; Younes, A, 2016
)
0.96
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (26)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Fumarate hydrataseHomo sapiens (human)Potency13.20660.00308.794948.0869AID1347053
PPM1D proteinHomo sapiens (human)Potency0.03300.00529.466132.9993AID1347411
EWS/FLI fusion proteinHomo sapiens (human)Potency0.00600.001310.157742.8575AID1259252; AID1259253; AID1259255; AID1259256
polyproteinZika virusPotency13.20660.00308.794948.0869AID1347053
Interferon betaHomo sapiens (human)Potency0.03300.00339.158239.8107AID1347411
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)IC50 (µMol)0.08690.00010.33717.3000AID1312866; AID1507124; AID1515854; AID1542192; AID1702054; AID1760303
Histone deacetylase 3Homo sapiens (human)IC50 (µMol)0.00290.00040.619610.0000AID1312853; AID1312867; AID1542181; AID1702062; AID1740003; AID1846229
Phosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)IC50 (µMol)0.07120.00000.683210.0000AID1312863; AID1312866; AID1507122; AID1507123; AID1507124; AID1515854; AID1542190; AID1542191; AID1542192
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)IC50 (µMol)0.02460.00000.734010.0000AID1312863; AID1507122; AID1515841; AID1542190; AID1702071; AID1760301; AID1858641
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)IC50 (µMol)0.04390.00020.595310.0000AID1312864; AID1507123; AID1515853; AID1542191; AID1702072; AID1760302; AID1858642
Serine/threonine-protein kinase mTORHomo sapiens (human)IC50 (µMol)0.30800.00000.857510.0000AID1515855; AID1702077
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)IC50 (µMol)0.20900.00030.660710.0000AID1312865; AID1515852; AID1702076; AID1858643
Histone deacetylase 4Homo sapiens (human)IC50 (µMol)0.32330.00061.052610.0000AID1312855; AID1312867; AID1515850; AID1542182; AID1702063; AID1740005
DNA-dependent protein kinase catalytic subunitHomo sapiens (human)IC50 (µMol)3.67300.00051.350010.0000AID1702080
Potassium voltage-gated channel subfamily H member 2Homo sapiens (human)IC50 (µMol)79.50000.00091.901410.0000AID1702156
Histone deacetylase 1Homo sapiens (human)IC50 (µMol)0.00220.00010.55439.9000AID1312862; AID1312867; AID1515840; AID1542179; AID1702060; AID1740001; AID1760304; AID1846227; AID1858640
Phosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)IC50 (µMol)10.00000.00120.91377.0000AID1702081
Histone deacetylase 7Homo sapiens (human)IC50 (µMol)0.28280.00071.02609.9000AID1312857; AID1312867; AID1542185; AID1702066; AID1740007
Histone deacetylase 2Homo sapiens (human)IC50 (µMol)0.00520.00010.72219.9700AID1312852; AID1312867; AID1507128; AID1515851; AID1542180; AID1702061; AID1740002; AID1846228
Polyamine deacetylase HDAC10Homo sapiens (human)IC50 (µMol)0.00360.00050.72459.9000AID1312860; AID1312867; AID1507129; AID1542188; AID1702069; AID1740010; AID1846235
Histone deacetylase 11 Homo sapiens (human)IC50 (µMol)0.20390.00030.92989.9000AID1312861; AID1312867; AID1515847; AID1542189; AID1702070; AID1740011; AID1846236
Histone deacetylase 8Homo sapiens (human)IC50 (µMol)0.14500.00070.99479.9000AID1312854; AID1312867; AID1515848; AID1542186; AID1702067; AID1740004
Histone deacetylase 6Homo sapiens (human)IC50 (µMol)0.10390.00000.53769.9000AID1312859; AID1312867; AID1507127; AID1515849; AID1542184; AID1702065; AID1740009; AID1846232
Histone deacetylase 9Homo sapiens (human)IC50 (µMol)0.46160.00050.94139.9000AID1312858; AID1312867; AID1542187; AID1702068; AID1740008
Histone deacetylase 5Homo sapiens (human)IC50 (µMol)0.46840.00070.961010.0000AID1312856; AID1312867; AID1542183; AID1702064; AID1740006
Nuclear receptor corepressor 2Homo sapiens (human)IC50 (µMol)0.00250.00170.59528.0000AID1312853; AID1702062
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Histone deacetylase 3Homo sapiens (human)EC50 (µMol)0.12620.03001.85126.7000AID1312869
Histone deacetylase 1Homo sapiens (human)EC50 (µMol)0.12620.03001.98776.7000AID1312869
Histone deacetylase 2Homo sapiens (human)EC50 (µMol)0.12620.03001.85756.7000AID1312869
Histone deacetylase 6Homo sapiens (human)EC50 (µMol)0.22180.00521.59986.7000AID1312868
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (475)

Processvia Protein(s)Taxonomy
phosphorylationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
natural killer cell differentiationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
positive regulation of cytokine productionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
positive regulation of endothelial cell proliferationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
adaptive immune responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
mast cell chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
respiratory burst involved in defense responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
protein phosphorylationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
inflammatory responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
immune responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
positive regulation of endothelial cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
positive regulation of gene expressionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
T cell chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
natural killer cell activationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
B cell differentiationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
T cell differentiationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
positive regulation of cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
neutrophil chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
positive regulation of neutrophil apoptotic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
natural killer cell chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
B cell chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
vascular endothelial growth factor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
T cell activationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
B cell activationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
mast cell degranulationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
phosphatidylinositol 3-kinase/protein kinase B signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
innate immune responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
positive regulation of angiogenesisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
T cell receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
B cell receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
mast cell differentiationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
neutrophil extravasationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
positive regulation of epithelial tube formationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
phosphatidylinositol-3-phosphate biosynthetic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
phosphatidylinositol-mediated signalingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
negative regulation of myotube differentiationHistone deacetylase 3Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 3Homo sapiens (human)
establishment of mitotic spindle orientationHistone deacetylase 3Homo sapiens (human)
in utero embryonic developmentHistone deacetylase 3Homo sapiens (human)
positive regulation of protein phosphorylationHistone deacetylase 3Homo sapiens (human)
chromatin organizationHistone deacetylase 3Homo sapiens (human)
transcription by RNA polymerase IIHistone deacetylase 3Homo sapiens (human)
protein deacetylationHistone deacetylase 3Homo sapiens (human)
regulation of mitotic cell cycleHistone deacetylase 3Homo sapiens (human)
positive regulation of protein ubiquitinationHistone deacetylase 3Homo sapiens (human)
regulation of protein stabilityHistone deacetylase 3Homo sapiens (human)
positive regulation of TOR signalingHistone deacetylase 3Homo sapiens (human)
circadian regulation of gene expressionHistone deacetylase 3Homo sapiens (human)
regulation of multicellular organism growthHistone deacetylase 3Homo sapiens (human)
positive regulation of protein import into nucleusHistone deacetylase 3Homo sapiens (human)
regulation of circadian rhythmHistone deacetylase 3Homo sapiens (human)
negative regulation of apoptotic processHistone deacetylase 3Homo sapiens (human)
negative regulation of DNA-templated transcriptionHistone deacetylase 3Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIHistone deacetylase 3Homo sapiens (human)
negative regulation of JNK cascadeHistone deacetylase 3Homo sapiens (human)
spindle assemblyHistone deacetylase 3Homo sapiens (human)
establishment of skin barrierHistone deacetylase 3Homo sapiens (human)
cellular response to fluid shear stressHistone deacetylase 3Homo sapiens (human)
positive regulation of cold-induced thermogenesisHistone deacetylase 3Homo sapiens (human)
DNA repair-dependent chromatin remodelingHistone deacetylase 3Homo sapiens (human)
cornified envelope assemblyHistone deacetylase 3Homo sapiens (human)
negative regulation of cardiac muscle cell differentiationHistone deacetylase 3Homo sapiens (human)
epigenetic regulation of gene expressionHistone deacetylase 3Homo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
intracellular glucose homeostasisPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
negative regulation of cell-matrix adhesionPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of leukocyte migrationPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
transcription by RNA polymerase IIPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
protein import into nucleusPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
immune responsePhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
extrinsic apoptotic signaling pathway via death domain receptorsPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damagePhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of lamellipodium assemblyPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
cytokine-mediated signaling pathwayPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
B cell differentiationPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
T cell differentiationPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
osteoclast differentiationPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of tumor necrosis factor productionPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
cellular response to insulin stimulusPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of RNA splicingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
regulation of toll-like receptor 4 signaling pathwayPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
substrate adhesion-dependent cell spreadingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
cellular response to UVPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
response to endoplasmic reticulum stressPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
interleukin-18-mediated signaling pathwayPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
natural killer cell mediated cytotoxicityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of protein import into nucleusPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
negative regulation of apoptotic processPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol 3-kinase/protein kinase B signal transductionPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
negative regulation of osteoclast differentiationPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of glucose importPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol phosphate biosynthetic processPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
insulin-like growth factor receptor signaling pathwayPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of smooth muscle cell proliferationPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
protein stabilizationPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of filopodium assemblyPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
negative regulation of stress fiber assemblyPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
growth hormone receptor signaling pathwayPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
myeloid leukocyte migrationPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of focal adhesion disassemblyPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of endoplasmic reticulum unfolded protein responsePhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
positive regulation of protein localization to plasma membranePhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
insulin receptor signaling pathwayPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphorylationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
angiogenesisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
liver developmentPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
regulation of protein phosphorylationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
vasculature developmentPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
glucose metabolic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
phagocytosisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
epidermal growth factor receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
insulin receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
positive regulation of lamellipodium assemblyPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
negative regulation of gene expressionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
response to activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
response to muscle inactivityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
negative regulation of macroautophagyPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
actin cytoskeleton organizationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
platelet activationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
negative regulation of actin filament depolymerizationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
T cell costimulationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
positive regulation of TOR signalingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
cellular response to insulin stimulusPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
response to muscle stretchPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
vascular endothelial growth factor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
regulation of multicellular organism growthPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
response to L-leucinePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
anoikisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
regulation of cellular respirationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
phosphatidylinositol 3-kinase/protein kinase B signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
negative regulation of neuron apoptotic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
endothelial cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
phosphatidylinositol phosphate biosynthetic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
insulin-like growth factor receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
positive regulation of smooth muscle cell proliferationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
T cell receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
relaxation of cardiac musclePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
cardiac muscle contractionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
adipose tissue developmentPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
cellular response to glucose stimulusPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
cellular response to hydrostatic pressurePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
response to dexamethasonePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
cardiac muscle cell contractionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
energy homeostasisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
regulation of actin filament organizationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
autosome genomic imprintingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
response to butyratePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
positive regulation of protein localization to membranePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
negative regulation of fibroblast apoptotic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
negative regulation of anoikisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
phosphatidylinositol-3-phosphate biosynthetic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
phosphatidylinositol-mediated signalingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
regulation of cell-matrix adhesionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
positive regulation of gene expressionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
phosphorylationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
positive regulation of nitric oxide biosynthetic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
endothelial cell proliferationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
response to ischemiaPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
sphingosine-1-phosphate receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
intracellular calcium ion homeostasisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
endocytosisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
autophagyPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
homophilic cell adhesion via plasma membrane adhesion moleculesPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
G protein-coupled receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
positive regulation of autophagyPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
positive regulation of endothelial cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
platelet activationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
positive regulation of neutrophil apoptotic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
positive regulation of Rac protein signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
embryonic cleavagePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
negative regulation of MAPK cascadePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
phosphatidylinositol 3-kinase/protein kinase B signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
phosphatidylinositol phosphate biosynthetic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
negative regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
angiogenesis involved in wound healingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
platelet aggregationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
negative regulation of vascular endothelial growth factor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
negative regulation of hypoxia-induced intrinsic apoptotic signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
negative regulation of sprouting angiogenesisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
regulation of clathrin-dependent endocytosisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
phosphatidylinositol-3-phosphate biosynthetic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
phosphatidylinositol-mediated signalingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
protein destabilizationSerine/threonine-protein kinase mTORHomo sapiens (human)
protein phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of macroautophagySerine/threonine-protein kinase mTORHomo sapiens (human)
phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
protein autophosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of cell growthSerine/threonine-protein kinase mTORHomo sapiens (human)
T-helper 1 cell lineage commitmentSerine/threonine-protein kinase mTORHomo sapiens (human)
heart morphogenesisSerine/threonine-protein kinase mTORHomo sapiens (human)
heart valve morphogenesisSerine/threonine-protein kinase mTORHomo sapiens (human)
energy reserve metabolic processSerine/threonine-protein kinase mTORHomo sapiens (human)
'de novo' pyrimidine nucleobase biosynthetic processSerine/threonine-protein kinase mTORHomo sapiens (human)
protein phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
inflammatory responseSerine/threonine-protein kinase mTORHomo sapiens (human)
DNA damage responseSerine/threonine-protein kinase mTORHomo sapiens (human)
cytoskeleton organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
lysosome organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
germ cell developmentSerine/threonine-protein kinase mTORHomo sapiens (human)
response to nutrientSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of cell sizeSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to starvationSerine/threonine-protein kinase mTORHomo sapiens (human)
response to heatSerine/threonine-protein kinase mTORHomo sapiens (human)
post-embryonic developmentSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of autophagySerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of lamellipodium assemblySerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of gene expressionSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of epithelial to mesenchymal transitionSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of myotube differentiationSerine/threonine-protein kinase mTORHomo sapiens (human)
macroautophagySerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of macroautophagySerine/threonine-protein kinase mTORHomo sapiens (human)
phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
peptidyl-serine phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
neuronal action potentialSerine/threonine-protein kinase mTORHomo sapiens (human)
protein catabolic processSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of cell growthSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of actin filament polymerizationSerine/threonine-protein kinase mTORHomo sapiens (human)
T cell costimulationSerine/threonine-protein kinase mTORHomo sapiens (human)
ruffle organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of myelinationSerine/threonine-protein kinase mTORHomo sapiens (human)
response to nutrient levelsSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to nutrient levelsSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to nutrientSerine/threonine-protein kinase mTORHomo sapiens (human)
TOR signalingSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of phosphoprotein phosphatase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to insulin stimulusSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of actin cytoskeleton organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
calcineurin-NFAT signaling cascadeSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to amino acid starvationSerine/threonine-protein kinase mTORHomo sapiens (human)
multicellular organism growthSerine/threonine-protein kinase mTORHomo sapiens (human)
TORC1 signalingSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of circadian rhythmSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of apoptotic processSerine/threonine-protein kinase mTORHomo sapiens (human)
response to amino acidSerine/threonine-protein kinase mTORHomo sapiens (human)
anoikisSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of osteoclast differentiationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of translationSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of cell sizeSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of glycolytic processSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIISerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of translational initiationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of lipid biosynthetic processSerine/threonine-protein kinase mTORHomo sapiens (human)
behavioral response to painSerine/threonine-protein kinase mTORHomo sapiens (human)
rhythmic processSerine/threonine-protein kinase mTORHomo sapiens (human)
oligodendrocyte differentiationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of oligodendrocyte differentiationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationSerine/threonine-protein kinase mTORHomo sapiens (human)
voluntary musculoskeletal movementSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of stress fiber assemblySerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of keratinocyte migrationSerine/threonine-protein kinase mTORHomo sapiens (human)
nucleus localizationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionSerine/threonine-protein kinase mTORHomo sapiens (human)
cardiac muscle cell developmentSerine/threonine-protein kinase mTORHomo sapiens (human)
cardiac muscle contractionSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to methionineSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of calcineurin-NFAT signaling cascadeSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to amino acid stimulusSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to L-leucineSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to hypoxiaSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to osmotic stressSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of membrane permeabilitySerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of cellular response to heatSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of protein localization to nucleusSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of signal transduction by p53 class mediatorSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of transcription of nucleolar large rRNA by RNA polymerase ISerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of wound healing, spreading of epidermal cellsSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of locomotor rhythmSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of cytoplasmic translational initiationSerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of lysosome organizationSerine/threonine-protein kinase mTORHomo sapiens (human)
positive regulation of pentose-phosphate shuntSerine/threonine-protein kinase mTORHomo sapiens (human)
cellular response to leucine starvationSerine/threonine-protein kinase mTORHomo sapiens (human)
regulation of autophagosome assemblySerine/threonine-protein kinase mTORHomo sapiens (human)
negative regulation of macroautophagySerine/threonine-protein kinase mTORHomo sapiens (human)
phosphorylationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
angiogenesisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
positive regulation of cytokine productionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
adaptive immune responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
dendritic cell chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
positive regulation of acute inflammatory responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
respiratory burst involved in defense responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
sphingosine-1-phosphate receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
endocytosisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
inflammatory responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
immune responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
G protein-coupled receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwayPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
positive regulation of cytosolic calcium ion concentrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
positive regulation of endothelial cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
T cell chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
negative regulation of triglyceride catabolic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
neutrophil chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
secretory granule localizationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
regulation of cell adhesion mediated by integrinPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
positive regulation of Rac protein signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
natural killer cell chemotaxisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
T cell proliferationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
T cell activationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
mast cell degranulationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
positive regulation of MAP kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
phosphatidylinositol 3-kinase/protein kinase B signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
innate immune responsePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
regulation of angiogenesisPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
negative regulation of cardiac muscle contractionPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
platelet aggregationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
cellular response to cAMPPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
neutrophil extravasationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
hepatocyte apoptotic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
regulation of calcium ion transmembrane transportPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
negative regulation of fibroblast apoptotic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
cell migrationPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
phosphatidylinositol-mediated signalingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
phosphatidylinositol-3-phosphate biosynthetic processPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 4Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 4Homo sapiens (human)
chromatin remodelingHistone deacetylase 4Homo sapiens (human)
protein deacetylationHistone deacetylase 4Homo sapiens (human)
inflammatory responseHistone deacetylase 4Homo sapiens (human)
nervous system developmentHistone deacetylase 4Homo sapiens (human)
positive regulation of cell population proliferationHistone deacetylase 4Homo sapiens (human)
negative regulation of myotube differentiationHistone deacetylase 4Homo sapiens (human)
negative regulation of transcription by competitive promoter bindingHistone deacetylase 4Homo sapiens (human)
response to denervation involved in regulation of muscle adaptationHistone deacetylase 4Homo sapiens (human)
cardiac muscle hypertrophy in response to stressHistone deacetylase 4Homo sapiens (human)
protein sumoylationHistone deacetylase 4Homo sapiens (human)
B cell differentiationHistone deacetylase 4Homo sapiens (human)
positive regulation of protein sumoylationHistone deacetylase 4Homo sapiens (human)
peptidyl-lysine deacetylationHistone deacetylase 4Homo sapiens (human)
B cell activationHistone deacetylase 4Homo sapiens (human)
regulation of protein bindingHistone deacetylase 4Homo sapiens (human)
negative regulation of DNA-binding transcription factor activityHistone deacetylase 4Homo sapiens (human)
negative regulation of gene expression, epigeneticHistone deacetylase 4Homo sapiens (human)
negative regulation of glycolytic processHistone deacetylase 4Homo sapiens (human)
positive regulation of DNA-templated transcriptionHistone deacetylase 4Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIHistone deacetylase 4Homo sapiens (human)
positive regulation of DNA-binding transcription factor activityHistone deacetylase 4Homo sapiens (human)
type I interferon-mediated signaling pathwayHistone deacetylase 4Homo sapiens (human)
response to interleukin-1Histone deacetylase 4Homo sapiens (human)
peptidyl-serine phosphorylationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
maturation of 5.8S rRNADNA-dependent protein kinase catalytic subunitHomo sapiens (human)
somitogenesisDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
negative regulation of protein phosphorylationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
activation of innate immune responseDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
B cell lineage commitmentDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
immature B cell differentiationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
pro-B cell differentiationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
T cell lineage commitmentDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
double-strand break repairDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
double-strand break repair via nonhomologous end joiningDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
chromatin remodelingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein phosphorylationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
DNA damage responseDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
brain developmentDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
heart developmentDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
response to gamma radiationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
telomere cappingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
peptidyl-serine phosphorylationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
peptidyl-threonine phosphorylationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
mitotic G1 DNA damage checkpoint signalingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein destabilizationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
cellular response to insulin stimulusDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
T cell differentiation in thymusDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
T cell receptor V(D)J recombinationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
small-subunit processome assemblyDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
ectopic germ cell programmed cell deathDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein modification processDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
regulation of circadian rhythmDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
positive regulation of apoptotic processDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
negative regulation of apoptotic processDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
innate immune responseDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
positive regulation of lymphocyte differentiationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
positive regulation of erythrocyte differentiationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
positive regulation of translationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
rhythmic processDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
regulation of smooth muscle cell proliferationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
regulation of epithelial cell proliferationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
double-strand break repair via alternative nonhomologous end joiningDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
negative regulation of cGAS/STING signaling pathwayDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
regulation of hematopoietic stem cell differentiationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
positive regulation of platelet formationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
positive regulation of double-strand break repair via nonhomologous end joiningDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
immunoglobulin V(D)J recombinationDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
telomere maintenanceDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damageDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
regulation of heart rate by cardiac conductionPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
regulation of heart rate by hormonePotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
regulation of membrane potentialPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
positive regulation of DNA-templated transcriptionPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
potassium ion homeostasisPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
cardiac muscle contractionPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
regulation of membrane repolarizationPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
regulation of ventricular cardiac muscle cell membrane repolarizationPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
cellular response to xenobiotic stimulusPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
potassium ion transmembrane transportPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
ventricular cardiac muscle cell action potentialPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
membrane repolarizationPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
membrane depolarization during action potentialPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
membrane repolarization during action potentialPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
membrane repolarization during cardiac muscle cell action potentialPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
regulation of heart rate by cardiac conductionPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
potassium ion export across plasma membranePotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
membrane repolarization during ventricular cardiac muscle cell action potentialPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
regulation of potassium ion transmembrane transportPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
negative regulation of potassium ion transmembrane transportPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
positive regulation of potassium ion transmembrane transportPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
negative regulation of potassium ion export across plasma membranePotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
potassium ion import across plasma membranePotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
negative regulation of myotube differentiationHistone deacetylase 1Homo sapiens (human)
negative regulation of apoptotic processHistone deacetylase 1Homo sapiens (human)
positive regulation of signaling receptor activityHistone deacetylase 1Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 1Homo sapiens (human)
chromatin organizationHistone deacetylase 1Homo sapiens (human)
chromatin remodelingHistone deacetylase 1Homo sapiens (human)
DNA methylation-dependent heterochromatin formationHistone deacetylase 1Homo sapiens (human)
regulation of transcription by RNA polymerase IIHistone deacetylase 1Homo sapiens (human)
protein deacetylationHistone deacetylase 1Homo sapiens (human)
endoderm developmentHistone deacetylase 1Homo sapiens (human)
positive regulation of cell population proliferationHistone deacetylase 1Homo sapiens (human)
epidermal cell differentiationHistone deacetylase 1Homo sapiens (human)
positive regulation of gene expressionHistone deacetylase 1Homo sapiens (human)
negative regulation of gene expressionHistone deacetylase 1Homo sapiens (human)
hippocampus developmentHistone deacetylase 1Homo sapiens (human)
neuron differentiationHistone deacetylase 1Homo sapiens (human)
negative regulation of cell migrationHistone deacetylase 1Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayHistone deacetylase 1Homo sapiens (human)
circadian regulation of gene expressionHistone deacetylase 1Homo sapiens (human)
cellular response to platelet-derived growth factor stimulusHistone deacetylase 1Homo sapiens (human)
odontogenesis of dentin-containing toothHistone deacetylase 1Homo sapiens (human)
regulation of cell fate specificationHistone deacetylase 1Homo sapiens (human)
embryonic digit morphogenesisHistone deacetylase 1Homo sapiens (human)
negative regulation of apoptotic processHistone deacetylase 1Homo sapiens (human)
negative regulation of canonical NF-kappaB signal transductionHistone deacetylase 1Homo sapiens (human)
negative regulation by host of viral transcriptionHistone deacetylase 1Homo sapiens (human)
negative regulation of gene expression, epigeneticHistone deacetylase 1Homo sapiens (human)
negative regulation of DNA-templated transcriptionHistone deacetylase 1Homo sapiens (human)
positive regulation of DNA-templated transcriptionHistone deacetylase 1Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIHistone deacetylase 1Homo sapiens (human)
positive regulation of smooth muscle cell proliferationHistone deacetylase 1Homo sapiens (human)
oligodendrocyte differentiationHistone deacetylase 1Homo sapiens (human)
positive regulation of oligodendrocyte differentiationHistone deacetylase 1Homo sapiens (human)
negative regulation of androgen receptor signaling pathwayHistone deacetylase 1Homo sapiens (human)
hair follicle placode formationHistone deacetylase 1Homo sapiens (human)
eyelid development in camera-type eyeHistone deacetylase 1Homo sapiens (human)
fungiform papilla formationHistone deacetylase 1Homo sapiens (human)
negative regulation of canonical Wnt signaling pathwayHistone deacetylase 1Homo sapiens (human)
negative regulation of stem cell population maintenanceHistone deacetylase 1Homo sapiens (human)
positive regulation of stem cell population maintenanceHistone deacetylase 1Homo sapiens (human)
regulation of stem cell differentiationHistone deacetylase 1Homo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathwayHistone deacetylase 1Homo sapiens (human)
heterochromatin formationHistone deacetylase 1Homo sapiens (human)
protein lipidationPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
autophagyPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
autophagosome assemblyPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
protein targeting to lysosomePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
regulation of autophagyPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
macroautophagyPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
regulation of macroautophagyPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
regulation of cytokinesisPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
protein localization to phagophore assembly sitePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phosphatidylinositol-3-phosphate biosynthetic processPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
cellular response to glucose starvationPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
positive regulation by host of viral genome replicationPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
early endosome to late endosome transportPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
cell divisionPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
autophagosome maturationPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
autophagy of peroxisomePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
endocytosisPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phosphatidylinositol-mediated signalingPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 7Homo sapiens (human)
vasculogenesisHistone deacetylase 7Homo sapiens (human)
chromatin remodelingHistone deacetylase 7Homo sapiens (human)
protein deacetylationHistone deacetylase 7Homo sapiens (human)
cell-cell junction assemblyHistone deacetylase 7Homo sapiens (human)
protein sumoylationHistone deacetylase 7Homo sapiens (human)
negative regulation of interleukin-2 productionHistone deacetylase 7Homo sapiens (human)
negative regulation of osteoblast differentiationHistone deacetylase 7Homo sapiens (human)
regulation of mRNA processingHistone deacetylase 7Homo sapiens (human)
positive regulation of cell migration involved in sprouting angiogenesisHistone deacetylase 7Homo sapiens (human)
negative regulation of non-canonical NF-kappaB signal transductionHistone deacetylase 7Homo sapiens (human)
positive regulation of signaling receptor activityHistone deacetylase 2Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 2Homo sapiens (human)
response to amphetamineHistone deacetylase 2Homo sapiens (human)
cardiac muscle hypertrophyHistone deacetylase 2Homo sapiens (human)
chromatin remodelingHistone deacetylase 2Homo sapiens (human)
positive regulation of cell population proliferationHistone deacetylase 2Homo sapiens (human)
response to xenobiotic stimulusHistone deacetylase 2Homo sapiens (human)
epidermal cell differentiationHistone deacetylase 2Homo sapiens (human)
positive regulation of epithelial to mesenchymal transitionHistone deacetylase 2Homo sapiens (human)
negative regulation of transcription by competitive promoter bindingHistone deacetylase 2Homo sapiens (human)
negative regulation of neuron projection developmentHistone deacetylase 2Homo sapiens (human)
dendrite developmentHistone deacetylase 2Homo sapiens (human)
negative regulation of cell migrationHistone deacetylase 2Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayHistone deacetylase 2Homo sapiens (human)
response to caffeineHistone deacetylase 2Homo sapiens (human)
heterochromatin formationHistone deacetylase 2Homo sapiens (human)
response to lipopolysaccharideHistone deacetylase 2Homo sapiens (human)
positive regulation of interleukin-1 productionHistone deacetylase 2Homo sapiens (human)
positive regulation of tumor necrosis factor productionHistone deacetylase 2Homo sapiens (human)
circadian regulation of gene expressionHistone deacetylase 2Homo sapiens (human)
positive regulation of collagen biosynthetic processHistone deacetylase 2Homo sapiens (human)
cellular response to heatHistone deacetylase 2Homo sapiens (human)
response to nicotineHistone deacetylase 2Homo sapiens (human)
protein modification processHistone deacetylase 2Homo sapiens (human)
response to cocaineHistone deacetylase 2Homo sapiens (human)
odontogenesis of dentin-containing toothHistone deacetylase 2Homo sapiens (human)
positive regulation of tyrosine phosphorylation of STAT proteinHistone deacetylase 2Homo sapiens (human)
regulation of cell fate specificationHistone deacetylase 2Homo sapiens (human)
embryonic digit morphogenesisHistone deacetylase 2Homo sapiens (human)
negative regulation of apoptotic processHistone deacetylase 2Homo sapiens (human)
negative regulation of DNA-binding transcription factor activityHistone deacetylase 2Homo sapiens (human)
negative regulation of MHC class II biosynthetic processHistone deacetylase 2Homo sapiens (human)
positive regulation of proteolysisHistone deacetylase 2Homo sapiens (human)
negative regulation of DNA-templated transcriptionHistone deacetylase 2Homo sapiens (human)
positive regulation of DNA-templated transcriptionHistone deacetylase 2Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIHistone deacetylase 2Homo sapiens (human)
behavioral response to ethanolHistone deacetylase 2Homo sapiens (human)
positive regulation of oligodendrocyte differentiationHistone deacetylase 2Homo sapiens (human)
response to hyperoxiaHistone deacetylase 2Homo sapiens (human)
hair follicle placode formationHistone deacetylase 2Homo sapiens (human)
negative regulation of dendritic spine developmentHistone deacetylase 2Homo sapiens (human)
eyelid development in camera-type eyeHistone deacetylase 2Homo sapiens (human)
fungiform papilla formationHistone deacetylase 2Homo sapiens (human)
cellular response to hydrogen peroxideHistone deacetylase 2Homo sapiens (human)
cellular response to retinoic acidHistone deacetylase 2Homo sapiens (human)
cellular response to transforming growth factor beta stimulusHistone deacetylase 2Homo sapiens (human)
positive regulation of male mating behaviorHistone deacetylase 2Homo sapiens (human)
negative regulation of stem cell population maintenanceHistone deacetylase 2Homo sapiens (human)
positive regulation of stem cell population maintenanceHistone deacetylase 2Homo sapiens (human)
cellular response to dopamineHistone deacetylase 2Homo sapiens (human)
response to amyloid-betaHistone deacetylase 2Homo sapiens (human)
regulation of stem cell differentiationHistone deacetylase 2Homo sapiens (human)
negative regulation of peptidyl-lysine acetylationHistone deacetylase 2Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIPolyamine deacetylase HDAC10Homo sapiens (human)
DNA repairPolyamine deacetylase HDAC10Homo sapiens (human)
chromatin organizationPolyamine deacetylase HDAC10Homo sapiens (human)
regulation of DNA-templated transcriptionPolyamine deacetylase HDAC10Homo sapiens (human)
macroautophagyPolyamine deacetylase HDAC10Homo sapiens (human)
positive regulation of mismatch repairPolyamine deacetylase HDAC10Homo sapiens (human)
homologous recombinationPolyamine deacetylase HDAC10Homo sapiens (human)
negative regulation of DNA-templated transcriptionPolyamine deacetylase HDAC10Homo sapiens (human)
polyamine deacetylationPolyamine deacetylase HDAC10Homo sapiens (human)
spermidine deacetylationPolyamine deacetylase HDAC10Homo sapiens (human)
epigenetic regulation of gene expressionPolyamine deacetylase HDAC10Homo sapiens (human)
chromatin organizationHistone deacetylase 11 Homo sapiens (human)
oligodendrocyte developmentHistone deacetylase 11 Homo sapiens (human)
epigenetic regulation of gene expressionHistone deacetylase 11 Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 8Homo sapiens (human)
chromatin organizationHistone deacetylase 8Homo sapiens (human)
mitotic sister chromatid cohesionHistone deacetylase 8Homo sapiens (human)
negative regulation of protein ubiquitinationHistone deacetylase 8Homo sapiens (human)
regulation of protein stabilityHistone deacetylase 8Homo sapiens (human)
regulation of telomere maintenanceHistone deacetylase 8Homo sapiens (human)
epigenetic regulation of gene expressionHistone deacetylase 8Homo sapiens (human)
polyamine deacetylationHistone deacetylase 6Homo sapiens (human)
spermidine deacetylationHistone deacetylase 6Homo sapiens (human)
positive regulation of signaling receptor activityHistone deacetylase 6Homo sapiens (human)
protein polyubiquitinationHistone deacetylase 6Homo sapiens (human)
response to amphetamineHistone deacetylase 6Homo sapiens (human)
protein deacetylationHistone deacetylase 6Homo sapiens (human)
protein quality control for misfolded or incompletely synthesized proteinsHistone deacetylase 6Homo sapiens (human)
intracellular protein transportHistone deacetylase 6Homo sapiens (human)
autophagyHistone deacetylase 6Homo sapiens (human)
actin filament organizationHistone deacetylase 6Homo sapiens (human)
negative regulation of microtubule depolymerizationHistone deacetylase 6Homo sapiens (human)
regulation of autophagyHistone deacetylase 6Homo sapiens (human)
positive regulation of epithelial cell migrationHistone deacetylase 6Homo sapiens (human)
negative regulation of hydrogen peroxide metabolic processHistone deacetylase 6Homo sapiens (human)
regulation of macroautophagyHistone deacetylase 6Homo sapiens (human)
axonal transport of mitochondrionHistone deacetylase 6Homo sapiens (human)
negative regulation of protein-containing complex assemblyHistone deacetylase 6Homo sapiens (human)
regulation of protein stabilityHistone deacetylase 6Homo sapiens (human)
protein destabilizationHistone deacetylase 6Homo sapiens (human)
lysosome localizationHistone deacetylase 6Homo sapiens (human)
protein-containing complex disassemblyHistone deacetylase 6Homo sapiens (human)
positive regulation of peptidyl-serine phosphorylationHistone deacetylase 6Homo sapiens (human)
cellular response to heatHistone deacetylase 6Homo sapiens (human)
peptidyl-lysine deacetylationHistone deacetylase 6Homo sapiens (human)
response to immobilization stressHistone deacetylase 6Homo sapiens (human)
cellular response to topologically incorrect proteinHistone deacetylase 6Homo sapiens (human)
erythrocyte enucleationHistone deacetylase 6Homo sapiens (human)
ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathwayHistone deacetylase 6Homo sapiens (human)
negative regulation of protein-containing complex disassemblyHistone deacetylase 6Homo sapiens (human)
regulation of fat cell differentiationHistone deacetylase 6Homo sapiens (human)
negative regulation of gene expression, epigeneticHistone deacetylase 6Homo sapiens (human)
negative regulation of proteolysisHistone deacetylase 6Homo sapiens (human)
negative regulation of DNA-templated transcriptionHistone deacetylase 6Homo sapiens (human)
collateral sproutingHistone deacetylase 6Homo sapiens (human)
negative regulation of axon extension involved in axon guidanceHistone deacetylase 6Homo sapiens (human)
positive regulation of dendrite morphogenesisHistone deacetylase 6Homo sapiens (human)
negative regulation of oxidoreductase activityHistone deacetylase 6Homo sapiens (human)
response to corticosteroneHistone deacetylase 6Homo sapiens (human)
response to misfolded proteinHistone deacetylase 6Homo sapiens (human)
positive regulation of synaptic transmission, glutamatergicHistone deacetylase 6Homo sapiens (human)
cilium assemblyHistone deacetylase 6Homo sapiens (human)
regulation of microtubule-based movementHistone deacetylase 6Homo sapiens (human)
regulation of androgen receptor signaling pathwayHistone deacetylase 6Homo sapiens (human)
dendritic spine morphogenesisHistone deacetylase 6Homo sapiens (human)
cilium disassemblyHistone deacetylase 6Homo sapiens (human)
parkin-mediated stimulation of mitophagy in response to mitochondrial depolarizationHistone deacetylase 6Homo sapiens (human)
regulation of establishment of protein localizationHistone deacetylase 6Homo sapiens (human)
cellular response to hydrogen peroxideHistone deacetylase 6Homo sapiens (human)
aggresome assemblyHistone deacetylase 6Homo sapiens (human)
polyubiquitinated misfolded protein transportHistone deacetylase 6Homo sapiens (human)
response to growth factorHistone deacetylase 6Homo sapiens (human)
cellular response to misfolded proteinHistone deacetylase 6Homo sapiens (human)
cellular response to parathyroid hormone stimulusHistone deacetylase 6Homo sapiens (human)
response to dexamethasoneHistone deacetylase 6Homo sapiens (human)
tubulin deacetylationHistone deacetylase 6Homo sapiens (human)
positive regulation of tubulin deacetylationHistone deacetylase 6Homo sapiens (human)
positive regulation of cellular response to oxidative stressHistone deacetylase 6Homo sapiens (human)
negative regulation of protein acetylationHistone deacetylase 6Homo sapiens (human)
regulation of autophagy of mitochondrionHistone deacetylase 6Homo sapiens (human)
positive regulation of cholangiocyte proliferationHistone deacetylase 6Homo sapiens (human)
negative regulation of aggrephagyHistone deacetylase 6Homo sapiens (human)
epigenetic regulation of gene expressionHistone deacetylase 6Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 9Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 9Homo sapiens (human)
negative regulation of cytokine productionHistone deacetylase 9Homo sapiens (human)
response to amphetamineHistone deacetylase 9Homo sapiens (human)
inflammatory responseHistone deacetylase 9Homo sapiens (human)
heart developmentHistone deacetylase 9Homo sapiens (human)
neuron differentiationHistone deacetylase 9Homo sapiens (human)
B cell differentiationHistone deacetylase 9Homo sapiens (human)
cellular response to insulin stimulusHistone deacetylase 9Homo sapiens (human)
peptidyl-lysine deacetylationHistone deacetylase 9Homo sapiens (human)
B cell activationHistone deacetylase 9Homo sapiens (human)
cholesterol homeostasisHistone deacetylase 9Homo sapiens (human)
negative regulation of gene expression, epigeneticHistone deacetylase 9Homo sapiens (human)
negative regulation of DNA-templated transcriptionHistone deacetylase 9Homo sapiens (human)
regulation of skeletal muscle fiber developmentHistone deacetylase 9Homo sapiens (human)
regulation of striated muscle cell differentiationHistone deacetylase 9Homo sapiens (human)
positive regulation of cell migration involved in sprouting angiogenesisHistone deacetylase 9Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 5Homo sapiens (human)
negative regulation of transcription by RNA polymerase IIHistone deacetylase 5Homo sapiens (human)
inflammatory responseHistone deacetylase 5Homo sapiens (human)
response to xenobiotic stimulusHistone deacetylase 5Homo sapiens (human)
regulation of myotube differentiationHistone deacetylase 5Homo sapiens (human)
negative regulation of myotube differentiationHistone deacetylase 5Homo sapiens (human)
response to activityHistone deacetylase 5Homo sapiens (human)
neuron differentiationHistone deacetylase 5Homo sapiens (human)
B cell differentiationHistone deacetylase 5Homo sapiens (human)
cellular response to insulin stimulusHistone deacetylase 5Homo sapiens (human)
B cell activationHistone deacetylase 5Homo sapiens (human)
response to cocaineHistone deacetylase 5Homo sapiens (human)
regulation of protein bindingHistone deacetylase 5Homo sapiens (human)
negative regulation of gene expression, epigeneticHistone deacetylase 5Homo sapiens (human)
negative regulation of DNA-templated transcriptionHistone deacetylase 5Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIHistone deacetylase 5Homo sapiens (human)
positive regulation of DNA-binding transcription factor activityHistone deacetylase 5Homo sapiens (human)
cellular response to lipopolysaccharideHistone deacetylase 5Homo sapiens (human)
negative regulation of cell migration involved in sprouting angiogenesisHistone deacetylase 5Homo sapiens (human)
negative regulation of transcription by RNA polymerase IINuclear receptor corepressor 2Homo sapiens (human)
lactationNuclear receptor corepressor 2Homo sapiens (human)
response to organonitrogen compoundNuclear receptor corepressor 2Homo sapiens (human)
regulation of cellular ketone metabolic processNuclear receptor corepressor 2Homo sapiens (human)
cerebellum developmentNuclear receptor corepressor 2Homo sapiens (human)
response to estradiolNuclear receptor corepressor 2Homo sapiens (human)
estrous cycleNuclear receptor corepressor 2Homo sapiens (human)
negative regulation of DNA-templated transcriptionNuclear receptor corepressor 2Homo sapiens (human)
negative regulation of androgen receptor signaling pathwayNuclear receptor corepressor 2Homo sapiens (human)
negative regulation of miRNA transcriptionNuclear receptor corepressor 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (113)

Processvia Protein(s)Taxonomy
protein bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
ATP bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
1-phosphatidylinositol-3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
1-phosphatidylinositol-4,5-bisphosphate 3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
1-phosphatidylinositol-4-phosphate 3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
transcription corepressor bindingHistone deacetylase 3Homo sapiens (human)
chromatin bindingHistone deacetylase 3Homo sapiens (human)
transcription corepressor activityHistone deacetylase 3Homo sapiens (human)
histone deacetylase activityHistone deacetylase 3Homo sapiens (human)
protein bindingHistone deacetylase 3Homo sapiens (human)
enzyme bindingHistone deacetylase 3Homo sapiens (human)
cyclin bindingHistone deacetylase 3Homo sapiens (human)
chromatin DNA bindingHistone deacetylase 3Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 3Homo sapiens (human)
histone deacetylase bindingHistone deacetylase 3Homo sapiens (human)
NF-kappaB bindingHistone deacetylase 3Homo sapiens (human)
DNA-binding transcription factor bindingHistone deacetylase 3Homo sapiens (human)
protein decrotonylase activityHistone deacetylase 3Homo sapiens (human)
histone decrotonylase activityHistone deacetylase 3Homo sapiens (human)
protein de-2-hydroxyisobutyrylase activityHistone deacetylase 3Homo sapiens (human)
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
phosphotyrosine residue bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
transmembrane receptor protein tyrosine kinase adaptor activityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
insulin receptor bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
insulin-like growth factor receptor bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
neurotrophin TRKA receptor bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
protein bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
kinase activator activityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
protein phosphatase bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol 3-kinase regulator activityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol 3-kinase regulatory subunit bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
ErbB-3 class receptor bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol 3-kinase bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
insulin bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
insulin receptor substrate bindingPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
protein heterodimerization activityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol kinase activityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
enzyme-substrate adaptor activityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol 3-kinase activator activityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
1-phosphatidylinositol-3-kinase regulator activityPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
protein serine/threonine kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
protein bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
ATP bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
1-phosphatidylinositol-3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
protein kinase activator activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
insulin receptor substrate bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
1-phosphatidylinositol-4,5-bisphosphate 3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
protein serine kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
1-phosphatidylinositol-4-phosphate 3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
protein bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
ATP bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
1-phosphatidylinositol-3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
insulin receptor substrate bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
1-phosphatidylinositol-4,5-bisphosphate 3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
protein serine kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
1-phosphatidylinositol-4-phosphate 3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
RNA polymerase III type 1 promoter sequence-specific DNA bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
RNA polymerase III type 2 promoter sequence-specific DNA bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
RNA polymerase III type 3 promoter sequence-specific DNA bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
TFIIIC-class transcription factor complex bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
protein kinase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
protein serine/threonine kinase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
protein bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
ATP bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
kinase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
identical protein bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
ribosome bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
phosphoprotein bindingSerine/threonine-protein kinase mTORHomo sapiens (human)
protein serine kinase activitySerine/threonine-protein kinase mTORHomo sapiens (human)
protein kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
protein serine/threonine kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
protein bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
ATP bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
1-phosphatidylinositol-3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
1-phosphatidylinositol-4-phosphate 3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
identical protein bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
ephrin receptor bindingPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
1-phosphatidylinositol-4,5-bisphosphate 3-kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
protein serine kinase activityPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
transcription cis-regulatory region bindingHistone deacetylase 4Homo sapiens (human)
histone bindingHistone deacetylase 4Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingHistone deacetylase 4Homo sapiens (human)
histone deacetylase activityHistone deacetylase 4Homo sapiens (human)
protein bindingHistone deacetylase 4Homo sapiens (human)
zinc ion bindingHistone deacetylase 4Homo sapiens (human)
SUMO transferase activityHistone deacetylase 4Homo sapiens (human)
potassium ion bindingHistone deacetylase 4Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 4Homo sapiens (human)
identical protein bindingHistone deacetylase 4Homo sapiens (human)
histone deacetylase bindingHistone deacetylase 4Homo sapiens (human)
molecular adaptor activityHistone deacetylase 4Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingHistone deacetylase 4Homo sapiens (human)
DNA-binding transcription factor bindingHistone deacetylase 4Homo sapiens (human)
double-stranded DNA bindingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
RNA bindingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein kinase activityDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein serine/threonine kinase activityDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
DNA-dependent protein kinase activityDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein bindingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
ATP bindingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
enzyme bindingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein domain specific bindingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
U3 snoRNA bindingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
histone H2AXS139 kinase activityDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein serine kinase activityDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
transcription cis-regulatory region bindingPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
inward rectifier potassium channel activityPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
voltage-gated potassium channel activityPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
delayed rectifier potassium channel activityPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
protein bindingPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
ubiquitin protein ligase bindingPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
identical protein bindingPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
protein homodimerization activityPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
C3HC4-type RING finger domain bindingPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
voltage-gated potassium channel activity involved in cardiac muscle cell action potential repolarizationPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
scaffold protein bindingPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
voltage-gated potassium channel activity involved in ventricular cardiac muscle cell action potential repolarizationPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
nucleosomal DNA bindingHistone deacetylase 1Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingHistone deacetylase 1Homo sapiens (human)
RNA polymerase II core promoter sequence-specific DNA bindingHistone deacetylase 1Homo sapiens (human)
core promoter sequence-specific DNA bindingHistone deacetylase 1Homo sapiens (human)
transcription corepressor bindingHistone deacetylase 1Homo sapiens (human)
p53 bindingHistone deacetylase 1Homo sapiens (human)
transcription corepressor activityHistone deacetylase 1Homo sapiens (human)
histone deacetylase activityHistone deacetylase 1Homo sapiens (human)
protein bindingHistone deacetylase 1Homo sapiens (human)
enzyme bindingHistone deacetylase 1Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 1Homo sapiens (human)
Krueppel-associated box domain bindingHistone deacetylase 1Homo sapiens (human)
histone deacetylase bindingHistone deacetylase 1Homo sapiens (human)
NF-kappaB bindingHistone deacetylase 1Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingHistone deacetylase 1Homo sapiens (human)
E-box bindingHistone deacetylase 1Homo sapiens (human)
DNA-binding transcription factor bindingHistone deacetylase 1Homo sapiens (human)
histone decrotonylase activityHistone deacetylase 1Homo sapiens (human)
promoter-specific chromatin bindingHistone deacetylase 1Homo sapiens (human)
protein kinase activityPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
protein bindingPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
ATP bindingPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
kinase activityPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
1-phosphatidylinositol-3-kinase activityPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phosphatidylinositol kinase activityPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
chromatin bindingHistone deacetylase 7Homo sapiens (human)
transcription corepressor activityHistone deacetylase 7Homo sapiens (human)
histone deacetylase activityHistone deacetylase 7Homo sapiens (human)
protein kinase C bindingHistone deacetylase 7Homo sapiens (human)
protein bindingHistone deacetylase 7Homo sapiens (human)
SUMO transferase activityHistone deacetylase 7Homo sapiens (human)
protein kinase bindingHistone deacetylase 7Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 7Homo sapiens (human)
metal ion bindingHistone deacetylase 7Homo sapiens (human)
14-3-3 protein bindingHistone deacetylase 7Homo sapiens (human)
DNA-binding transcription factor bindingHistone deacetylase 7Homo sapiens (human)
nucleosomal DNA bindingHistone deacetylase 2Homo sapiens (human)
chromatin bindingHistone deacetylase 2Homo sapiens (human)
RNA bindingHistone deacetylase 2Homo sapiens (human)
histone deacetylase activityHistone deacetylase 2Homo sapiens (human)
protein bindingHistone deacetylase 2Homo sapiens (human)
enzyme bindingHistone deacetylase 2Homo sapiens (human)
heat shock protein bindingHistone deacetylase 2Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 2Homo sapiens (human)
histone bindingHistone deacetylase 2Homo sapiens (human)
histone deacetylase bindingHistone deacetylase 2Homo sapiens (human)
NF-kappaB bindingHistone deacetylase 2Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingHistone deacetylase 2Homo sapiens (human)
histone decrotonylase activityHistone deacetylase 2Homo sapiens (human)
protein de-2-hydroxyisobutyrylase activityHistone deacetylase 2Homo sapiens (human)
promoter-specific chromatin bindingHistone deacetylase 2Homo sapiens (human)
protein lysine deacetylase activityPolyamine deacetylase HDAC10Homo sapiens (human)
histone deacetylase activityPolyamine deacetylase HDAC10Homo sapiens (human)
protein bindingPolyamine deacetylase HDAC10Homo sapiens (human)
zinc ion bindingPolyamine deacetylase HDAC10Homo sapiens (human)
deacetylase activityPolyamine deacetylase HDAC10Homo sapiens (human)
enzyme bindingPolyamine deacetylase HDAC10Homo sapiens (human)
protein lysine deacetylase activityPolyamine deacetylase HDAC10Homo sapiens (human)
histone deacetylase bindingPolyamine deacetylase HDAC10Homo sapiens (human)
acetylputrescine deacetylase activityPolyamine deacetylase HDAC10Homo sapiens (human)
acetylspermidine deacetylase activityPolyamine deacetylase HDAC10Homo sapiens (human)
histone deacetylase activityHistone deacetylase 11 Homo sapiens (human)
protein bindingHistone deacetylase 11 Homo sapiens (human)
DNA-binding transcription factor bindingHistone deacetylase 11 Homo sapiens (human)
histone deacetylase activityHistone deacetylase 8Homo sapiens (human)
protein bindingHistone deacetylase 8Homo sapiens (human)
Hsp70 protein bindingHistone deacetylase 8Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 8Homo sapiens (human)
metal ion bindingHistone deacetylase 8Homo sapiens (human)
Hsp90 protein bindingHistone deacetylase 8Homo sapiens (human)
DNA-binding transcription factor bindingHistone deacetylase 8Homo sapiens (human)
histone decrotonylase activityHistone deacetylase 8Homo sapiens (human)
acetylspermidine deacetylase activityHistone deacetylase 6Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingHistone deacetylase 6Homo sapiens (human)
transcription corepressor bindingHistone deacetylase 6Homo sapiens (human)
actin bindingHistone deacetylase 6Homo sapiens (human)
histone deacetylase activityHistone deacetylase 6Homo sapiens (human)
protein bindingHistone deacetylase 6Homo sapiens (human)
beta-catenin bindingHistone deacetylase 6Homo sapiens (human)
microtubule bindingHistone deacetylase 6Homo sapiens (human)
zinc ion bindingHistone deacetylase 6Homo sapiens (human)
enzyme bindingHistone deacetylase 6Homo sapiens (human)
polyubiquitin modification-dependent protein bindingHistone deacetylase 6Homo sapiens (human)
ubiquitin protein ligase bindingHistone deacetylase 6Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 6Homo sapiens (human)
histone deacetylase bindingHistone deacetylase 6Homo sapiens (human)
tubulin deacetylase activityHistone deacetylase 6Homo sapiens (human)
alpha-tubulin bindingHistone deacetylase 6Homo sapiens (human)
ubiquitin bindingHistone deacetylase 6Homo sapiens (human)
tau protein bindingHistone deacetylase 6Homo sapiens (human)
beta-tubulin bindingHistone deacetylase 6Homo sapiens (human)
misfolded protein bindingHistone deacetylase 6Homo sapiens (human)
Hsp90 protein bindingHistone deacetylase 6Homo sapiens (human)
dynein complex bindingHistone deacetylase 6Homo sapiens (human)
transcription factor bindingHistone deacetylase 6Homo sapiens (human)
transcription corepressor activityHistone deacetylase 9Homo sapiens (human)
histone deacetylase activityHistone deacetylase 9Homo sapiens (human)
protein kinase C bindingHistone deacetylase 9Homo sapiens (human)
protein bindingHistone deacetylase 9Homo sapiens (human)
histone H3K14 deacetylase activityHistone deacetylase 9Homo sapiens (human)
histone H3K9 deacetylase activityHistone deacetylase 9Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 9Homo sapiens (human)
histone H4K16 deacetylase activityHistone deacetylase 9Homo sapiens (human)
histone deacetylase bindingHistone deacetylase 9Homo sapiens (human)
metal ion bindingHistone deacetylase 9Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingHistone deacetylase 9Homo sapiens (human)
DNA-binding transcription factor bindingHistone deacetylase 9Homo sapiens (human)
transcription cis-regulatory region bindingHistone deacetylase 5Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingHistone deacetylase 5Homo sapiens (human)
transcription corepressor bindingHistone deacetylase 5Homo sapiens (human)
chromatin bindingHistone deacetylase 5Homo sapiens (human)
histone deacetylase activityHistone deacetylase 5Homo sapiens (human)
protein kinase C bindingHistone deacetylase 5Homo sapiens (human)
protein bindingHistone deacetylase 5Homo sapiens (human)
protein lysine deacetylase activityHistone deacetylase 5Homo sapiens (human)
identical protein bindingHistone deacetylase 5Homo sapiens (human)
histone deacetylase bindingHistone deacetylase 5Homo sapiens (human)
metal ion bindingHistone deacetylase 5Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingHistone deacetylase 5Homo sapiens (human)
DNA-binding transcription factor bindingHistone deacetylase 5Homo sapiens (human)
DNA bindingNuclear receptor corepressor 2Homo sapiens (human)
chromatin bindingNuclear receptor corepressor 2Homo sapiens (human)
transcription corepressor activityNuclear receptor corepressor 2Homo sapiens (human)
Notch bindingNuclear receptor corepressor 2Homo sapiens (human)
protein bindingNuclear receptor corepressor 2Homo sapiens (human)
nuclear glucocorticoid receptor bindingNuclear receptor corepressor 2Homo sapiens (human)
histone deacetylase bindingNuclear receptor corepressor 2Homo sapiens (human)
nuclear retinoid X receptor bindingNuclear receptor corepressor 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (81)

Processvia Protein(s)Taxonomy
cytosolPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
plasma membranePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
phosphatidylinositol 3-kinase complex, class IAPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
phosphatidylinositol 3-kinase complexPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
cytoplasmPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
plasma membranePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoformHomo sapiens (human)
nucleusHistone deacetylase 3Homo sapiens (human)
nucleoplasmHistone deacetylase 3Homo sapiens (human)
cytoplasmHistone deacetylase 3Homo sapiens (human)
Golgi apparatusHistone deacetylase 3Homo sapiens (human)
cytosolHistone deacetylase 3Homo sapiens (human)
plasma membraneHistone deacetylase 3Homo sapiens (human)
mitotic spindleHistone deacetylase 3Homo sapiens (human)
histone deacetylase complexHistone deacetylase 3Homo sapiens (human)
transcription repressor complexHistone deacetylase 3Homo sapiens (human)
nucleusHistone deacetylase 3Homo sapiens (human)
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
nucleusPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
cytoplasmPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
cis-Golgi networkPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
cytosolPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
plasma membranePhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
cell-cell junctionPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol 3-kinase complex, class IAPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
membranePhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
perinuclear region of cytoplasmPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
perinuclear endoplasmic reticulum membranePhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
phosphatidylinositol 3-kinase complexPhosphatidylinositol 3-kinase regulatory subunit alphaHomo sapiens (human)
cytosolPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
phosphatidylinositol 3-kinase complex, class IAPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
intercalated discPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
lamellipodiumPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
perinuclear region of cytoplasmPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
phosphatidylinositol 3-kinase complexPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
phosphatidylinositol 3-kinase complex, class IBPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
plasma membranePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
cytoplasmPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoformHomo sapiens (human)
nucleusPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
nucleoplasmPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
nucleolusPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
cytosolPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
phosphatidylinositol 3-kinase complex, class IAPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
midbodyPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
intracellular membrane-bounded organellePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
plasma membranePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
cytoplasmPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
phosphatidylinositol 3-kinase complexPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoformHomo sapiens (human)
PML bodySerine/threonine-protein kinase mTORHomo sapiens (human)
lysosomal membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
cytosolSerine/threonine-protein kinase mTORHomo sapiens (human)
Golgi membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
nucleoplasmSerine/threonine-protein kinase mTORHomo sapiens (human)
cytoplasmSerine/threonine-protein kinase mTORHomo sapiens (human)
mitochondrial outer membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
lysosomeSerine/threonine-protein kinase mTORHomo sapiens (human)
lysosomal membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
endoplasmic reticulum membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
cytosolSerine/threonine-protein kinase mTORHomo sapiens (human)
endomembrane systemSerine/threonine-protein kinase mTORHomo sapiens (human)
membraneSerine/threonine-protein kinase mTORHomo sapiens (human)
dendriteSerine/threonine-protein kinase mTORHomo sapiens (human)
TORC1 complexSerine/threonine-protein kinase mTORHomo sapiens (human)
TORC2 complexSerine/threonine-protein kinase mTORHomo sapiens (human)
phagocytic vesicleSerine/threonine-protein kinase mTORHomo sapiens (human)
nuclear envelopeSerine/threonine-protein kinase mTORHomo sapiens (human)
nucleusSerine/threonine-protein kinase mTORHomo sapiens (human)
cytoplasmSerine/threonine-protein kinase mTORHomo sapiens (human)
cytoplasmPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
cytosolPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
plasma membranePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
phosphatidylinositol 3-kinase complex, class IAPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
membranePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
phosphatidylinositol 3-kinase complex, class IBPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
plasma membranePhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
cytoplasmPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Homo sapiens (human)
nucleusHistone deacetylase 4Homo sapiens (human)
nucleoplasmHistone deacetylase 4Homo sapiens (human)
cytoplasmHistone deacetylase 4Homo sapiens (human)
cytosolHistone deacetylase 4Homo sapiens (human)
nuclear speckHistone deacetylase 4Homo sapiens (human)
histone deacetylase complexHistone deacetylase 4Homo sapiens (human)
chromatinHistone deacetylase 4Homo sapiens (human)
transcription repressor complexHistone deacetylase 4Homo sapiens (human)
chromosome, telomeric regionDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
nucleusDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
nucleoplasmDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
nucleolusDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
cytosolDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
membraneDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
DNA-dependent protein kinase complexDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
chromatinDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
transcription regulator complexDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
DNA-dependent protein kinase-DNA ligase 4 complexDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
small-subunit processomeDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein-containing complexDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
protein-DNA complexDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
nonhomologous end joining complexDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
nucleusDNA-dependent protein kinase catalytic subunitHomo sapiens (human)
plasma membranePotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
cell surfacePotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
perinuclear region of cytoplasmPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
voltage-gated potassium channel complexPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
inward rectifier potassium channel complexPotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
plasma membranePotassium voltage-gated channel subfamily H member 2Homo sapiens (human)
nucleusHistone deacetylase 1Homo sapiens (human)
nucleoplasmHistone deacetylase 1Homo sapiens (human)
cytoplasmHistone deacetylase 1Homo sapiens (human)
cytosolHistone deacetylase 1Homo sapiens (human)
NuRD complexHistone deacetylase 1Homo sapiens (human)
neuronal cell bodyHistone deacetylase 1Homo sapiens (human)
Sin3-type complexHistone deacetylase 1Homo sapiens (human)
histone deacetylase complexHistone deacetylase 1Homo sapiens (human)
chromatinHistone deacetylase 1Homo sapiens (human)
heterochromatinHistone deacetylase 1Homo sapiens (human)
transcription repressor complexHistone deacetylase 1Homo sapiens (human)
protein-containing complexHistone deacetylase 1Homo sapiens (human)
nucleusHistone deacetylase 1Homo sapiens (human)
late endosomePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
autophagosomePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
cytosolPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
axonemePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
membranePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
midbodyPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phagocytic vesicle membranePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phosphatidylinositol 3-kinase complex, class IIIPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
autolysosomePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
peroxisomePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phosphatidylinositol 3-kinase complex, class III, type IIPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
endosomePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
membranePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phagophore assembly sitePhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
cytoplasmPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
phosphatidylinositol 3-kinase complex, class III, type IPhosphatidylinositol 3-kinase catalytic subunit type 3Homo sapiens (human)
nucleusHistone deacetylase 7Homo sapiens (human)
nucleoplasmHistone deacetylase 7Homo sapiens (human)
cytoplasmHistone deacetylase 7Homo sapiens (human)
cytosolHistone deacetylase 7Homo sapiens (human)
chromosome, telomeric regionHistone deacetylase 2Homo sapiens (human)
nucleusHistone deacetylase 2Homo sapiens (human)
nucleoplasmHistone deacetylase 2Homo sapiens (human)
cytoplasmHistone deacetylase 2Homo sapiens (human)
NuRD complexHistone deacetylase 2Homo sapiens (human)
Sin3-type complexHistone deacetylase 2Homo sapiens (human)
histone deacetylase complexHistone deacetylase 2Homo sapiens (human)
chromatinHistone deacetylase 2Homo sapiens (human)
protein-containing complexHistone deacetylase 2Homo sapiens (human)
ESC/E(Z) complexHistone deacetylase 2Homo sapiens (human)
nucleusHistone deacetylase 2Homo sapiens (human)
nucleusPolyamine deacetylase HDAC10Homo sapiens (human)
nucleoplasmPolyamine deacetylase HDAC10Homo sapiens (human)
cytoplasmPolyamine deacetylase HDAC10Homo sapiens (human)
cytosolPolyamine deacetylase HDAC10Homo sapiens (human)
intracellular membrane-bounded organellePolyamine deacetylase HDAC10Homo sapiens (human)
histone deacetylase complexPolyamine deacetylase HDAC10Homo sapiens (human)
nucleusHistone deacetylase 11 Homo sapiens (human)
plasma membraneHistone deacetylase 11 Homo sapiens (human)
histone deacetylase complexHistone deacetylase 11 Homo sapiens (human)
nuclear chromosomeHistone deacetylase 8Homo sapiens (human)
nucleusHistone deacetylase 8Homo sapiens (human)
nucleoplasmHistone deacetylase 8Homo sapiens (human)
cytoplasmHistone deacetylase 8Homo sapiens (human)
histone deacetylase complexHistone deacetylase 8Homo sapiens (human)
nucleusHistone deacetylase 8Homo sapiens (human)
nucleusHistone deacetylase 6Homo sapiens (human)
nucleoplasmHistone deacetylase 6Homo sapiens (human)
cytoplasmHistone deacetylase 6Homo sapiens (human)
multivesicular bodyHistone deacetylase 6Homo sapiens (human)
centrosomeHistone deacetylase 6Homo sapiens (human)
cytosolHistone deacetylase 6Homo sapiens (human)
microtubuleHistone deacetylase 6Homo sapiens (human)
caveolaHistone deacetylase 6Homo sapiens (human)
inclusion bodyHistone deacetylase 6Homo sapiens (human)
aggresomeHistone deacetylase 6Homo sapiens (human)
axonHistone deacetylase 6Homo sapiens (human)
dendriteHistone deacetylase 6Homo sapiens (human)
cell leading edgeHistone deacetylase 6Homo sapiens (human)
ciliary basal bodyHistone deacetylase 6Homo sapiens (human)
perikaryonHistone deacetylase 6Homo sapiens (human)
perinuclear region of cytoplasmHistone deacetylase 6Homo sapiens (human)
axon cytoplasmHistone deacetylase 6Homo sapiens (human)
histone deacetylase complexHistone deacetylase 6Homo sapiens (human)
microtubule associated complexHistone deacetylase 6Homo sapiens (human)
nucleusHistone deacetylase 9Homo sapiens (human)
nucleoplasmHistone deacetylase 9Homo sapiens (human)
cytoplasmHistone deacetylase 9Homo sapiens (human)
histone deacetylase complexHistone deacetylase 9Homo sapiens (human)
transcription regulator complexHistone deacetylase 9Homo sapiens (human)
histone methyltransferase complexHistone deacetylase 9Homo sapiens (human)
nucleusHistone deacetylase 5Homo sapiens (human)
nucleoplasmHistone deacetylase 5Homo sapiens (human)
cytoplasmHistone deacetylase 5Homo sapiens (human)
Golgi apparatusHistone deacetylase 5Homo sapiens (human)
cytosolHistone deacetylase 5Homo sapiens (human)
nuclear speckHistone deacetylase 5Homo sapiens (human)
histone deacetylase complexHistone deacetylase 5Homo sapiens (human)
nucleusNuclear receptor corepressor 2Homo sapiens (human)
nucleoplasmNuclear receptor corepressor 2Homo sapiens (human)
membraneNuclear receptor corepressor 2Homo sapiens (human)
nuclear matrixNuclear receptor corepressor 2Homo sapiens (human)
nuclear bodyNuclear receptor corepressor 2Homo sapiens (human)
chromatinNuclear receptor corepressor 2Homo sapiens (human)
transcription repressor complexNuclear receptor corepressor 2Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (214)

Assay IDTitleYearJournalArticle
AID1347412qHTS assay to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: Counter screen cell viability and HiBit confirmation2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1645848NCATS Kinetic Aqueous Solubility Profiling2019Bioorganic & medicinal chemistry, 07-15, Volume: 27, Issue:14
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347414qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: Secondary screen by immunofluorescence2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347415qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: tertiary screen by RT-qPCR2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1542182Inhibition of HDAC4 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1542179Inhibition of HDAC1 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1312863Inhibition of full length recombinant human N-terminal GST-tagged p110 alpha/untagged p85 alpha expressed in baculovirus infected insect Sf9 cells using PI:3PS as substrate incubated for 60 mins by ADP-Glo luminescence assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1702068Inhibition of C-terminal His-tagged human HDAC9 (604 to 1066 residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1507122Inhibition of recombinant full length human N-terminal GST-tagged PI3K p110alpha/untagged p85alpha expressed in baculovirus infected insect Sf9 cells by ADP-Glo luminescent assay2017European journal of medicinal chemistry, Aug-18, Volume: 136Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
AID1515911Antiproliferative activity against human SW1990 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1542188Inhibition of HDAC10 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1846232Inhibition of HDAC6 (unknown origin)2021European journal of medicinal chemistry, Apr-15, Volume: 216Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders.
AID1312856Inhibition of human recombinant HDAC5 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1702152Metabolic stability in human liver pooled microsomes assessed as half-life at 5 uM incubated upto 60 mins in presence of beta-NADPH by LC-MS analysis2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1702069Inhibition of N-terminal FLAG-tagged human HDAC10 (2 to 631 residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC substrate 3 measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1515849Inhibition of HDAC6 (unknown origin) using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1507123Inhibition of recombinant full length human N-terminal GST-tagged PI3K p110beta/untagged p85alpha expressed in baculovirus infected insect Sf9 cells by ADP-Glo luminescent assay2017European journal of medicinal chemistry, Aug-18, Volume: 136Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
AID1702070Inhibition of human full length HDAC11 expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1760301Inhibition of human PI3K alpha by ADP-Glo luminescent kinase assay2020European journal of medicinal chemistry, Dec-15, Volume: 208Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment.
AID1542192Inhibition of recombinant human full-length N-terminal GST-tagged p110delta/untagged full-length p85alpha expressed in baculovirus infected Sf9 cells using PIP2 as substrate by ADP-glo luminescence assay2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1542181Inhibition of HDAC3 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1312861Inhibition of full length human recombinant HDAC11 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence 2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1515841Inhibition of recombinant human PI3Kalpha using PIP2 as substrate incubated for 1 hr by kinase-glo assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1858642Inhibition of PI3K-beta (unknown origin) by ADP-Glo luminescent kinase assay2021European journal of medicinal chemistry, Jan-01, Volume: 209Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions.
AID1702067Inhibition of recombinant human full length C-terminal His-tagged HDAC8 expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1312868Inhibition of HDAC6 in human A2780S cells assessed as tubulin acetylation incubated for 6 hrs by cytoblot assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1312864Inhibition of recombinant human p110beta expressed in baculovirus infected insect Sf9 cells incubated for 1 hr by ADP-gloreagen assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1740004Inhibition of HDAC8 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1760303Inhibition of human PI3K delta by ADP-Glo luminescent kinase assay2020European journal of medicinal chemistry, Dec-15, Volume: 208Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment.
AID1250153Cytotoxicity against human Glioma cells (HF3013) after 72 hrs by CelltiterGlo assay2015ACS medicinal chemistry letters, Aug-13, Volume: 6, Issue:8
High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
AID1702078Inhibition of human PI3K2alpha incubated for 1 hr by ADP-Glo kinase assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1740001Inhibition of HDAC1 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1542184Inhibition of HDAC6 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1312855Inhibition of N-terminal GST/C-terminal His-tagged human recombinant HDAC4 (627 to 1084 residues) expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrat2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1515913Antiproliferative activity against human HGC27 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1702081Inhibition of human PIK3C3 incubated for 1 hr by ADP-Glo kinase assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1542189Inhibition of HDAC11 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1702131Inhibition of PI3K/AKT/mTOR signaling in human HepG2 cells assessed as S6 Ser240/244 phosphorylation level at 1 uM incubated for 4 hrs followed by stimulation with 50 ng/ml growth factor EGF for 15 mins by Western blot analysis (Rvb = 100 %)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1760304Inhibition of HDAC1 (unknown origin) by color-de-lys assay2020European journal of medicinal chemistry, Dec-15, Volume: 208Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment.
AID1702113Inhibition of HDAC in human HepG2 cells assessed as acetylation of histone H3 at K9 at 1 uM incubated for 4 hrs followed by stimulation with 100 ng/ml growth factor IGF1 for 15 mins by Western blot analysis (Rvb = 0.27 %)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1312857Inhibition of N-terminal GST-tagged human recombinant HDAC7 (518 to end residues) expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measu2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1542185Inhibition of HDAC7 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1542183Inhibition of HDAC5 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1312865Inhibition of His-tagged full length recombinant human p110gamma expressed in baculovirus expression system incubated for 1 hr by ADP-gloreagen assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1515854Inhibition of recombinant human His-tagged PIK3CD/PIK3R1 expressed in baculovirus expression system using PIP2 as substrate incubated for 1 hr by ADP-glo assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1702119Inhibition of PI3K/AKT/mTOR signaling in human HepG2 cells assessed as AKT S473 phosphorylation level at 1 uM incubated for 4 hrs followed by stimulation with 50 ng/ml growth factor EGF for 15 mins by Western blot analysis relative to control (Rvb = 100 %2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1740003Inhibition of HDAC3 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1702109Inhibition of HDAC6 in human HepG2 cells assessed as alpha-tubulin Lys40 acetylation level level at 1 uM incubated for 4 hrs followed by stimulation with 50 ng/ml growth factor EGF for 15 mins by Western blot analysis (Rvb = 0.16 %)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1515912Antiproliferative activity against human DU145 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515914Antiproliferative activity against human HepG2 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515904Antiproliferative activity against human MCF7 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1702107Inhibition of HDAC6 in human HepG2 cells assessed as alpha-tubulin Lys40 acetylation level at 1 uM incubated for 4 hrs followed by stimulation with 100 ng/ml growth factor IGF1 for 15 mins by Western blot analysis (Rvb = 0%)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1515907Antiproliferative activity against human U87 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515848Inhibition of recombinant human full length C-terminal His-tagged HDAC8 expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515853Inhibition of recombinant human PIK3CB using PIP2 as substrate incubated for 1 hr by ADP-glo assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1702052Inhibition of PI3K/AKT/mTOR signaling in human HepG2 cells assessed as AKT S473 phosphorylation level at 1 uM incubated for 4 hrs followed by stimulation with 100 ng/ml growth factor IGF1 for 15 mins by Western blot analysis (Rvb = 100 %)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1250148Cytotoxicity against human Glioma cells (HF2381) after 72 hrs by CelltiterGlo assay2015ACS medicinal chemistry letters, Aug-13, Volume: 6, Issue:8
High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
AID1507127Inhibition of HDAC6 (unknown origin) using Color de lys as substrate by HTS assay2017European journal of medicinal chemistry, Aug-18, Volume: 136Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
AID1702062Inhibition of recombinant human C-terminal His-tagged HDAC3 (1 to 428 end residues)/N-terminal GST-tagged recombinant human NCoR2 (395 to 489 residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC substrate 3 measured after 30 mins b2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1702156Inhibition of human ERG by fluorescence polarization assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1702077Inhibition of human mTOR2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1702079Inhibition of PI3K2beta (unknown origin) incubated for 1 hr by ADP-Glo kinase assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1702128Inhibition of PI3K/AKT/mTOR signaling in human HepG2 cells assessed as S6 Ser240/244 phosphorylation level at 1 uM incubated for 4 hrs followed by stimulation with 100 ng/ml growth factor IGF1 for 15 mins by Western blot analysis (Rvb = 100 %)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1702076Inhibition of human PI3Kgamma incubated for 1 hr by ADP-Glo kinase assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1250147Cytotoxicity against human Glioma cells (HF2303) after 72 hrs by CelltiterGlo assay2015ACS medicinal chemistry letters, Aug-13, Volume: 6, Issue:8
High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
AID1515851Inhibition of recombinant human full length HDAC2 expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1312849Cytotoxicity against human MV4-11 cells assessed as growth inhibition after 24 hrs by MTT assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1312859Inhibition of full length human recombinant HDAC6 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence a2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1250150Cytotoxicity against human Glioma cells (HF2790) after 72 hrs by CelltiterGlo assay2015ACS medicinal chemistry letters, Aug-13, Volume: 6, Issue:8
High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
AID1846227Inhibition of HDAC1 (unknown origin)2021European journal of medicinal chemistry, Apr-15, Volume: 216Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders.
AID1760302Inhibition of human PI3K beta by ADP-Glo luminescent kinase assay2020European journal of medicinal chemistry, Dec-15, Volume: 208Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment.
AID1515916Antiproliferative activity against human Bel7402 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1542186Inhibition of HDAC8 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1515839Antiproliferative activity against human HCT116 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515850Inhibition of recombinant human full length HDAC4 expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1312862Inhibition of human recombinant HDAC1 (482 residues) by Color-de-Lys assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1312858Inhibition of C-terminal His-tagged human recombinant HDAC9 (604 to 1066 residues) expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition meas2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1702125Inhibition of PI3K/AKT/mTOR signaling in human HepG2 cells assessed as p70S6K Thr389 phosphorylation level at 1 uM incubated for 4 hrs followed by stimulation with 50 ng/ml growth factor EGF for 15 mins by Western blot analysis (Rvb = 100 %)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1312851Cytotoxicity against human HCT116 cells assessed as growth inhibition after 24 hrs by MTT assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1515906Antiproliferative activity against human HCT8 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515902Antiproliferative activity against human THP1 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1606021Antiproliferative activity against human MV4-11 cells assessed as reduction in cell viability at 25 to 50 nM after 72 hrs by tryphan blue assay2020Journal of medicinal chemistry, 04-23, Volume: 63, Issue:8
Design, Synthesis, and Biological Evaluation of Quinazolin-4-one-Based Hydroxamic Acids as Dual PI3K/HDAC Inhibitors.
AID1702071Inhibition of human PI3Kalpha incubated for 1 hr by ADP-Glo kinase assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1515915Antiproliferative activity against human HuH7 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1740007Inhibition of HDAC7 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1312852Inhibition of full length human recombinant HDAC2 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence a2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1846229Inhibition of HDAC3 (unknown origin)2021European journal of medicinal chemistry, Apr-15, Volume: 216Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders.
AID1858640Inhibition of HDAC1 derived from human HeLa nuclear extract using COLOR DE LYS substrate by colorimetric assay2021European journal of medicinal chemistry, Jan-01, Volume: 209Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions.
AID1846228Inhibition of HDAC2 (unknown origin)2021European journal of medicinal chemistry, Apr-15, Volume: 216Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders.
AID1312854Inhibition of full length C-terminal His-tagged human recombinant HDAC8 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1702153Metabolic stability in mouse liver microsomes assessed as half-life at 5 uM incubated upto 60 mins in presence of beta-NADPH by LC-MS analysis2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1312867Inhibition of HDAC in human HeLa cell nuclear extract using Ac-Leu-Gly-Lys (Ac)-AMC as substrate after 30 mins by fluorescence assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1515840Inhibition of recombinant C-terminal His/FLAG-tagged HDAC1 (unknown origin) expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515855Inhibition of recombinant human N-terminal FLAG-tagged mTOR (1362 to end amino acids) using ULight-4E-BP1 as substrate incubated for 1 hr by LANCE Ultra assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515903Antiproliferative activity against human K562 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1702155n-Octanol/water distribution coefficient, logD of the compound at pH 7.42018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1542187Inhibition of HDAC9 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1740009Inhibition of HDAC6 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1507128Inhibition of HDAC2 (unknown origin) using Color de lys as substrate by HTS assay2017European journal of medicinal chemistry, Aug-18, Volume: 136Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
AID1702065Inhibition of recombinant human N-terminal GST-tagged HDAC6 expressed in baculovirus infected Sf9 cells using fluorogenic HDAC substrate 3 measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1515847Inhibition of recombinant human full length HDAC11 expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1740002Inhibition of HDAC2 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1312860Inhibition of human recombinant HDAC10 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1858641Inhibition of PI3K-alpha (unknown origin) by ADP-Glo luminescent kinase assay2021European journal of medicinal chemistry, Jan-01, Volume: 209Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions.
AID1312866Inhibition of N-terminal His6-tagged recombinant full-length human p110delta/untagged recombinant full length human p85alpha expressed in baculovirus infected insect Sf9 cells incubated for 2 hrs by kinase-glo assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1702116Inhibition of HDAC in human HepG2 cells assessed as acetylation of histone H3 at K9 at 1 uM incubated for 4 hrs followed by stimulation with 50 ng/ml growth factor EGF for 15 mins by Western blot analysis (Rvb = 2.1 %)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1312850Cytotoxicity against human A2780S cells assessed as growth inhibition after 24 hrs by MTT assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1702063Inhibition of recombinant human N-terminal GST-tagged and C-terminal His-tagged HDAC4 (627 to 1084 end residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1858643Inhibition of PI3K-gamma (unknown origin) by ADP-Glo luminescent kinase assay2021European journal of medicinal chemistry, Jan-01, Volume: 209Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions.
AID1542190Inhibition of recombinant human full-length N-terminal GST-tagged p110alpha/untagged full-length p85alpha expressed in baculovirus infected Sf9 cells using PIP2 as substrate by ADP-glo luminescence assay2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1702066Inhibition of N-terminal GST-tagged human HDAC7 (518 to end residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1507124Inhibition of recombinant full length human N-terminal GST-tagged PI3K p110delta/untagged p85alpha expressed in baculovirus infected insect Sf9 cells by ADP-Glo luminescent assay2017European journal of medicinal chemistry, Aug-18, Volume: 136Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
AID1542191Inhibition of recombinant human full-length N-terminal GST-tagged p110beta/untagged full-length p85alpha expressed in baculovirus infected Sf9 cells using PIP2 as substrate by ADP-glo luminescence assay2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1702064Inhibition of HDAC5 (unknown origin) using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1606010Cytotoxicity against mouse NIH/3T3 assessed as reduction in cell viability at 50 nM measured after 96 hrs2020Journal of medicinal chemistry, 04-23, Volume: 63, Issue:8
Design, Synthesis, and Biological Evaluation of Quinazolin-4-one-Based Hydroxamic Acids as Dual PI3K/HDAC Inhibitors.
AID1542180Inhibition of HDAC2 (unknown origin)2019Journal of medicinal chemistry, 04-11, Volume: 62, Issue:7
Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
AID1846235Inhibition of HDAC10 (unknown origin)2021European journal of medicinal chemistry, Apr-15, Volume: 216Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders.
AID1312853Inhibition of full length C-terminal His-tagged human recombinant HDAC3/NCOR2 (395 to 489 residues) expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substr2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1606019Induction of necrosis in human HEK293 at 25 to 50 nM after 72 hrs by propidium iodide/Annexin-V staining based flow cytometry2020Journal of medicinal chemistry, 04-23, Volume: 63, Issue:8
Design, Synthesis, and Biological Evaluation of Quinazolin-4-one-Based Hydroxamic Acids as Dual PI3K/HDAC Inhibitors.
AID1740006Inhibition of HDAC5 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1702072Inhibition of human PI3Kbeta incubated for 1 hr by ADP-Glo kinase assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1740011Inhibition of HDAC11 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1312869Inhibition of HDAC1/2/3 in human A2780S cells assessed as histone H3 acetylation incubated for 6 hrs by cytoblot assay2016Journal of medicinal chemistry, 06-09, Volume: 59, Issue:11
Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
AID1846236Inhibition of HDAC11 (unknown origin)2021European journal of medicinal chemistry, Apr-15, Volume: 216Histone deacetylase 2: A potential therapeutic target for cancer and neurodegenerative disorders.
AID1250149Cytotoxicity against human Glioma cells (HF2476) after 72 hrs by CelltiterGlo assay2015ACS medicinal chemistry letters, Aug-13, Volume: 6, Issue:8
High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
AID1515909Antiproliferative activity against human NCI-H1299 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1515910Antiproliferative activity against human Capan2 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1702099Inhibition of human PI4kbeta incubated for 1 hr by ADP-Glo kinase assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1740005Inhibition of HDAC4 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1507129Inhibition of HDAC10 (unknown origin) using Color de lys as substrate by HTS assay2017European journal of medicinal chemistry, Aug-18, Volume: 136Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
AID1250152Cytotoxicity against human Glioma cells (HF2885) after 72 hrs by CelltiterGlo assay2015ACS medicinal chemistry letters, Aug-13, Volume: 6, Issue:8
High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
AID1702054Inhibition of human PI3Kdelta incubated for 1 hr by ADP-Glo kinase assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1515908Antiproliferative activity against human NCI-H460 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1702122Inhibition of PI3K/AKT/mTOR signaling in human HepG2 cells assessed as p70S6K Thr389 phosphorylation level at 1 uM incubated for 4 hrs followed by stimulation with 100 ng/ml growth factor IGF1 for 15 mins by Western blot analysis (Rvb = 100 %)2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1515852Inhibition of recombinant human His-tagged PIK3CG expressed in baculovirus expression system using PIP2 as substrate incubated for 1 hr by ADP-glo assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1702060Inhibition of full length recombinant human C-terminal FLAG/His-tagged HDAC1 (1 to 482 end residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC substrate 3 measured after 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1515905Antiproliferative activity against human MDA-MB-453 cells after 96 hrs by MTT assay2019Journal of medicinal chemistry, 08-08, Volume: 62, Issue:15
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
AID1250151Cytotoxicity against human Glioma cells (HF2876) after 72 hrs by CelltiterGlo assay2015ACS medicinal chemistry letters, Aug-13, Volume: 6, Issue:8
High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
AID1740008Inhibition of HDAC9 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1740010Inhibition of HDAC10 (unknown origin) by color de Lys colorimetric assay2020Journal of medicinal chemistry, 11-12, Volume: 63, Issue:21
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
AID1702154Metabolic stability in rat liver microsomes assessed as half-life at 5 uM incubated upto 60 mins in presence of beta-NADPH by LC-MS analysis2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1702080Inhibition of human DNA-PK2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1702061Inhibition of HDAC2 (unknown origin) using fluorogenic HDAC substrate 3 incubated for 30 mins by fluorescence based assay2018Journal of medicinal chemistry, 02-22, Volume: 61, Issue:4
Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
AID1347110qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for A673 cells)2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347118qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347138qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Orthogonal 3D caspase screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347117qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347136qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Orthogonal 3D viability screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347127qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508591NCATS Rat Liver Microsome Stability Profiling2020Scientific reports, 11-26, Volume: 10, Issue:1
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
AID1508612NCATS Parallel Artificial Membrane Permeability Assay (PAMPA) Profiling2017Bioorganic & medicinal chemistry, 02-01, Volume: 25, Issue:3
Highly predictive and interpretable models for PAMPA permeability.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347128qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347126qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347129qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347115qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347140qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Orthogonal 3D viability screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347109qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347121qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347137qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Orthogonal 3D viability screen for Daoy cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347123qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347135qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Orthogonal 3D viability screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347124qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347112qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347111qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347116qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347122qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347141qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Orthogonal 3D viability screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347119qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347139qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Orthogonal 3D viability screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347113qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347125qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347114qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1345778Human phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (Phosphatidylinositol kinases)2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1346082Human histone deacetylase 2 (3.5.1.- Histone deacetylases (HDACs))2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1345786Human phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (Phosphatidylinositol kinases)2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1346134Human histone deacetylase 1 (3.5.1.- Histone deacetylases (HDACs))2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1345748Human phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta (Phosphatidylinositol kinases)2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1346048Human histone deacetylase 10 (3.5.1.- Histone deacetylases (HDACs))2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1346077Human histone deacetylase 3 (3.5.1.- Histone deacetylases (HDACs))2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1345749Human phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (Phosphatidylinositol kinases)2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1346080Human histone deacetylase 11 (3.5.1.- Histone deacetylases (HDACs))2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1346032Human histone deacetylase 6 (3.5.1.- Histone deacetylases (HDACs))2012Clinical cancer research : an official journal of the American Association for Cancer Research, Aug-01, Volume: 18, Issue:15
Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling.
AID1745854NCATS anti-infectives library activity on HEK293 viability as a counter-qHTS vs the C. elegans viability qHTS2023Disease models & mechanisms, 03-01, Volume: 16, Issue:3
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
AID1745855NCATS anti-infectives library activity on the primary C. elegans qHTS viability assay2023Disease models & mechanisms, 03-01, Volume: 16, Issue:3
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (56)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's25 (44.64)24.3611
2020's31 (55.36)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 34.89

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index34.89 (24.57)
Research Supply Index4.11 (2.92)
Research Growth Index4.65 (4.65)
Search Engine Demand Index45.55 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (34.89)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials3 (5.26%)5.53%
Reviews9 (15.79%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other45 (78.95%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]