Page last updated: 2024-12-06

phosphotyrosine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

Phosphotyrosine (pTyr) is a post-translational modification of tyrosine residues in proteins. It is formed by the phosphorylation of tyrosine residues by protein kinases, a crucial step in signal transduction pathways. The presence of pTyr acts as a switch, regulating protein-protein interactions, enzyme activity, and cellular processes like cell growth, differentiation, and apoptosis. pTyr is a key target for research due to its central role in signaling pathways and its involvement in various diseases, including cancer and autoimmune disorders. Studying pTyr helps in understanding the mechanisms underlying cellular signaling and disease pathogenesis, paving the way for the development of novel therapeutic strategies.'

Phosphotyrosine: An amino acid that occurs in endogenous proteins. Tyrosine phosphorylation and dephosphorylation plays a role in cellular signal transduction and possibly in cell growth control and carcinogenesis. [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

O(4)-phospho-L-tyrosine : A non-proteinogenic L-alpha-amino acid that is L-tyrosine phosphorylated at the phenolic hydroxy group. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID30819
CHEMBL ID286939
CHEBI ID37788
SCHEMBL ID1152
MeSH IDM0028374

Synonyms (55)

Synonym
(2s)-2-amino-3-[4-(phosphonooxy)phenyl]propanoic acid
phosphotyrosine (py)
bdbm22597
l-3-(4-hydroxyphenyl)alanine 4'-phosphate
phospho-l-tyrosine
l-tyrosine-o-phosphate
l-tyrosine, dihydrogen phosphate (ester)
o-phosphotyrosine
l-tyrosine, o-phosphono-
tyrosine, phosphate (6ci)
tyrosine o-phosphate
l-tyrosine, dihydrogen phosphate (ester) (9ci)
tyrosine, di-h phosphate (7ci)
tyrosine, dihydrogen phosphate (ester), l- (8ci)
o-phospho-l-tyrosine
l-phosphotyrosine
C06501
phosphonotyrosine
21820-51-9
phosphotyrosine
DB01962
CHEBI:37788 ,
o(4)-phosphono-l-tyrosine
o(4)-phospho-l-tyrosine
o-phosphono-l-tyrosine
CHEMBL286939
P0959
(2s)-2-amino-3-(4-phosphonooxyphenyl)propanoic acid
2r86c98kdx ,
unii-2r86c98kdx
AKOS015856720
AKOS015894042
SCHEMBL1152
tyrosine phosphate
DCWXELXMIBXGTH-QMMMGPOBSA-N
ptyr
(s)-2-amino-3-(4-phosphonooxy-phenyl)-propionic-acid
J208.898C ,
DTXSID00176234
h-tyr(po3h2)-oh
phosphoric acid 4-((s)-2-carboxy-2-aminoethyl)phenyl ester
l-tyrosine-o-phosphoric acid
tyrosine, dihydrogen phosphate (ester), l-
o-phospho-l-tyrosine (h-l-tyr(po3h2)-oh)
mfcd00002603
J-014304
h-tyr(po)-oh
(s)-2-amino-3-(4-(phosphonooxy)phenyl)propanoic acid
h-tyr(h2po3)-oh
AS-19190
Q19805940
EN300-7366217
h-tyr(h2po3)-oh; l-tyrosine-o-phosphate
CS-W012494
HY-W011778

Research Excerpts

Overview

Phosphotyrosine (pTyr) is an essential component of biological signaling, often being a determinant of protein-protein interactions. AntiphosphotYrosine blotting is a technique for detecting tyrosine-phosphorylated substrates by the use of antibodies that recognize these residues.

ExcerptReferenceRelevance
"Phosphotyrosine (pY) serves as a docking site for the recognition proteins containing pY-binding (pYB) modules, such as the SH2 domain, to mediate cell signal transduction. "( Combinatorial Peptide Ligand Library-Based Photoaffinity Probe for the Identification of Phosphotyrosine-Binding Domain Proteins.
Ai, D; An, J; Bai, X; Chen, P; Dong, H; Guo, Z; Tian, S; Zhai, G; Zhang, K; Zhang, Y, 2019
)
2.18
"Phosphotyrosine (pTyr) is an essential component of biological signaling, often being a determinant of protein-protein interactions. "( Unexpected relative aqueous solubilities of a phosphotyrosine analogue and two phosphonate derivatives.
Beselman, A; Boresch, S; Leitgeb, M; MacKerell, AD, 2005
)
2.03
"Antiphosphotyrosine blotting is a technique for detecting tyrosine-phosphorylated substrates by the use of antibodies that recognize these residues on a wide variety of proteins. "( Antiphosphotyrosine blotting.
Siegel, JN, 2001
)
1.43
"Phosphotyrosine is an essential structure required for the interactions of these proteins with the PDGF receptor."( A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine.
Escobedo, JA; Kaplan, DR; Kavanaugh, WM; Turck, CW; Williams, LT, 1991
)
1.21

Effects

ExcerptReferenceRelevance
"Phosphotyrosine has previously been found concentrated at adherens junctions, where bundles of actin filaments terminate, but video-enhanced contrast-differential interference contrast and confocal interference reflection microscopy demonstrated that the filopodial tips were not adherent to the substrate."( Regulated tyrosine phosphorylation at the tips of growth cone filopodia.
Goldberg, DJ; Wu, DY, 1993
)
1.01

Actions

Phosphotyrosine signaling plays a vital role in cell regulation. The residues enhance receptor catalytic activity and/or provide docking sites for downstream signaling proteins.

ExcerptReferenceRelevance
"Phosphotyrosine signaling plays a major role in the control of many important biological functions such as cell proliferation and apoptosis. "( Identification of Tyrosine Phosphorylated Proteins by SH2 Domain Affinity Purification and Mass Spectrometry.
Buhs, S; Gerull, H; Nollau, P, 2017
)
1.9
"Phosphotyrosine signaling plays a vital role in cell regulation--from receptor activation, through stimulation of signal networks and nuclear targeting, to final cellular responses. "( Parallel assessment of tyrosine phosphorylation and nuclear targeting of proteins.
Gineitis, A; Kulyte, A; Magnusson, KE; Navakauskiene, R; Treigyte, G, 2001
)
1.75
"The phosphotyrosine residues enhance receptor catalytic activity and/or provide docking sites for downstream signaling proteins."( Autoinhibitory mechanisms in receptor tyrosine kinases.
Hubbard, SR, 2002
)
0.8

Pharmacokinetics

ExcerptReferenceRelevance
" Furthermore, the steady-state concentration of pazopanib determined from preclinical activity showed a strong correlation with the pharmacodynamic effects and antitumor activity in the phase I clinical trial."( Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity.
Boloor, A; Cheung, M; Crosby, RM; Crouthamel, MC; Epperly, AH; Gilmer, TM; Harrington, LE; Hopper, TM; Johnson, JH; Knick, VB; Kumar, R; Luttrell, DK; Miller, CG; Mullin, RJ; Onori, JA; Rudolph, SK; Stafford, JA; Truesdale, AT, 2007
)
0.34
" Here, we show pharmacodynamic changes in VEGFR-2 phosphorylation induced by AZD2171."( Acute pharmacodynamic and antivascular effects of the vascular endothelial growth factor signaling inhibitor AZD2171 in Calu-6 human lung tumor xenografts.
Barry, ST; Copley, C; James, NH; Jürgensmeier, JM; Kendrew, J; Oakley, I; Smith, NR; Wainwright, A; Wedge, SR; Womersley, LM, 2007
)
0.34

Compound-Compound Interactions

ExcerptReferenceRelevance
" The present study was undertaken to evaluate the antitumor mechanisms of EGFR antisense (AS) oligonucleotides administered in combination with docetaxel in preclinical models of SCCHN."( Antitumor effects of epidermal growth factor receptor antisense oligonucleotides in combination with docetaxel in squamous cell carcinoma of the head and neck.
Gooding, WE; Grandis, JR; Li, M; Lui, VW; Niwa, H; Wentzel, AL, 2003
)
0.32
"SCCHN cells lines and xenografts were treated with an EGFR AS oligonucleotide targeting region 760-779 of EGFR mRNA (GenBank accession XM_004738) alone and in combination with docetaxel."( Antitumor effects of epidermal growth factor receptor antisense oligonucleotides in combination with docetaxel in squamous cell carcinoma of the head and neck.
Gooding, WE; Grandis, JR; Li, M; Lui, VW; Niwa, H; Wentzel, AL, 2003
)
0.32

Bioavailability

ExcerptReferenceRelevance
" These compounds may serve as useful leads for the design of nonpeptide inhibitors of SH2 domains with improved bioavailability and metabolic stability compared to the natural ligands that contain phosphotyrosine."( NMR-based discovery of phosphotyrosine mimetics that bind to the Lck SH2 domain.
Fesik, SW; Hajduk, PJ; Zhou, MM, 1999
)
0.8
" Although the pTyr phosphoryl moiety is central in these phenomena, its incorporation into signaling inhibitors is contraindicated due to enzymatic lability and limited bioavailability associated with phosphate esters."( Phosphotyrosyl mimetics in the development of signal transduction inhibitors.
Burke, TR; Lee, K, 2003
)
0.32
" The utilisation of the phosphate moiety as part of an inhibitor is severely limited by the enzymatic lability and poor cellular bioavailability of this highly charged recognition element."( Phosphate isosteres in medicinal chemistry.
Baell, JB; Rye, CS, 2005
)
0.33
" In this study, we show that carboxyamidotriazole (CAI), an orally bioavailable calcium influx and signal transduction inhibitor, is equally effective in inhibiting the proliferation and bcr-abl dependent- and independent-signaling pathways in imatinib-resistant CML cells."( Effects of carboxyamidotriazole on in vitro models of imatinib-resistant chronic myeloid leukemia.
Alessandro, R; Colomba, P; Corrado, C; De Leo, G; Flugy, AM; Fontana, S; Giordano, M; Kohn, EC; Santoro, A, 2008
)
0.35
" Carboxyamidotriazole-orotate (CTO) is the orotate salt form of carboxyamidotriazole (CAI), an orally bioavailable signal transduction inhibitor that in vitro has been shown to possess antileukaemic activities."( Carboxyamidotriazole-orotate inhibits the growth of imatinib-resistant chronic myeloid leukaemia cells and modulates exosomes-stimulated angiogenesis.
Alessandro, R; Corrado, C; De Leo, G; Flugy, AM; Guggino, G; Karmali, R; Raimondo, S; Taverna, S, 2012
)
0.38

Dosage Studied

17-(allylamino)-17-demethoxygeldanamycin and other 17-amino analogs were effective at reducing p185 phosphotyrosine in subcutaneous flank FRE/erbB-2 tumors. HCB altered the phosphotYrosine content and protein phosphorylation of some microsomal and cytosolic proteins in a biphasic dose-response relationship.

ExcerptRelevanceReference
" Dose-response curves of PMA and of forskolin for the inhibition of PLC-gamma 1 tyrosine phosphorylation and of PtdIns 4,5-P2 hydrolysis were similar."( Inhibition of CD3-linked phospholipase C by phorbol ester and by cAMP is associated with decreased phosphotyrosine and increased phosphoserine contents of PLC-gamma 1.
Min, HK; Park, DJ; Rhee, SG, 1992
)
0.5
" Addition of genistein, a PTK inhibitor, to sensitized BMMC before Ag challenge inhibited not only Ag-induced PTK activation, but also inositol 1,4,5-trisphosphate production, and histamine release in a similar dose-response relationship."( Tyrosine phosphorylation is required for mast cell activation by Fc epsilon RI cross-linking.
Coggeshall, KM; Fukamachi, H; Inagaki, N; Ishizaka, K; Ishizaka, T; Kawakami, T; Takei, M, 1992
)
0.28
" The insulin dose-response curves are also very similar for the activation of the insulin receptor tyrosine kinase activity and for the appearance of PtdIns kinase in the anti-phosphotyrosine immunoprecipitates."( Phosphatidylinositol kinase or an associated protein is a substrate for the insulin receptor tyrosine kinase.
Endemann, G; Roth, RA; Yonezawa, K, 1990
)
0.47
" Phosphorylation of pp105 followed the dose-response characteristics of the IGF-I receptor."( An altered IGF-I receptor is present in human leukemic cells.
Ermel, B; Häring, HU; Kellerer, M; Obermaier-Kusser, B; Petrides, PE; Wallner, U, 1990
)
0.28
" The increase in phosphorylation of insulin receptor in response to IGF-I correlated with the dose-response of IGF-I-stimulated phosphorylation of the IGF-I receptor."( Insulin receptor is phosphorylated in response to treatment of HepG2 cells with insulin-like growth factor I.
Duronio, V, 1990
)
0.28
" Comparison of the dose-response curves for pp87 phosphorylation by insulin and IGF-I suggests that each peptide stimulated autophosphorylation of its own receptor beta-subunit."( Insulin and insulin-like growth factors stimulate in vivo receptor autophosphorylation and tyrosine phosphorylation of a 70K substrate in cultured fetal chick neurons.
Heidenreich, KA; Kenner, KA, 1991
)
0.28
" Phosphorylation of pp185 is maximal within seconds after exposure of the cells to insulin and exhibits a dose-response curve similar to that of receptor autophosphorylation, suggesting that this protein represents the endogenous substrate for the insulin receptor kinase."( Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells.
Kahn, CR; Maron, R; White, MF,
)
0.13
" The time-course and dose-response for this modification of pp60c-src paralleled PDGF-induced increases in phosphorylation of pp36, a major cellular substrate for several tyrosine-specific protein kinases."( The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor.
Bishop, JM; Ralston, R, 1985
)
0.27
" Analysis of the insulin dose-response relationship between P160 tyrosine phosphorylation and insulin receptor kinase activity reveals that maximal phosphorylation of P160 occurs when only a fraction (25%) of the receptor kinase is activated by the hormone."( Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in rat adipocyte plasma membranes.
Czech, MP; Khalaf, N; Yu, KT, 1987
)
0.27
"Preincubation of quiescent Swiss 3T3 cells in fresh synthetic medium caused a reduction of the lag period prior to bradykinin-stimulated DNA synthesis as well as a leftward shift in the dose-response curve (half-maximum effect at 2 nM and 8 nM for preincubated cells and control cells, respectively)."( Down-regulation of bradykinin receptors and bradykinin-induced Ca2+ mobilization, tyrosine phosphorylation, and DNA synthesis by autocrine factors, tumor necrosis factor alpha, and interferon beta in Swiss 3T3 cells.
Kiehne, K; Rozengurt, E, 1995
)
0.29
" Although the dose-response of p60 phosphorylation mirrors that of IRS-1, the time course is slightly slower, with maximal phosphorylation observed 5 min after addition of insulin."( Detection of a 60 kDa tyrosine-phosphorylated protein in insulin-stimulated hepatoma cells that associates with the SH2 domain of phosphatidylinositol 3-kinase.
Lazar, DF; Milarski, KL; Saltiel, AR; Wiese, RJ, 1995
)
0.29
" Specifically, dosed intraperitoneally at 100 mg/kg, 17-(allylamino)-17-demethoxygeldanamycin and other 17-amino analogs were effective at reducing p185 phosphotyrosine in subcutaneous flank FRE/erbB-2 tumors."( Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives.
Barbacci, EG; Cooper, BA; Corman, ML; Dee, MF; DiOrio, CI; Doty, JL; Gallaschun, RJ; Moyer, JD; Muzzi, ML; Schnur, RC, 1995
)
0.49
" When cultures were subjected to E fields in the presence of a tyrosine kinase inhibitor, tyrphostin RG-50864, cathodal AChR clustering was abolished with a half maximal inhibitory dosage of 50 microM."( A role of tyrosine phosphorylation in the formation of acetylcholine receptor clusters induced by electric fields in cultured Xenopus muscle cells.
Baker, LP; Dai, Z; Peng, HB, 1993
)
0.29
" Similarly, phosphorylation of MAPK in tyrosine residues, as found in immunoblots using anti-phosphotyrosine antibodies, follows similar time- and dose-response curves as the kinase activation."( Direct stimulation by tyrosine phosphorylation of microtubule-associated protein (MAP) kinase activity by granulocyte-macrophage colony-stimulating factor in human neutrophils.
Colasanto, JM; Gomez-Cambronero, J; Huang, CK; Sha'afi, RI, 1993
)
0.51
" The timing of nuclear division in cells that cannot make a bud is exquisitely sensitive to the dosage of SWE1 and MIH1 genes, which control phosphorylation of Cdc28 at tyrosine 19."( Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast.
Herald, HA; Lew, DJ; Sia, RA, 1996
)
0.29
" Both kinetics and Epo dose-response experiments showed that GAB1 tyrosine phosphorylation was a direct consequence of Epo receptor activation."( Erythropoietin induces the tyrosine phosphorylation of GAB1 and its association with SHC, SHP2, SHIP, and phosphatidylinositol 3-kinase.
Chrétien, S; Fichelson, S; Gisselbrecht, S; Lacombe, C; Lecoq-Lafon, C; Mayeux, P; Verdier, F, 1999
)
0.3
" A Boyden chamber invasion assay using collagen type I showed that HGF caused a specific dose-response increase in trophoblast invasion first seen at 10 ng/mL (2."( Hepatocyte growth factor stimulates trophoblast invasion: a potential mechanism for abnormal placentation in preeclampsia.
Bae-Jump, V; Kauma, SW; Walsh, SW, 1999
)
0.3
" Dose-response experiments indicate an enhanced biological activity of the IGF-I analogue des (1-3) IGF-I compared to wild-type IGF-I in both acute signalling experiments and longer-term (24 h) mitogenic assays."( Characterization of the IGF axis in a rat liver-derived epithelial cell line.
Allan, GJ; Beattie, J; Bramani, S, 1999
)
0.3
" Insulin pretreatment shifted the dose-response curve for activation of KOR by increasing the maximal response without changing the EC(50) value for."( Tyrosine phosphorylation of the kappa -opioid receptor regulates agonist efficacy.
Appleyard, SM; Chavkin, C; McLaughlin, JP, 2000
)
0.31
" Diabetic rats receiving oral genistein had significantly less retinal vascular leakage of radiolabeled sucrose than diabetic control rats in a dose-response fashion."( Normalization of retinal vascular permeability in experimental diabetes with genistein.
An, GJ; Ando, A; Cao, J; Chang, KY; Cooney, MJ; de Juan, E; Melia, M; Nakajima, M; Tu, AH, 2001
)
0.31
" The CCK dose-response curve for TyrP for sites in each kinase was similar."( Phosphospecific site tyrosine phosphorylation of p125FAK and proline-rich kinase 2 is differentially regulated by cholecystokinin receptor type A activation in pancreatic acini.
Bragado, MJ; García-Marin, LJ; Jensen, RT; Pace, A; Tapia, JA, 2003
)
0.32
" HCB altered the phosphotyrosine content and protein phosphorylation of some microsomal and cytosolic proteins in a biphasic dose-response relationship."( Effect of in vivo administered hexachlorobenzene on epidermal growth factor receptor levels, protein tyrosine kinase activity, and phosphotyrosine content in rat liver.
Ferramola de Sancovich, AM; Kleiman de Pisarev, DL; Kölliker Frers, RA; Loaiza, A; Randi, AS; Sancovich, HA; Spinelli, F, 2003
)
0.86
"Parallel dose-response effects were found in both CD41(+) number and TPO-specific pTyr activity."( A preliminary investigation into the action of anagrelide: thrombopoietin-c-Mpl receptor interactions.
Dessypris, EN; Kanamori, D; McCarty, JM; Melone, PD; Simanis, JP; Warshamana-Greene, GS, 2006
)
0.33
" dosing and continuous infusion), we showed that the antitumor and antiangiogenic activity of VEGFR inhibitors is dependent on steady-state concentration of the compound above a threshold."( Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity.
Boloor, A; Cheung, M; Crosby, RM; Crouthamel, MC; Epperly, AH; Gilmer, TM; Harrington, LE; Hopper, TM; Johnson, JH; Knick, VB; Kumar, R; Luttrell, DK; Miller, CG; Mullin, RJ; Onori, JA; Rudolph, SK; Stafford, JA; Truesdale, AT, 2007
)
0.34
"As determined by dose-response curves, treatment of cells with P-Tyr for 16h before irradiation results in radioprotection."( The radioprotector O-phospho-tyrosine stimulates DNA-repair via epidermal growth factor receptor- and DNA-dependent kinase phosphorylation.
Dittmann, K; Kehlbach, R; Mayer, C; Rodemann, HP; Wanner, G, 2007
)
0.34
"Ag-triggered mast cell (MC) activation follows a bell-shaped dose-response curve."( Steel factor enhances supraoptimal antigen-induced IL-6 production from mast cells via activation of protein kinase C-beta.
Fehrenbach, K; Grochowy, G; Huber, M; Krystal, G; Kuhny, M; Leitges, M; Lessmann, E; Zorn, CN, 2009
)
0.35
" JTP at the same dosage of cinnamon and the increasing dosage of Coptis chinensis was administered to diabetic rats for nine weeks respectively."( Jiaotai Pill enhances insulin signaling through phosphatidylinositol 3-kinase pathway in skeletal muscle of diabetic rats.
Dong, H; Gong, YL; Lu, FE; Wang, JH; Xu, LJ; Zou, X, 2013
)
0.39
" A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1."( Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.
Castranova, V; Cruz-Silva, R; Ding, W; Endo, M; McLoughlin, C; Mihalchik, AL; Porter, DW; Qian, Y; Schwegler-Berry, D; Sisler, JD; Snyder-Talkington, BN; Stefaniak, AB; Terrones, M; Tsuruoka, S, 2015
)
0.42
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (2)

RoleDescription
Escherichia coli metaboliteAny bacterial metabolite produced during a metabolic reaction in Escherichia coli.
immunogenAn antigen capable, on its own, of inducing an immune response.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (3)

ClassDescription
L-tyrosine derivativeA proteinogenic amino acid derivative resulting from reaction of L-tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of L-tyrosine by a heteroatom.
O(4)-phosphotyrosineA non-proteinogenic alpha-amino acid that is tyrosine phosphorylated at the phenolic hydroxy group.
non-proteinogenic L-alpha-amino acidAny L-alpha-amino acid which is not a member of the group of 23 proteinogenic amino acids.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Pathways (1)

PathwayProteinsCompounds
Tyrosine Biosynthesis519

Protein Targets (4)

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (193)

Processvia Protein(s)Taxonomy
protein phosphorylationTyrosine-protein kinase LckHomo sapiens (human)
intracellular zinc ion homeostasisTyrosine-protein kinase LckHomo sapiens (human)
activation of cysteine-type endopeptidase activity involved in apoptotic processTyrosine-protein kinase LckHomo sapiens (human)
response to xenobiotic stimulusTyrosine-protein kinase LckHomo sapiens (human)
peptidyl-tyrosine phosphorylationTyrosine-protein kinase LckHomo sapiens (human)
hemopoiesisTyrosine-protein kinase LckHomo sapiens (human)
platelet activationTyrosine-protein kinase LckHomo sapiens (human)
T cell differentiationTyrosine-protein kinase LckHomo sapiens (human)
T cell costimulationTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of heterotypic cell-cell adhesionTyrosine-protein kinase LckHomo sapiens (human)
intracellular signal transductionTyrosine-protein kinase LckHomo sapiens (human)
peptidyl-tyrosine autophosphorylationTyrosine-protein kinase LckHomo sapiens (human)
Fc-gamma receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
T cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of T cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of T cell activationTyrosine-protein kinase LckHomo sapiens (human)
leukocyte migrationTyrosine-protein kinase LckHomo sapiens (human)
release of sequestered calcium ion into cytosolTyrosine-protein kinase LckHomo sapiens (human)
regulation of lymphocyte activationTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of leukocyte cell-cell adhesionTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
innate immune responseTyrosine-protein kinase LckHomo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
B cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
primary ovarian follicle growthProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of cytokine productionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
stimulatory C-type lectin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signal complex assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
epidermal growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transforming growth factor beta receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
integrin-mediated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
spermatogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
learning or memoryProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to xenobiotic stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to mechanical stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to acidic pHProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of gene expressionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of epithelial cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of epithelial cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of glucose metabolic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein processingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
skeletal muscle cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of smooth muscle cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
macroautophagyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of cell-cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
platelet activationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
forebrain developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
T cell costimulationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of protein-containing complex assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein destabilizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to nutrient levelsProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of telomere maintenance via telomeraseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to insulin stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of intracellular estrogen receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of integrin activationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of toll-like receptor 3 signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
adherens junction organizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
substrate adhesion-dependent cell spreadingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of dephosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of hippo signalingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
intracellular signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
entry of bacterium into host cellProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
osteoclast developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to platelet-derived growth factor stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
Fc-gamma receptor signaling pathway involved in phagocytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ERBB2 signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
angiotensin-activated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
odontogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of vascular permeabilityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
stress fiber assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of cysteine-type endopeptidase activity involved in apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transcytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of Notch signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of Ras protein signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of insulin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein autophosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
platelet-derived growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
vascular endothelial growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
neurotrophin TRK receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ephrin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
focal adhesion assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
oogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
progesterone receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
leukocyte migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of small GTPase mediated signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein transportProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to mineralocorticoidProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
myoblast proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to electrical stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of focal adhesion assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of mitochondrial depolarizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of telomerase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
uterus developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
branching involved in mammary gland duct morphogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of cell projection assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
intestinal epithelial cell developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
interleukin-6-mediated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to hydrogen peroxideProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to interleukin-1Proto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to lipopolysaccharideProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to peptide hormone stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to progesterone stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to fatty acidProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to hypoxiaProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to fluid shear stressProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of podosome assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
DNA biosynthetic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein serine/threonine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of heart rate by cardiac conductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of canonical Wnt signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell-cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein localization to nucleusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of non-membrane spanning protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of TORC1 signalingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of vascular associated smooth muscle cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to prolactinProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of male germ cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of ovarian follicle developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of lamellipodium morphogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of platelet-derived growth factor receptor-beta signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of early endosome to late endosome transportProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of anoikisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of extrinsic apoptotic signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of caveolin-mediated endocytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell differentiationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
innate immune responseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
symbiont entry into host cellProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
actin cytoskeleton organizationGrowth factor receptor-bound protein 2Homo sapiens (human)
epidermal growth factor receptor signaling pathwayGrowth factor receptor-bound protein 2Homo sapiens (human)
Ras protein signal transductionGrowth factor receptor-bound protein 2Homo sapiens (human)
insulin receptor signaling pathwayGrowth factor receptor-bound protein 2Homo sapiens (human)
fibroblast growth factor receptor signaling pathwayGrowth factor receptor-bound protein 2Homo sapiens (human)
Schwann cell developmentGrowth factor receptor-bound protein 2Homo sapiens (human)
positive regulation of actin filament polymerizationGrowth factor receptor-bound protein 2Homo sapiens (human)
receptor internalizationGrowth factor receptor-bound protein 2Homo sapiens (human)
endodermal cell differentiationGrowth factor receptor-bound protein 2Homo sapiens (human)
natural killer cell mediated cytotoxicityGrowth factor receptor-bound protein 2Homo sapiens (human)
myelinationGrowth factor receptor-bound protein 2Homo sapiens (human)
signal transduction in response to DNA damageGrowth factor receptor-bound protein 2Homo sapiens (human)
insulin-like growth factor receptor signaling pathwayGrowth factor receptor-bound protein 2Homo sapiens (human)
B cell receptor signaling pathwayGrowth factor receptor-bound protein 2Homo sapiens (human)
branching involved in labyrinthine layer morphogenesisGrowth factor receptor-bound protein 2Homo sapiens (human)
cellular response to ionizing radiationGrowth factor receptor-bound protein 2Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processGrowth factor receptor-bound protein 2Homo sapiens (human)
regulation of MAPK cascadeGrowth factor receptor-bound protein 2Homo sapiens (human)
signal transductionGrowth factor receptor-bound protein 2Homo sapiens (human)
DNA damage checkpoint signalingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
protein dephosphorylationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
triglyceride metabolic processTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
epidermal growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
integrin-mediated signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
axonogenesisTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
brain developmentTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
heart developmentTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
fibroblast growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
hormone-mediated signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
cytokine-mediated signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
cerebellar cortex formationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
platelet formationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
T cell costimulationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
negative regulation of chondrocyte differentiationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
negative regulation of type I interferon productionTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
microvillus organizationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of interferon-beta productionTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of interleukin-6 productionTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of tumor necrosis factor productionTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
regulation of cell adhesion mediated by integrinTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
negative regulation of cell adhesion mediated by integrinTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
multicellular organism growthTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
organ growthTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
peptidyl-tyrosine dephosphorylationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
megakaryocyte developmentTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
atrioventricular canal developmentTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
ERBB signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
hormone metabolic processTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
glucose homeostasisTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
regulation of protein-containing complex assemblyTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of ossificationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of mitotic cell cycleTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of glucose importTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of insulin receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
negative regulation of insulin secretionTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
regulation of protein export from nucleusTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of hormone secretionTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
platelet-derived growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
neurotrophin TRK receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
ephrin receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
multicellular organismal reproductive processTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
genitalia developmentTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
inner ear developmentTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
homeostasis of number of cells within a tissueTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
negative regulation of cortisol secretionTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
Bergmann glial cell differentiationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
negative regulation of growth hormone secretionTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
face morphogenesisTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
regulation of type I interferon-mediated signaling pathwayTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
intestinal epithelial cell migrationTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
cellular response to epidermal growth factor stimulusTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (48)

Processvia Protein(s)Taxonomy
phosphotyrosine residue bindingTyrosine-protein kinase LckHomo sapiens (human)
protein tyrosine kinase activityTyrosine-protein kinase LckHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityTyrosine-protein kinase LckHomo sapiens (human)
protein serine/threonine phosphatase activityTyrosine-protein kinase LckHomo sapiens (human)
protein bindingTyrosine-protein kinase LckHomo sapiens (human)
ATP bindingTyrosine-protein kinase LckHomo sapiens (human)
phospholipase activator activityTyrosine-protein kinase LckHomo sapiens (human)
protein kinase bindingTyrosine-protein kinase LckHomo sapiens (human)
protein phosphatase bindingTyrosine-protein kinase LckHomo sapiens (human)
SH2 domain bindingTyrosine-protein kinase LckHomo sapiens (human)
T cell receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
CD4 receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
CD8 receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
identical protein bindingTyrosine-protein kinase LckHomo sapiens (human)
phospholipase bindingTyrosine-protein kinase LckHomo sapiens (human)
phosphatidylinositol 3-kinase bindingTyrosine-protein kinase LckHomo sapiens (human)
ATPase bindingTyrosine-protein kinase LckHomo sapiens (human)
signaling receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
protein kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein kinase C bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signaling receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
insulin receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
integrin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ATP bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phospholipase activator activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
enzyme bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
heme bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
nuclear estrogen receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
SH2 domain bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phospholipase bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transmembrane transporter bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cadherin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ephrin receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ATPase bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phosphoprotein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
BMP receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
connexin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
scaffold protein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phosphotyrosine residue bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
RNA bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
transmembrane receptor protein tyrosine kinase adaptor activityGrowth factor receptor-bound protein 2Homo sapiens (human)
guanyl-nucleotide exchange factor adaptor activityGrowth factor receptor-bound protein 2Homo sapiens (human)
epidermal growth factor receptor bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
neurotrophin TRKA receptor bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
protein bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
SH3 domain bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
protein kinase bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
protein phosphatase bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
identical protein bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
insulin receptor substrate bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
ephrin receptor bindingGrowth factor receptor-bound protein 2Homo sapiens (human)
phosphotyrosine residue bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
phosphoprotein phosphatase activityTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
protein tyrosine phosphatase activityTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
non-membrane spanning protein tyrosine phosphatase activityTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
insulin receptor bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
protein bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
protein kinase bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
signaling receptor complex adaptor activityTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
cadherin bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
cell adhesion molecule bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
peptide hormone receptor bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
molecular adaptor activityTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
protein tyrosine kinase bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
receptor tyrosine kinase bindingTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (35)

Processvia Protein(s)Taxonomy
pericentriolar materialTyrosine-protein kinase LckHomo sapiens (human)
immunological synapseTyrosine-protein kinase LckHomo sapiens (human)
cytosolTyrosine-protein kinase LckHomo sapiens (human)
plasma membraneTyrosine-protein kinase LckHomo sapiens (human)
membrane raftTyrosine-protein kinase LckHomo sapiens (human)
extracellular exosomeTyrosine-protein kinase LckHomo sapiens (human)
plasma membraneTyrosine-protein kinase LckHomo sapiens (human)
podosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
nucleoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cytoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
mitochondrionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
mitochondrial inner membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
lysosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
late endosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cytosolProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
actin filamentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
plasma membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
caveolaProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
focal adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell junctionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ruffle membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
neuronal cell bodyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
dendritic growth coneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
membrane raftProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
perinuclear region of cytoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
extracellular exosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
synaptic membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
glutamatergic synapseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
postsynaptic specialization, intracellular componentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
dendritic filopodiumProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
plasma membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
nucleusGrowth factor receptor-bound protein 2Homo sapiens (human)
nucleoplasmGrowth factor receptor-bound protein 2Homo sapiens (human)
nucleolusGrowth factor receptor-bound protein 2Homo sapiens (human)
cytoplasmGrowth factor receptor-bound protein 2Homo sapiens (human)
endosomeGrowth factor receptor-bound protein 2Homo sapiens (human)
Golgi apparatusGrowth factor receptor-bound protein 2Homo sapiens (human)
cytosolGrowth factor receptor-bound protein 2Homo sapiens (human)
plasma membraneGrowth factor receptor-bound protein 2Homo sapiens (human)
cell-cell junctionGrowth factor receptor-bound protein 2Homo sapiens (human)
cell cortexGrowth factor receptor-bound protein 2Homo sapiens (human)
vesicle membraneGrowth factor receptor-bound protein 2Homo sapiens (human)
extracellular exosomeGrowth factor receptor-bound protein 2Homo sapiens (human)
COP9 signalosomeGrowth factor receptor-bound protein 2Homo sapiens (human)
Grb2-EGFR complexGrowth factor receptor-bound protein 2Homo sapiens (human)
cytoplasmGrowth factor receptor-bound protein 2Homo sapiens (human)
plasma membraneGrowth factor receptor-bound protein 2Homo sapiens (human)
nucleoplasmGrowth factor receptor-bound protein 2Homo sapiens (human)
cytoplasmTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
nucleusTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
nucleoplasmTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
cytoplasmTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
cytosolTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
protein-containing complexTyrosine-protein phosphatase non-receptor type 11Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (6)

Assay IDTitleYearJournalArticle
AID159243In vitro binding to Phospholipase C-gamma SH2 domain1995Journal of medicinal chemistry, Apr-14, Volume: 38, Issue:8
Conformationally constrained phosphotyrosyl mimetics designed as monomeric Src homology 2 domain inhibitors.
AID201450In vitro binding to SH-PTP2-N (SHP-2) SH2 domain1995Journal of medicinal chemistry, Apr-14, Volume: 38, Issue:8
Conformationally constrained phosphotyrosyl mimetics designed as monomeric Src homology 2 domain inhibitors.
AID224161In vitro binding to p56 Lck SH2 domain1995Journal of medicinal chemistry, Apr-14, Volume: 38, Issue:8
Conformationally constrained phosphotyrosyl mimetics designed as monomeric Src homology 2 domain inhibitors.
AID75324In vitro binding to Growth factor receptor bound protein 21995Journal of medicinal chemistry, Apr-14, Volume: 38, Issue:8
Conformationally constrained phosphotyrosyl mimetics designed as monomeric Src homology 2 domain inhibitors.
AID205504In vitro binding to Src SH2 domain1995Journal of medicinal chemistry, Apr-14, Volume: 38, Issue:8
Conformationally constrained phosphotyrosyl mimetics designed as monomeric Src homology 2 domain inhibitors.
AID155521In vitro binding to p85-C SH2 domain1995Journal of medicinal chemistry, Apr-14, Volume: 38, Issue:8
Conformationally constrained phosphotyrosyl mimetics designed as monomeric Src homology 2 domain inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (6,391)

TimeframeStudies, This Drug (%)All Drugs %
pre-1990414 (6.48)18.7374
1990's3161 (49.46)18.2507
2000's1971 (30.84)29.6817
2010's711 (11.13)24.3611
2020's134 (2.10)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 41.35

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index41.35 (24.57)
Research Supply Index8.78 (2.92)
Research Growth Index5.22 (4.65)
Search Engine Demand Index67.63 (26.88)
Search Engine Supply Index1.99 (0.95)

This Compound (41.35)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials4 (0.06%)5.53%
Reviews195 (3.01%)6.00%
Case Studies17 (0.26%)4.05%
Observational0 (0.00%)0.25%
Other6,259 (96.66%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]