Page last updated: 2024-12-06

cephalotaxine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cephalotaxine is a naturally occurring alkaloid isolated from the Chinese medicinal plant Cephalotaxus harringtonia. It exhibits a wide range of pharmacological activities, including anti-cancer, anti-inflammatory, and neuroprotective effects. Its synthesis involves complex organic chemistry techniques, often relying on multi-step reactions. Researchers are investigating its potential therapeutic uses, particularly for cancer treatment, and studying its mechanism of action to better understand its biological effects.'

FloraRankFlora DefinitionFamilyFamily Definition
CephalotaxusgenusA plant genus of the family TAXACEAE, order Pinales, class Pinopsida, division TRACHEOPHYTA. Members contain homoharringtonine.[MeSH]TaxaceaeA plant family of the order Pinales, class Pinopsida, division TRACHEOPHYTA.[MeSH]

Cross-References

ID SourceID
PubMed CID65305
CHEMBL ID276462
CHEBI ID3540
SCHEMBL ID142776
MeSH IDM0041843

Synonyms (44)

Synonym
(1s,3ar,14bs)-2-methoxy-1,5,6,8,9,14b-hexahydro-4h-cyclopenta[a][1,3]dioxolo[4,5-h]pyrrolo[2,1-b][3]benzazepin-1-ol
CHEBI:3540 ,
(-)-cephalotaxine
nsc-128487
nsc-245454
SMP1_000194
24316-19-6
cephalotaxine ,
ZINC19795976 ,
NCGC00160146-01
CHEMBL276462
AKOS015920129
S3912
nsc 245455
nsc 245454
84mi6oyn4z ,
nsc 128487
unii-84mi6oyn4z
cephalotaxine [mi]
omacetaxine [who-dd]
omacetaxine
omacetaxine [vandf]
cephalotaxine [who-dd]
(1s-(1.alpha.,3as*,14b.beta.))-1,5,6,8,9,14b-hexahydro-2-methoxy-4h-cyclopenta(a)(1,3)dioxolo(4,5-h)pyrrolo(2,1-b)(3)benzazepin-1-ol
HY-N0838
SCHEMBL142776
AC-33980
cephalotaxlen
bdbm50482420
(2s,3s,6r)-4-methoxy-16,18-dioxa-10-azapentacyclo[11.7.0.02,6.06,10.015,19]icosa-1(20),4,13,15(19)-tetraen-3-ol
mfcd21090383
(-) cephalotaxine
YMNCVRSYJBNGLD-KURKYZTESA-N
(1s,3ar,14bs)-2-methoxy-1,5,6,8,9,14b-hexahydro-4h-[1,3]dioxolo[4',5':4,5]benzo[1,2-d]cyclopenta[b]pyrrolo[1,2-a]azepin-1-ol
AS-35331
Q27106125
CCG-267645
A877966
NCGC00160146-02
C3641
(1s,3ar,14bs)-2-methoxy-1,5,6,8,9,14b-hexahydro-4h-cyclopenta(a)(1,3)dioxolo(4,5-h)pyrrolo(2,1-b)(3)benzazepin-1-ol
(1s-(1alpha,3as*,14bbeta))-1,5,6,8,9,14b-hexahydro-2-methoxy-4h-cyclopenta(a)(1,3)dioxolo(4,5-h)pyrrolo(2,1-b)(3)benzazepin-1-ol
cephalotaxine (8ci)
dtxcid4028206

Research Excerpts

Dosage Studied

ExcerptRelevanceReference
" Dose-response experiments in primary cells confirmed pathway selectivity, but importantly also revealed differential inhibition of cell types and new druggability trends across multiple compounds."( High-content single-cell drug screening with phosphospecific flow cytometry.
Clutter, MR; Crane, JM; Krutzik, PO; Nolan, GP, 2008
)
0.35
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (7)

ClassDescription
benzazepine alkaloid
benzazepine alkaloid fundamental parent
organic heteropentacyclic compound
enol etherEthers ROR' where R has a double bond adjacent to the oxygen of the ether linkage.
cyclic acetalAn acetal in the molecule of which the acetal carbon and one or both oxygen atoms thereon are members of a ring.
secondary alcoholA secondary alcohol is a compound in which a hydroxy group, -OH, is attached to a saturated carbon atom which has two other carbon atoms attached to it.
tertiary amino compoundA compound formally derived from ammonia by replacing three hydrogen atoms by organyl groups.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (4)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Mitogen-activated protein kinase 13Homo sapiens (human)IC50 (µMol)0.20000.00070.45956.3000AID495063
Mitogen-activated protein kinase 12Homo sapiens (human)IC50 (µMol)0.20000.00070.47286.3000AID495063
Mitogen-activated protein kinase 11Homo sapiens (human)IC50 (µMol)0.20000.00070.47546.3000AID495063
Mitogen-activated protein kinase 14Homo sapiens (human)IC50 (µMol)0.20000.00010.72667.8000AID495063
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (83)

Processvia Protein(s)Taxonomy
response to osmotic stressMitogen-activated protein kinase 13Homo sapiens (human)
peptidyl-serine phosphorylationMitogen-activated protein kinase 13Homo sapiens (human)
positive regulation of interleukin-6 productionMitogen-activated protein kinase 13Homo sapiens (human)
cellular response to UVMitogen-activated protein kinase 13Homo sapiens (human)
positive regulation of inflammatory responseMitogen-activated protein kinase 13Homo sapiens (human)
stress-activated MAPK cascadeMitogen-activated protein kinase 13Homo sapiens (human)
cellular response to hydrogen peroxideMitogen-activated protein kinase 13Homo sapiens (human)
cellular response to interleukin-1Mitogen-activated protein kinase 13Homo sapiens (human)
cellular response to sorbitolMitogen-activated protein kinase 13Homo sapiens (human)
cellular response to anisomycinMitogen-activated protein kinase 13Homo sapiens (human)
cellular response to sodium arseniteMitogen-activated protein kinase 13Homo sapiens (human)
intracellular signal transductionMitogen-activated protein kinase 13Homo sapiens (human)
MAPK cascadeMitogen-activated protein kinase 12Homo sapiens (human)
signal transductionMitogen-activated protein kinase 12Homo sapiens (human)
muscle organ developmentMitogen-activated protein kinase 12Homo sapiens (human)
positive regulation of peptidase activityMitogen-activated protein kinase 12Homo sapiens (human)
peptidyl-serine phosphorylationMitogen-activated protein kinase 12Homo sapiens (human)
signal transduction in response to DNA damageMitogen-activated protein kinase 12Homo sapiens (human)
myoblast differentiationMitogen-activated protein kinase 12Homo sapiens (human)
negative regulation of cell cycleMitogen-activated protein kinase 12Homo sapiens (human)
positive regulation of muscle cell differentiationMitogen-activated protein kinase 12Homo sapiens (human)
regulation of cell cycleMitogen-activated protein kinase 12Homo sapiens (human)
intracellular signal transductionMitogen-activated protein kinase 12Homo sapiens (human)
positive regulation of erythrocyte differentiationMitogen-activated protein kinase 11Homo sapiens (human)
osteoblast differentiationMitogen-activated protein kinase 11Homo sapiens (human)
positive regulation of gene expressionMitogen-activated protein kinase 11Homo sapiens (human)
stress-activated protein kinase signaling cascadeMitogen-activated protein kinase 11Homo sapiens (human)
positive regulation of interleukin-12 productionMitogen-activated protein kinase 11Homo sapiens (human)
p38MAPK cascadeMitogen-activated protein kinase 11Homo sapiens (human)
positive regulation of muscle cell differentiationMitogen-activated protein kinase 11Homo sapiens (human)
stress-activated MAPK cascadeMitogen-activated protein kinase 11Homo sapiens (human)
cardiac muscle cell proliferationMitogen-activated protein kinase 11Homo sapiens (human)
negative regulation of cardiac muscle cell proliferationMitogen-activated protein kinase 11Homo sapiens (human)
bone developmentMitogen-activated protein kinase 11Homo sapiens (human)
cellular response to interleukin-1Mitogen-activated protein kinase 11Homo sapiens (human)
cellular response to UV-BMitogen-activated protein kinase 11Homo sapiens (human)
cellular senescenceMitogen-activated protein kinase 11Homo sapiens (human)
cellular response to virusMitogen-activated protein kinase 11Homo sapiens (human)
intracellular signal transductionMitogen-activated protein kinase 11Homo sapiens (human)
positive regulation of blood vessel endothelial cell migrationMitogen-activated protein kinase 14Homo sapiens (human)
cellular response to lipopolysaccharideMitogen-activated protein kinase 14Homo sapiens (human)
DNA damage checkpoint signalingMitogen-activated protein kinase 14Homo sapiens (human)
cell morphogenesisMitogen-activated protein kinase 14Homo sapiens (human)
cartilage condensationMitogen-activated protein kinase 14Homo sapiens (human)
angiogenesisMitogen-activated protein kinase 14Homo sapiens (human)
osteoblast differentiationMitogen-activated protein kinase 14Homo sapiens (human)
placenta developmentMitogen-activated protein kinase 14Homo sapiens (human)
response to dietary excessMitogen-activated protein kinase 14Homo sapiens (human)
chondrocyte differentiationMitogen-activated protein kinase 14Homo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusMitogen-activated protein kinase 14Homo sapiens (human)
glucose metabolic processMitogen-activated protein kinase 14Homo sapiens (human)
regulation of transcription by RNA polymerase IIMitogen-activated protein kinase 14Homo sapiens (human)
transcription by RNA polymerase IIMitogen-activated protein kinase 14Homo sapiens (human)
apoptotic processMitogen-activated protein kinase 14Homo sapiens (human)
chemotaxisMitogen-activated protein kinase 14Homo sapiens (human)
signal transductionMitogen-activated protein kinase 14Homo sapiens (human)
cell surface receptor signaling pathwayMitogen-activated protein kinase 14Homo sapiens (human)
cell surface receptor protein serine/threonine kinase signaling pathwayMitogen-activated protein kinase 14Homo sapiens (human)
skeletal muscle tissue developmentMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of gene expressionMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of myotube differentiationMitogen-activated protein kinase 14Homo sapiens (human)
peptidyl-serine phosphorylationMitogen-activated protein kinase 14Homo sapiens (human)
fatty acid oxidationMitogen-activated protein kinase 14Homo sapiens (human)
platelet activationMitogen-activated protein kinase 14Homo sapiens (human)
regulation of ossificationMitogen-activated protein kinase 14Homo sapiens (human)
osteoclast differentiationMitogen-activated protein kinase 14Homo sapiens (human)
stress-activated protein kinase signaling cascadeMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of cyclase activityMitogen-activated protein kinase 14Homo sapiens (human)
lipopolysaccharide-mediated signaling pathwayMitogen-activated protein kinase 14Homo sapiens (human)
response to muramyl dipeptideMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of interleukin-12 productionMitogen-activated protein kinase 14Homo sapiens (human)
response to insulinMitogen-activated protein kinase 14Homo sapiens (human)
negative regulation of hippo signalingMitogen-activated protein kinase 14Homo sapiens (human)
intracellular signal transductionMitogen-activated protein kinase 14Homo sapiens (human)
cellular response to vascular endothelial growth factor stimulusMitogen-activated protein kinase 14Homo sapiens (human)
response to muscle stretchMitogen-activated protein kinase 14Homo sapiens (human)
p38MAPK cascadeMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of protein import into nucleusMitogen-activated protein kinase 14Homo sapiens (human)
signal transduction in response to DNA damageMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of erythrocyte differentiationMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of myoblast differentiationMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIMitogen-activated protein kinase 14Homo sapiens (human)
glucose importMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of glucose importMitogen-activated protein kinase 14Homo sapiens (human)
vascular endothelial growth factor receptor signaling pathwayMitogen-activated protein kinase 14Homo sapiens (human)
stem cell differentiationMitogen-activated protein kinase 14Homo sapiens (human)
striated muscle cell differentiationMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of muscle cell differentiationMitogen-activated protein kinase 14Homo sapiens (human)
stress-activated MAPK cascadeMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of cardiac muscle cell proliferationMitogen-activated protein kinase 14Homo sapiens (human)
bone developmentMitogen-activated protein kinase 14Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationMitogen-activated protein kinase 14Homo sapiens (human)
cellular response to lipoteichoic acidMitogen-activated protein kinase 14Homo sapiens (human)
cellular response to tumor necrosis factorMitogen-activated protein kinase 14Homo sapiens (human)
cellular response to ionizing radiationMitogen-activated protein kinase 14Homo sapiens (human)
cellular response to UV-BMitogen-activated protein kinase 14Homo sapiens (human)
negative regulation of canonical Wnt signaling pathwayMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of brown fat cell differentiationMitogen-activated protein kinase 14Homo sapiens (human)
cellular senescenceMitogen-activated protein kinase 14Homo sapiens (human)
stress-induced premature senescenceMitogen-activated protein kinase 14Homo sapiens (human)
cellular response to virusMitogen-activated protein kinase 14Homo sapiens (human)
regulation of synaptic membrane adhesionMitogen-activated protein kinase 14Homo sapiens (human)
regulation of cytokine production involved in inflammatory responseMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of myoblast fusionMitogen-activated protein kinase 14Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processMitogen-activated protein kinase 14Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (11)

Processvia Protein(s)Taxonomy
protein serine/threonine kinase activityMitogen-activated protein kinase 13Homo sapiens (human)
MAP kinase activityMitogen-activated protein kinase 13Homo sapiens (human)
protein bindingMitogen-activated protein kinase 13Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 13Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 13Homo sapiens (human)
magnesium ion bindingMitogen-activated protein kinase 12Homo sapiens (human)
protein serine/threonine kinase activityMitogen-activated protein kinase 12Homo sapiens (human)
MAP kinase activityMitogen-activated protein kinase 12Homo sapiens (human)
protein bindingMitogen-activated protein kinase 12Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 12Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 12Homo sapiens (human)
protein serine/threonine kinase activityMitogen-activated protein kinase 11Homo sapiens (human)
MAP kinase activityMitogen-activated protein kinase 11Homo sapiens (human)
protein bindingMitogen-activated protein kinase 11Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 11Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 11Homo sapiens (human)
protein serine/threonine kinase activityMitogen-activated protein kinase 14Homo sapiens (human)
MAP kinase activityMitogen-activated protein kinase 14Homo sapiens (human)
MAP kinase kinase activityMitogen-activated protein kinase 14Homo sapiens (human)
protein bindingMitogen-activated protein kinase 14Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 14Homo sapiens (human)
enzyme bindingMitogen-activated protein kinase 14Homo sapiens (human)
protein phosphatase bindingMitogen-activated protein kinase 14Homo sapiens (human)
mitogen-activated protein kinase p38 bindingMitogen-activated protein kinase 14Homo sapiens (human)
NFAT protein bindingMitogen-activated protein kinase 14Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 14Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (11)

Processvia Protein(s)Taxonomy
cytosolMitogen-activated protein kinase 13Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 13Homo sapiens (human)
nucleusMitogen-activated protein kinase 13Homo sapiens (human)
nucleoplasmMitogen-activated protein kinase 12Homo sapiens (human)
mitochondrionMitogen-activated protein kinase 12Homo sapiens (human)
cytosolMitogen-activated protein kinase 12Homo sapiens (human)
nucleusMitogen-activated protein kinase 12Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 12Homo sapiens (human)
nucleoplasmMitogen-activated protein kinase 11Homo sapiens (human)
cytosolMitogen-activated protein kinase 11Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 11Homo sapiens (human)
nucleusMitogen-activated protein kinase 11Homo sapiens (human)
cytosolMitogen-activated protein kinase 14Homo sapiens (human)
spindle poleMitogen-activated protein kinase 14Homo sapiens (human)
extracellular regionMitogen-activated protein kinase 14Homo sapiens (human)
nucleusMitogen-activated protein kinase 14Homo sapiens (human)
nucleoplasmMitogen-activated protein kinase 14Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 14Homo sapiens (human)
mitochondrionMitogen-activated protein kinase 14Homo sapiens (human)
cytosolMitogen-activated protein kinase 14Homo sapiens (human)
nuclear speckMitogen-activated protein kinase 14Homo sapiens (human)
secretory granule lumenMitogen-activated protein kinase 14Homo sapiens (human)
glutamatergic synapseMitogen-activated protein kinase 14Homo sapiens (human)
ficolin-1-rich granule lumenMitogen-activated protein kinase 14Homo sapiens (human)
nucleusMitogen-activated protein kinase 14Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 14Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (14)

Assay IDTitleYearJournalArticle
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1745854NCATS anti-infectives library activity on HEK293 viability as a counter-qHTS vs the C. elegans viability qHTS2023Disease models & mechanisms, 03-01, Volume: 16, Issue:3
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
AID1745855NCATS anti-infectives library activity on the primary C. elegans qHTS viability assay2023Disease models & mechanisms, 03-01, Volume: 16, Issue:3
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
AID495064Inhibition of JAK-mediated GM-CSF-induced Stat5 phosphorylation in human U937 cells by Phospho-Flow cytometry at 20 uM2008Nature chemical biology, Feb, Volume: 4, Issue:2
High-content single-cell drug screening with phosphospecific flow cytometry.
AID52057The concentration of compound required for 50% inhibition of protein synthesis in cell-free lysates1995Journal of medicinal chemistry, Mar-31, Volume: 38, Issue:7
Cross-validated R2-guided region selection for comparative molecular field analysis: a simple method to achieve consistent results.
AID977602Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID495065Inhibition of JAK-mediated interferon-gamma-induced Stat1 phosphorylation in human U937 cells by Phospho-Flow cytometry at 20 uM2008Nature chemical biology, Feb, Volume: 4, Issue:2
High-content single-cell drug screening with phosphospecific flow cytometry.
AID1505078Antiproliferative activity against human HL60 cells after 62 hrs by MTS assay2018Journal of natural products, 01-26, Volume: 81, Issue:1
Sodium-Periodate-Mediated Harringtonine Derivatives and Their Antiproliferative Activity against HL-60 Acute Leukemia Cells.
AID977599Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM2013Molecular pharmacology, Jun, Volume: 83, Issue:6
Structure-based identification of OATP1B1/3 inhibitors.
AID495063Inhibition of anisomycin-induced p38 phosphorylation in human U937 cells by Phospho-Flow cytometry2008Nature chemical biology, Feb, Volume: 4, Issue:2
High-content single-cell drug screening with phosphospecific flow cytometry.
AID495066Inhibition of anisomycin-induced p38 phosphorylation in human U937 cells by Phospho-Flow cytometry at 20 uM2008Nature chemical biology, Feb, Volume: 4, Issue:2
High-content single-cell drug screening with phosphospecific flow cytometry.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (7)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's1 (14.29)18.2507
2000's1 (14.29)29.6817
2010's2 (28.57)24.3611
2020's3 (42.86)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 32.65

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index32.65 (24.57)
Research Supply Index2.08 (2.92)
Research Growth Index5.06 (4.65)
Search Engine Demand Index39.34 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (32.65)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other7 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]