phosphotyrosine has been researched along with losartan in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (75.00) | 18.2507 |
2000's | 1 (25.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bardhan, S; Inagami, T; Kambayashi, Y; Shirai, H; Takahasi, K | 1 |
Baker, KM; Bhat, GJ; Conrad, KM; Thekkumkara, TJ; Thomas, WG | 1 |
Giasson, E; Meloche, S | 1 |
Andreozzi, F; Laratta, E; Perticone, F; Sciacqua, A; Sesti, G | 1 |
4 other study(ies) available for phosphotyrosine and losartan
Article | Year |
---|---|
Protein tyrosine phosphatase inhibition by angiotensin II in rat pheochromocytoma cells through type 2 receptor, AT2.
Topics: Adrenal Gland Neoplasms; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Biphenyl Compounds; Cell Membrane; Chromatography, Affinity; Guanosine Diphosphate; Imidazoles; Losartan; Oligopeptides; PC12 Cells; Pertussis Toxin; Pheochromocytoma; Phosphates; Phosphoproteins; Phosphorus Radioisotopes; Phosphotyrosine; Protein Tyrosine Phosphatases; Pyridines; Rats; Receptors, Angiotensin; Tetrazoles; Thionucleotides; Tyrosine; Virulence Factors, Bordetella | 1994 |
Angiotensin II stimulates sis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein.
Topics: Angiotensin II; Animals; Animals, Newborn; Base Sequence; Cells, Cultured; DNA-Binding Proteins; Gene Expression Regulation; Imidazoles; In Vitro Techniques; Losartan; Molecular Sequence Data; Myocardium; Nuclear Proteins; Phosphotyrosine; Promoter Regions, Genetic; Protein-Tyrosine Kinases; Rats; Rats, Sprague-Dawley; Receptors, Angiotensin; Signal Transduction; STAT1 Transcription Factor; Tetrazoles; Trans-Activators; Transcription Factors; Transcription, Genetic; Tyrosine | 1994 |
Role of p70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Aorta, Abdominal; Biphenyl Compounds; Cell Division; Cells, Cultured; DNA; Dose-Response Relationship, Drug; Electrophoresis, Polyacrylamide Gel; Enzyme Activation; Imidazoles; Kinetics; Losartan; Male; Molecular Weight; Muscle, Smooth, Vascular; Phosphoproteins; Phosphorylation; Phosphoserine; Phosphothreonine; Phosphotyrosine; Polyenes; Protein Biosynthesis; Protein Serine-Threonine Kinases; Pyridines; Rats; Rats, Inbred BN; Receptors, Angiotensin; Ribosomal Protein S6 Kinases; Sirolimus; Tetrazoles; Tyrosine | 1995 |
Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells.
Topics: Angiotensin II; Cells, Cultured; Codon; Culture Media, Serum-Free; Endothelial Cells; Endothelium, Vascular; Glucose; Humans; Insulin; Insulin Receptor Substrate Proteins; JNK Mitogen-Activated Protein Kinases; Losartan; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Models, Biological; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Phosphatidylinositol 3-Kinases; Phosphoproteins; Phosphorylation; Phosphoserine; Phosphotyrosine; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptor, Angiotensin, Type 1; Signal Transduction; Umbilical Veins | 2004 |