Page last updated: 2024-08-07 15:41:15
Tyrosine-protein kinase Lck
A tyrosine-protein kinase Lck that is encoded in the genome of human. [PRO:DNx]
Synonyms
EC 2.7.10.2;
Leukocyte C-terminal Src kinase;
LSK;
Lymphocyte cell-specific protein-tyrosine kinase;
Protein YT16;
Proto-oncogene Lck;
T cell-specific protein-tyrosine kinase;
p56-LCK
Research
Bioassay Publications (128)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 14 (10.94) | 18.2507 |
2000's | 61 (47.66) | 29.6817 |
2010's | 50 (39.06) | 24.3611 |
2020's | 3 (2.34) | 2.80 |
Compounds (325)
Drugs with Inhibition Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
3-methylcholanthrene | Homo sapiens (human) | IC50 | 55.4520 | 1 | 0 |
tyrphostin 25 | Homo sapiens (human) | IC50 | 3.0000 | 1 | 1 |
astemizole | Homo sapiens (human) | IC50 | 19.9200 | 1 | 0 |
ro 31-8425 | Homo sapiens (human) | IC50 | 100.0000 | 1 | 1 |
bithionol | Homo sapiens (human) | IC50 | 2.2550 | 1 | 0 |
damnacanthal | Homo sapiens (human) | IC50 | 0.3185 | 2 | 2 |
ellipticine | Homo sapiens (human) | IC50 | 18.5000 | 1 | 1 |
hexachlorophene | Homo sapiens (human) | IC50 | 2.4325 | 1 | 0 |
indirubin-3'-monoxime | Homo sapiens (human) | IC50 | 0.3000 | 1 | 1 |
iodoquinol | Homo sapiens (human) | IC50 | 2.4610 | 1 | 0 |
1-(2-naphthalenyl)-2-propen-1-one | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
nsc 664704 | Homo sapiens (human) | IC50 | 0.4700 | 1 | 1 |
lavendustin a | Homo sapiens (human) | IC50 | 8.0000 | 1 | 1 |
2-hydroxy-5-(2,5-dihydrobenzyl)aminobenzoic acid | Homo sapiens (human) | IC50 | 10.0000 | 2 | 2 |
olomoucine | Homo sapiens (human) | IC50 | 7.0000 | 1 | 1 |
ag 1879 | Homo sapiens (human) | IC50 | 0.0040 | 1 | 1 |
ag 1879 | Homo sapiens (human) | Ki | 0.0008 | 1 | 1 |
sb 239063 | Homo sapiens (human) | IC50 | 0.0180 | 1 | 1 |
imatinib | Homo sapiens (human) | GI50 | 5.2500 | 2 | 2 |
imatinib | Homo sapiens (human) | IC50 | 0.2667 | 3 | 3 |
levodopa | Homo sapiens (human) | IC50 | 3.7290 | 1 | 0 |
ergotamine | Homo sapiens (human) | IC50 | 6.4990 | 1 | 0 |
sterogenol | Homo sapiens (human) | IC50 | 3.1820 | 1 | 0 |
tribromsalan | Homo sapiens (human) | IC50 | 5.0150 | 1 | 0 |
4-octylphenol | Homo sapiens (human) | IC50 | 22.0540 | 1 | 0 |
dobutamine | Homo sapiens (human) | IC50 | 5.5190 | 1 | 0 |
carbidopa | Homo sapiens (human) | IC50 | 6.7950 | 1 | 0 |
closantel | Homo sapiens (human) | IC50 | 1.2490 | 1 | 0 |
staurosporine | Homo sapiens (human) | IC50 | 0.1784 | 12 | 12 |
nelfinavir | Homo sapiens (human) | IC50 | 79.1660 | 1 | 0 |
u 74006f | Homo sapiens (human) | IC50 | 15.7860 | 1 | 0 |
4'-amino-6-hydroxyflavone | Homo sapiens (human) | IC50 | 1.1000 | 2 | 2 |
3,3',4,5'-tetrahydroxybibenzyl | Homo sapiens (human) | IC50 | 1,560.0000 | 1 | 1 |
birb 796 | Homo sapiens (human) | IC50 | 14.5250 | 4 | 4 |
sb 203580 | Homo sapiens (human) | IC50 | 3.4500 | 1 | 1 |
sorafenib | Homo sapiens (human) | IC50 | 0.0600 | 1 | 1 |
4'-hydroxyflavone | Homo sapiens (human) | IC50 | 504.0000 | 1 | 1 |
3',4',5'-trimethoxyflavone | Homo sapiens (human) | IC50 | 2,000.0000 | 1 | 1 |
resveratrol | Homo sapiens (human) | IC50 | 112.0000 | 1 | 1 |
pd 173955 | Homo sapiens (human) | IC50 | 0.5889 | 2 | 5 |
pd 166326 | Homo sapiens (human) | IC50 | 0.0432 | 2 | 5 |
purvalanol b | Homo sapiens (human) | IC50 | 0.0060 | 1 | 1 |
s 1033 | Homo sapiens (human) | GI50 | 0.8700 | 1 | 1 |
s 1033 | Homo sapiens (human) | IC50 | 0.1082 | 1 | 1 |
3,3',4,5'-tetrahydroxystilbene | Homo sapiens (human) | IC50 | 51.0000 | 3 | 3 |
tamoxifen | Homo sapiens (human) | IC50 | 8.0330 | 1 | 0 |
bms 387032 | Homo sapiens (human) | IC50 | 40.0000 | 1 | 1 |
dasatinib | Homo sapiens (human) | GI50 | 0.0010 | 1 | 1 |
dasatinib | Homo sapiens (human) | IC50 | 0.0015 | 9 | 8 |
dasatinib | Homo sapiens (human) | Ki | 0.0100 | 1 | 1 |
quercetin | Homo sapiens (human) | IC50 | 13.0000 | 2 | 2 |
pinosylvin | Homo sapiens (human) | IC50 | 193.0000 | 1 | 1 |
harmine | Homo sapiens (human) | IC50 | 250.0000 | 1 | 1 |
caffeic acid phenethyl ester | Homo sapiens (human) | IC50 | 2.8870 | 1 | 0 |
rosmarinic acid | Homo sapiens (human) | IC50 | 39.5000 | 2 | 2 |
salvianolic acid a | Homo sapiens (human) | IC50 | 23.5000 | 1 | 1 |
alvocidib | Homo sapiens (human) | IC50 | 5.7000 | 2 | 2 |
pd 180970 | Homo sapiens (human) | IC50 | 0.4782 | 2 | 5 |
pd-173952 | Homo sapiens (human) | IC50 | 0.1506 | 2 | 5 |
ag 99 | Homo sapiens (human) | IC50 | 22.0000 | 2 | 3 |
bosutinib | Homo sapiens (human) | IC50 | 0.0013 | 1 | 1 |
su 11248 | Homo sapiens (human) | IC50 | 0.0089 | 1 | 1 |
2-tert-butyl-9-fluoro-3,6-dihydro-7h-benz(h)imidazo(4,5-f)isoquinoline-7-one | Homo sapiens (human) | IC50 | 8.0000 | 1 | 1 |
vx680 | Homo sapiens (human) | Ki | 0.0805 | 2 | 7 |
4,5-diphenyl-2,3-dihydro-1H-pyrazolo[3,4-c]pyridazin-3-one | Homo sapiens (human) | IC50 | 50.0000 | 1 | 1 |
cyc 116 | Homo sapiens (human) | Ki | 2.8000 | 1 | 1 |
caftaric acid | Homo sapiens (human) | IC50 | 118.0000 | 1 | 1 |
a 419259 | Homo sapiens (human) | IC50 | 0.2227 | 4 | 8 |
gdp 366 | Homo sapiens (human) | IC50 | 20.0000 | 1 | 1 |
b 43 | Homo sapiens (human) | IC50 | 0.1703 | 7 | 7 |
a 770041 | Homo sapiens (human) | IC50 | 0.1470 | 1 | 1 |
c 1368 | Homo sapiens (human) | IC50 | 0.1310 | 1 | 1 |
3,4,4'-trihydroxy-trans-stilbene | Homo sapiens (human) | IC50 | 19.0000 | 1 | 1 |
jnj 10198409 | Homo sapiens (human) | IC50 | 0.1000 | 2 | 2 |
sb 242235 | Homo sapiens (human) | IC50 | 0.0100 | 1 | 1 |
osi 930 | Homo sapiens (human) | IC50 | 0.0220 | 1 | 1 |
tofacitinib | Homo sapiens (human) | IC50 | 2.6933 | 3 | 3 |
N-(3-cyanophenyl)-2'-methyl-5'-(5-methyl-1,3,4-oxadiazol-2-yl)biphenyl-4-carboxamide | Homo sapiens (human) | IC50 | 16.0000 | 1 | 1 |
N-(3-cyanophenyl)-2'-methyl-5'-(5-methyl-1,3,4-oxadiazol-2-yl)biphenyl-4-carboxamide | Homo sapiens (human) | Ki | 5.4000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
saracatinib | Homo sapiens (human) | IC50 | 0.0040 | 3 | 3 |
l 783277 | Homo sapiens (human) | IC50 | 3.4750 | 2 | 2 |
baci-im | Homo sapiens (human) | IC50 | 1.9230 | 1 | 0 |
brivanib | Homo sapiens (human) | IC50 | 2.5000 | 1 | 1 |
danusertib | Homo sapiens (human) | IC50 | 0.1550 | 1 | 1 |
N-[5-[[5-[(4-acetyl-1-piperazinyl)-oxomethyl]-4-methoxy-2-methylphenyl]thio]-2-thiazolyl]-4-[(3,3-dimethylbutan-2-ylamino)methyl]benzamide | Homo sapiens (human) | IC50 | 2.4000 | 1 | 1 |
nvp-aew541 | Homo sapiens (human) | IC50 | 5.6000 | 2 | 2 |
abt 869 | Homo sapiens (human) | IC50 | 500.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | IC50 | 47.0470 | 2 | 2 |
dorsomorphin | Homo sapiens (human) | IC50 | 0.0160 | 1 | 1 |
tak 285 | Homo sapiens (human) | IC50 | 2.4000 | 1 | 1 |
crizotinib | Homo sapiens (human) | IC50 | 1.8277 | 3 | 3 |
chir-265 | Homo sapiens (human) | IC50 | 6.0000 | 1 | 1 |
jnj 28312141 | Homo sapiens (human) | IC50 | 1.9940 | 2 | 2 |
mln8054 | Homo sapiens (human) | IC50 | 3.2000 | 1 | 1 |
pha 767491 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
N-(2,4-dimethoxyphenyl)-N-[2-[4-(4-methyl-1-piperazinyl)anilino]-4-pyrimidinyl]carbamic acid (2,6-dimethylphenyl) ester | Homo sapiens (human) | IC50 | 0.3900 | 2 | 5 |
azd 1152-hqpa | Homo sapiens (human) | Ki | 0.1700 | 1 | 1 |
4-methyl-3-(2-(2-morpholinoethylamino)quinazolin-6-yl)-n-(3-(trifluoromethyl)phenyl)benzamide | Homo sapiens (human) | IC50 | 0.0002 | 1 | 1 |
tannins | Homo sapiens (human) | IC50 | 0.0790 | 1 | 0 |
pha 848125 | Homo sapiens (human) | IC50 | 0.2090 | 1 | 1 |
cudc 101 | Homo sapiens (human) | IC50 | 5.9100 | 1 | 1 |
amg 458 | Homo sapiens (human) | IC50 | 0.8650 | 2 | 2 |
mln 8237 | Homo sapiens (human) | IC50 | 0.3200 | 1 | 1 |
bms 777607 | Homo sapiens (human) | IC50 | 0.1200 | 2 | 1 |
pci 32765 | Homo sapiens (human) | IC50 | 0.0180 | 2 | 2 |
ponatinib | Homo sapiens (human) | IC50 | 0.0003 | 1 | 1 |
N-cyclopropyl-3-{4-[(cyclopropylmethyl)carbamoyl]phenyl}-4-methylbenzamide | Homo sapiens (human) | IC50 | 16.0000 | 1 | 1 |
N-(2,6-difluorophenyl)-5-[3-[2-[5-ethyl-2-methoxy-4-[4-(4-methylsulfonyl-1-piperazinyl)-1-piperidinyl]anilino]-4-pyrimidinyl]-2-imidazo[1,2-a]pyridinyl]-2-methoxybenzamide | Homo sapiens (human) | IC50 | 3.0000 | 1 | 1 |
entrectinib | Homo sapiens (human) | IC50 | 1.0000 | 1 | 1 |
sch 1473759 | Homo sapiens (human) | IC50 | 0.0010 | 1 | 1 |
pha 793887 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
abt-348 | Homo sapiens (human) | IC50 | 0.0030 | 1 | 1 |
gsk143 | Homo sapiens (human) | IC50 | 5.0119 | 1 | 1 |
nms p937 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
nms-p118 | Homo sapiens (human) | IC50 | 10.0000 | 1 | 1 |
delgocitinib | Homo sapiens (human) | IC50 | 5.8000 | 1 | 1 |
7-methyl-5-(1-((3-(trifluoromethyl)phenyl)acetyl)-2,3-dihydro-1h-indol-5-yl)-7h-pyrrolo(2,3-d)pyrimidin-4-amine | Homo sapiens (human) | IC50 | 1.2500 | 1 | 1 |
urmc-099 | Homo sapiens (human) | IC50 | 0.3330 | 1 | 1 |
ceritinib | Homo sapiens (human) | IC50 | 0.6160 | 2 | 2 |
nintedanib | Homo sapiens (human) | IC50 | 0.0160 | 2 | 2 |
bms 536924 | Homo sapiens (human) | IC50 | 0.3410 | 2 | 2 |
nms-e973 | Homo sapiens (human) | IC50 | 0.0100 | 1 | 1 |
Drugs with Activation Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
acetic acid | Homo sapiens (human) | Kd | 0.9700 | 1 | 2 |
phenylacetic acid | Homo sapiens (human) | Kd | 50,000.0000 | 1 | 1 |
phthalic acid | Homo sapiens (human) | Kd | 1,700.0000 | 1 | 1 |
fasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 202190 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imatinib | Homo sapiens (human) | Kd | 6.0364 | 5 | 5 |
thiophene-3-carboxylic acid | Homo sapiens (human) | Kd | 0.2600 | 1 | 1 |
trimesic acid | Homo sapiens (human) | Kd | 200.0000 | 1 | 1 |
phenylphosphate | Homo sapiens (human) | Kd | 300.0000 | 1 | 1 |
4-nitrohippuric acid | Homo sapiens (human) | Kd | 0.2900 | 1 | 1 |
triciribine phosphate | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
staurosporine | Homo sapiens (human) | Kd | 0.0267 | 3 | 3 |
picropodophyllin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
benzylphosphonic acid | Homo sapiens (human) | Kd | 5,900.0000 | 1 | 1 |
gefitinib | Homo sapiens (human) | Kd | 8.0900 | 4 | 4 |
lestaurtinib | Homo sapiens (human) | Kd | 10.2867 | 3 | 3 |
perifosine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
vatalanib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
ruboxistaurin | Homo sapiens (human) | Kd | 12.8250 | 4 | 4 |
canertinib | Homo sapiens (human) | Kd | 7.8000 | 4 | 4 |
birb 796 | Homo sapiens (human) | Kd | 1.1667 | 3 | 3 |
cyc 202 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
sb 203580 | Homo sapiens (human) | Kd | 2.8000 | 2 | 2 |
enzastaurin | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
erlotinib | Homo sapiens (human) | Kd | 6.3120 | 5 | 5 |
lapatinib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sorafenib | Homo sapiens (human) | Kd | 9.0000 | 5 | 5 |
7-methoxycoumarin-4-acetic acid | Homo sapiens (human) | Kd | 2.5000 | 1 | 1 |
pd 173955 | Homo sapiens (human) | Kd | 0.0011 | 1 | 1 |
s 1033 | Homo sapiens (human) | Kd | 15.0235 | 2 | 2 |
xl147 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 387032 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
sf 2370 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tandutinib | Homo sapiens (human) | Kd | 14.3000 | 4 | 4 |
vx-745 | Homo sapiens (human) | Kd | 3.6667 | 3 | 3 |
dasatinib | Homo sapiens (human) | Kd | 0.0025 | 3 | 3 |
ha 1100 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
7-epi-hydroxystaurosporine | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
zd 6474 | Homo sapiens (human) | Kd | 0.8115 | 4 | 4 |
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
imd 0354 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alvocidib | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
bosutinib | Homo sapiens (human) | Kd | 0.0178 | 2 | 2 |
orantinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
su 11248 | Homo sapiens (human) | Kd | 0.6708 | 5 | 5 |
palbociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj-7706621 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
7-hydroxycoumarin-4-acetic acid | Homo sapiens (human) | Kd | 0.0350 | 1 | 1 |
vx680 | Homo sapiens (human) | Kd | 10.0407 | 3 | 3 |
cyc 116 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
everolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ekb 569 | Homo sapiens (human) | Kd | 10.0477 | 3 | 3 |
axitinib | Homo sapiens (human) | Kd | 16.3500 | 2 | 2 |
temsirolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 184352 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
on 01910 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
av 412 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
telatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
y-39983 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 547632 | Homo sapiens (human) | Kd | 1.2130 | 1 | 1 |
bms345541 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
lenvatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pd 0325901 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
midostaurin | Homo sapiens (human) | Kd | 12.1680 | 4 | 5 |
px-866 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ripasudil | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osi 930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ki 20227 | Homo sapiens (human) | Kd | 0.2600 | 1 | 1 |
scio-469 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cp 724714 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
pi103 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
hmn-214 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tivozanib | Homo sapiens (human) | Kd | 2.1830 | 1 | 1 |
hki 272 | Homo sapiens (human) | Kd | 0.5625 | 2 | 2 |
tofacitinib | Homo sapiens (human) | Kd | 10.7533 | 3 | 3 |
n-(6-chloro-7-methoxy-9h-beta-carbolin-8-yl)-2-methylnicotinamide | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
cediranib | Homo sapiens (human) | Kd | 15.0335 | 2 | 2 |
masitinib | Homo sapiens (human) | Kd | 15.0155 | 2 | 2 |
ly-2157299 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pazopanib | Homo sapiens (human) | Kd | 10.8000 | 3 | 3 |
azd 6244 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
su 14813 | Homo sapiens (human) | Kd | 11.5333 | 3 | 3 |
bibw 2992 | Homo sapiens (human) | Kd | 15.2850 | 2 | 2 |
binimetinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sotrastaurin | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
aee 788 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
saracatinib | Homo sapiens (human) | Kd | 0.0090 | 1 | 1 |
vx 702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crenolanib | Homo sapiens (human) | Kd | 24.2210 | 1 | 1 |
tg100-115 | Homo sapiens (human) | Kd | 16.7500 | 2 | 2 |
cc 401 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 599626 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
exel-7647 | Homo sapiens (human) | Kd | 0.2070 | 1 | 1 |
volasertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 665752 | Homo sapiens (human) | Kd | 0.3200 | 1 | 1 |
azd 7762 | Homo sapiens (human) | Kd | 1.2950 | 1 | 1 |
regorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-[[5-fluoro-2-(3,4,5-trimethoxyanilino)-4-pyrimidinyl]amino]-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one | Homo sapiens (human) | Kd | 15.0150 | 2 | 2 |
brivanib | Homo sapiens (human) | Kd | 15.5500 | 2 | 2 |
mp470 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
rgb 286638 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
np 031112 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 7519 | Homo sapiens (human) | Kd | 23.3333 | 2 | 3 |
bms-690514 | Homo sapiens (human) | Kd | 0.5140 | 1 | 1 |
bi 2536 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
inno-406 | Homo sapiens (human) | Kd | 0.2940 | 1 | 1 |
nvp-ast487 | Homo sapiens (human) | Kd | 0.0110 | 2 | 2 |
kw 2449 | Homo sapiens (human) | Kd | 15.6000 | 2 | 2 |
danusertib | Homo sapiens (human) | Kd | 0.2830 | 1 | 1 |
abt 869 | Homo sapiens (human) | Kd | 16.6667 | 3 | 3 |
azd 8931 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arq 197 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1152 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 00299804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ridaforolimus | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ch 4987655 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
6-(5-((cyclopropylamino)carbonyl)-3-fluoro-2-methylphenyl)-n-(2,2-dimethylprpyl)-3-pyridinecarboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cc-930 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gw 2580 | Homo sapiens (human) | Kd | 10.0000 | 2 | 2 |
tak 285 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
idelalisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
crizotinib | Homo sapiens (human) | Kd | 0.7220 | 2 | 2 |
osi 906 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
chir-265 | Homo sapiens (human) | Kd | 10.4267 | 3 | 3 |
motesanib | Homo sapiens (human) | Kd | 10.2400 | 3 | 3 |
fostamatinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
trametinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mln8054 | Homo sapiens (human) | Kd | 10.3933 | 3 | 3 |
pf-562,271 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
GDC-0879 | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
jnj-26483327 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2603618 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tg100801 | Homo sapiens (human) | Kd | 1.4660 | 1 | 1 |
dactolisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bgt226 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 461364 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
azd 1152-hqpa | Homo sapiens (human) | Kd | 1.1507 | 3 | 3 |
nvp-tae684 | Homo sapiens (human) | EC50 | 1.0000 | 1 | 1 |
nvp-tae684 | Homo sapiens (human) | Kd | 0.0490 | 1 | 1 |
enmd 2076 | Homo sapiens (human) | Kd | 2.9620 | 1 | 1 |
e 7050 | Homo sapiens (human) | Kd | 0.5240 | 1 | 1 |
2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)-7-pyrido[2,3-d]pyrimidinone | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak-901 | Homo sapiens (human) | Kd | 0.1050 | 1 | 1 |
gdc-0973 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
buparlisib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd 1480 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
azd8330 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 848125 | Homo sapiens (human) | Kd | 0.6250 | 1 | 1 |
ro5126766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
fedratinib | Homo sapiens (human) | Kd | 15.0360 | 2 | 2 |
gsk690693 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo(19.3.1.1(2,6).1(8,12))heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd5438 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf 04217903 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0941 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
icotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ph 797804 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
kx-01 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx 4720 | Homo sapiens (human) | Kd | 1.8000 | 1 | 1 |
mk 5108 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cx 4945 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cudc 101 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
arry-614 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 593 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
mln 8237 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sgx 523 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
bms 754807 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms 777607 | Homo sapiens (human) | Kd | 1.5710 | 1 | 1 |
sgi 1776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pci 32765 | Homo sapiens (human) | Kd | 0.1030 | 1 | 1 |
ponatinib | Homo sapiens (human) | Kd | 0.0240 | 1 | 1 |
amg 900 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-1775 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
AMG-208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
quizartinib | Homo sapiens (human) | Kd | 14.1667 | 3 | 3 |
at13148 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
tak 733 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2206 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sns 314 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
lucitanib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pf-04691502 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dcc-2036 | Homo sapiens (human) | Kd | 0.1800 | 1 | 1 |
cabozantinib | Homo sapiens (human) | Kd | 1.0450 | 1 | 1 |
defactinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ly2584702 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
incb-018424 | Homo sapiens (human) | Kd | 20.0000 | 2 | 2 |
poziotinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
asp3026 | Homo sapiens (human) | Kd | 1.2750 | 1 | 1 |
entrectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pexidartinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
TAK-580 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 2126458 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
emd1214063 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1838705a | Homo sapiens (human) | Kd | 10.0000 | 1 | 1 |
pf 3758309 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gdc 0980 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
azd2014 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
(5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
plx4032 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1363089 | Homo sapiens (human) | Kd | 0.0235 | 2 | 2 |
arry-334543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
kin-193 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk 2461 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bay 869766 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
as 703026 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
baricitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dabrafenib | Homo sapiens (human) | Kd | 0.7830 | 1 | 1 |
pki 587 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
n-(3-fluoro-4-((1-methyl-6-(1h-pyrazol-4-yl)-1h-indazol-5 yl)oxy)phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ribociclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8033 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pha 793887 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
sb 1518 | Homo sapiens (human) | Kd | 6.5370 | 1 | 1 |
abemaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
mk-8776 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
afuresertib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
gsk 1070916 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
jnj38877605 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
dinaciclib | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
gilteritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
alectinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
glpg0634 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
encorafenib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
bms-911543 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
gsk2141795 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd8186 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
byl719 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
cep-32496 | Homo sapiens (human) | Kd | 15.0010 | 2 | 2 |
rociletinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
ceritinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
azd1208 | Homo sapiens (human) | Kd | 30.0000 | 1 | 2 |
vx-509 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
debio 1347 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
volitinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
osimertinib | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
at 9283 | Homo sapiens (human) | Kd | 0.8900 | 1 | 1 |
otssp167 | Homo sapiens (human) | Kd | 0.0730 | 1 | 1 |
chir 258 | Homo sapiens (human) | Kd | 0.4040 | 3 | 3 |
osi 027 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
nintedanib | Homo sapiens (human) | Kd | 0.0376 | 2 | 2 |
bay 80-6946 | Homo sapiens (human) | Kd | 30.0000 | 1 | 1 |
pp242 | Homo sapiens (human) | Kd | 0.2000 | 1 | 1 |
Drugs with Other Measurements
Drug | Taxonomy | Measurement | Average (mM) | Bioassay(s) | Publication(s) |
phosphotyrosine | Homo sapiens (human) | ID50 | 5,000.0000 | 1 | 1 |
Hydroxylated 2-(5'-salicyl)naphthalenes as protein-tyrosine kinase inhibitors.Journal of medicinal chemistry, , Oct-01, Volume: 36, Issue:20, 1993
Non-amine based analogues of lavendustin A as protein-tyrosine kinase inhibitors.Journal of medicinal chemistry, , Oct-01, Volume: 36, Issue:20, 1993
Targeted kinase selectivity from kinase profiling data.ACS medicinal chemistry letters, , May-10, Volume: 3, Issue:5, 2012
A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.Proceedings of the National Academy of Sciences of the United States of America, , Dec-18, Volume: 104, Issue:51, 2007
Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes.Journal of medicinal chemistry, , 03-28, Volume: 62, Issue:6, 2019
Discovery of 4-Methyl-N-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((1-nicotinoylpiperidin-4-yl)oxy)benzamide (CHMFL-ABL/KIT-155) as a Novel Highly Potent Type II ABL/KIT Dual Kinase Inhibitor with a Distinct Hinge Binding.Journal of medicinal chemistry, , 01-12, Volume: 60, Issue:1, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid LeJournal of medicinal chemistry, , Mar-10, Volume: 59, Issue:5, 2016
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
9-(Arenethenyl)purines as dual Src/Abl kinase inhibitors targeting the inactive conformation: design, synthesis, and biological evaluation.Journal of medicinal chemistry, , Aug-13, Volume: 52, Issue:15, 2009
Discovery of a potent and selective c-Kit inhibitor for the treatment of inflammatory diseases.Bioorganic & medicinal chemistry letters, , Jul-15, Volume: 18, Issue:14, 2008
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of aryl aminoquinazoline pyridones as potent, selective, and orally efficacious inhibitors of receptor tyrosine kinase c-Kit.Journal of medicinal chemistry, , Jun-12, Volume: 51, Issue:11, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells.European journal of medicinal chemistry, , Jan-01, Volume: 161, 2019
Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.Bioorganic & medicinal chemistry, , 05-01, Volume: 26, Issue:8, 2018
Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer.Bioorganic & medicinal chemistry, , 04-01, Volume: 25, Issue:7, 2017
Novel LCK/FMS inhibitors based on phenoxypyrimidine scaffold as potential treatment for inflammatory disorders.European journal of medicinal chemistry, , Dec-01, Volume: 141, 2017
Synthesis and biological evaluation of new [1,2,4]triazolo[4,3-a]pyridine derivatives as potential c-Met inhibitors.Bioorganic & medicinal chemistry, , 08-15, Volume: 24, Issue:16, 2016
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Imidazo[2,1-b]thiazole guanylhydrazones as RSK2 inhibitors.European journal of medicinal chemistry, , Volume: 46, Issue:9, 2011
Syntheses of phenylpyrazolodiazepin-7-ones as conformationally rigid analogs of aminopyrazole amide scaffold and their antiproliferative effects on cancer cells.Bioorganic & medicinal chemistry, , Nov-15, Volume: 19, Issue:22, 2011
Synthesis, activity, and pharmacophore development for isatin-beta-thiosemicarbazones with selective activity toward multidrug-resistant cells.Journal of medicinal chemistry, , May-28, Volume: 52, Issue:10, 2009
Structural basis for the inhibitor recognition of human Lyn kinase domain.Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 19, Issue:23, 2009
A novel Syk family kinase inhibitor: design, synthesis, and structure-activity relationship of 1,2,4-triazolo[4,3-c]pyrimidine and 1,2,4-triazolo[1,5-c]pyrimidine derivatives.Bioorganic & medicinal chemistry, , Aug-01, Volume: 16, Issue:15, 2008
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
Inhibitors of protein kinase C. 3. Potent and highly selective bisindolylmaleimides by conformational restriction.Journal of medicinal chemistry, , Jan-08, Volume: 36, Issue:1, 1993
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD).Bioorganic & medicinal chemistry letters, , Dec-01, Volume: 21, Issue:23, 2011
Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes.Bioorganic & medicinal chemistry letters, , Aug-01, Volume: 18, Issue:15, 2008
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Rational design of inhibitors that bind to inactive kinase conformations.Nature chemical biology, , Volume: 2, Issue:7, 2006
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate.Journal of medicinal chemistry, , Jul-04, Volume: 45, Issue:14, 2002
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Design and synthesis of potent, selective, and orally bioavailable tetrasubstituted imidazole inhibitors of p38 mitogen-activated protein kinase.Journal of medicinal chemistry, , Jun-17, Volume: 42, Issue:12, 1999
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling.Proceedings of the National Academy of Sciences of the United States of America, , Dec-11, Volume: 104, Issue:50, 2007
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
Design and synthesis of orally bioavailable benzimidazoles as Raf kinase inhibitors.Journal of medicinal chemistry, , Nov-27, Volume: 51, Issue:22, 2008
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Biochemical and cellular effects of c-Src kinase-selective pyrido[2, 3-d]pyrimidine tyrosine kinase inhibitors.Biochemical pharmacology, , Oct-01, Volume: 60, Issue:7, 2000
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid LeJournal of medicinal chemistry, , Mar-10, Volume: 59, Issue:5, 2016
Synthesis and biological evaluation of analogues of the kinase inhibitor nilotinib as Abl and Kit inhibitors.Bioorganic & medicinal chemistry letters, , Feb-01, Volume: 23, Issue:3, 2013
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A common protein fold topology shared by flavonoid biosynthetic enzymes and therapeutic targets.Journal of natural products, , Volume: 69, Issue:1, 2006
The development of novel and selective p56lck tyrosine kinase inhibitors.Bioorganic & medicinal chemistry letters, , Sep-22, Volume: 8, Issue:18, 1998
Synthesis and protein-tyrosine kinase inhibitory activity of polyhydroxylated stilbene analogues of piceatannol.Journal of medicinal chemistry, , Oct-01, Volume: 36, Issue:20, 1993
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
N-(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4- piperidinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent.Journal of medicinal chemistry, , Mar-25, Volume: 47, Issue:7, 2004
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
Kinase Inhibitors as Underexplored Antiviral Agents.Journal of medicinal chemistry, , 01-27, Volume: 65, Issue:2, 2022
The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series.European journal of medicinal chemistry, , Feb-01, Volume: 163, 2019
Controlling cellular distribution of drugs with permeability modifying moieties.MedChemComm, , Jun-01, Volume: 10, Issue:6, 2019
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid LeJournal of medicinal chemistry, , Mar-10, Volume: 59, Issue:5, 2016
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery of novel imidazo[1,2-a]pyrazin-8-amines as Brk/PTK6 inhibitors.Bioorganic & medicinal chemistry letters, , Oct-01, Volume: 21, Issue:19, 2011
Imidazo[2,1-b]thiazole guanylhydrazones as RSK2 inhibitors.European journal of medicinal chemistry, , Volume: 46, Issue:9, 2011
Selectively nonselective kinase inhibition: striking the right balance.Journal of medicinal chemistry, , Feb-25, Volume: 53, Issue:4, 2010
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinJournal of medicinal chemistry, , Nov-16, Volume: 49, Issue:23, 2006
Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays.Journal of medicinal chemistry, , Dec-30, Volume: 47, Issue:27, 2004
[no title available],
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains.Bioorganic & medicinal chemistry letters, , Jun-15, Volume: 19, Issue:12, 2009
Design and synthesis of small chemical inhibitors containing different scaffolds for lck SH2 domain.Bioorganic & medicinal chemistry letters, , Oct-20, Volume: 13, Issue:20, 2003
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Pyrazolo[3,4-c]pyridazines as novel and selective inhibitors of cyclin-dependent kinases.Journal of medicinal chemistry, , Nov-03, Volume: 48, Issue:22, 2005
Discovery of aminothiazole inhibitors of cyclin-dependent kinase 2: synthesis, X-ray crystallographic analysis, and biological activities.Journal of medicinal chemistry, , Aug-29, Volume: 45, Issue:18, 2002
Tyrosine kinase inhibitors. 3. Structure-activity relationships for inhibition of protein tyrosine kinases by nuclear-substituted derivatives of 2,2'-dithiobis(1-methyl-N-phenyl-1H-indole-3-carboxamide).Journal of medicinal chemistry, , Jun-24, Volume: 37, Issue:13, 1994
Bicyclic compounds as ring-constrained inhibitors of protein-tyrosine kinase p56lck.Journal of medicinal chemistry, , Feb-19, Volume: 36, Issue:4, 1993
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells.Leukemia, , Volume: 23, Issue:3, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Imidazo[2,1-b]thiazole guanylhydrazones as RSK2 inhibitors.European journal of medicinal chemistry, , Volume: 46, Issue:9, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery and development of aurora kinase inhibitors as anticancer agents.Journal of medicinal chemistry, , May-14, Volume: 52, Issue:9, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo.Nature medicine, , Volume: 10, Issue:3, 2004
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors.Journal of medicinal chemistry, , Jun-10, Volume: 53, Issue:11, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
A small molecule-kinase interaction map for clinical kinase inhibitors.Nature biotechnology, , Volume: 23, Issue:3, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery and synthesis of novel 4-aminopyrrolopyrimidine Tie-2 kinase inhibitors for the treatment of solid tumors.Bioorganic & medicinal chemistry letters, , May-15, Volume: 23, Issue:10, 2013
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.Bioorganic & medicinal chemistry letters, , Jun-17, Volume: 12, Issue:12, 2002
Pyrazolo[3,4-d]pyrimidines containing an extended 3-substituent as potent inhibitors of Lck -- a selectivity insight.Bioorganic & medicinal chemistry letters, , Jun-17, Volume: 12, Issue:12, 2002
Pyrrolo[2,3-d]pyrimidines containing diverse N-7 substituents as potent inhibitors of Lck.Bioorganic & medicinal chemistry letters, , Jun-17, Volume: 12, Issue:12, 2002
Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I.Bioorganic & medicinal chemistry letters, , Oct-02, Volume: 10, Issue:19, 2000
A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.Proceedings of the National Academy of Sciences of the United States of America, , Dec-18, Volume: 104, Issue:51, 2007
(6,7-Dimethoxy-2,4-dihydroindeno[1,2-c]pyrazol-3-yl)phenylamines: platelet-derived growth factor receptor tyrosine kinase inhibitors with broad antiproliferative activity against tumor cells.Journal of medicinal chemistry, , Dec-29, Volume: 48, Issue:26, 2005
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Vascular endothelial growth factor (VEGF) receptors: drugs and new inhibitors.Journal of medicinal chemistry, , Dec-27, Volume: 55, Issue:24, 2012
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery of a Janus Kinase Inhibitor Bearing a Highly Three-Dimensional Spiro Scaffold: JTE-052 (Delgocitinib) as a New Dermatological Agent to Treat Inflammatory Skin Disorders.Journal of medicinal chemistry, , 07-09, Volume: 63, Issue:13, 2020
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550).Journal of medicinal chemistry, , Dec-25, Volume: 51, Issue:24, 2008
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor.Science (New York, N.Y.), , Oct-31, Volume: 302, Issue:5646, 2003
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione (AEB071), a potent and selective inhibitor of protein kinase C isotypes.Journal of medicinal chemistry, , Oct-22, Volume: 52, Issue:20, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Emerging targets in osteoporosis disease modification.Journal of medicinal chemistry, , Jun-10, Volume: 53, Issue:11, 2010
Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling.Proceedings of the National Academy of Sciences of the United States of America, , Dec-11, Volume: 104, Issue:50, 2007
N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor.Journal of medicinal chemistry, , Nov-02, Volume: 49, Issue:22, 2006
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Kinase inhibition by deoxy analogues of the resorcylic lactone L-783277.ACS medicinal chemistry letters, , Jan-13, Volume: 2, Issue:1, 2011
Application of combinatorial biocatalysis for a unique ring expansion of dihydroxymethylzearalenone.Bioorganic & medicinal chemistry letters, , Jun-01, Volume: 19, Issue:11, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5- methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan- 2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor.Journal of medicinal chemistry, , Apr-06, Volume: 49, Issue:7, 2006
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile.Journal of medicinal chemistry, , Nov-30, Volume: 49, Issue:24, 2006
Optimisation of a 5-[3-phenyl-(2-cyclic-ether)-methyl-ether]-4-aminopyrrolopyrimidine series of IGF-1R inhibitors.Bioorganic & medicinal chemistry letters, , Apr-15, Volume: 26, Issue:8, 2016
Identification of a 5-[3-phenyl-(2-cyclic-ether)-methylether]-4-aminopyrrolo[2,3-d]pyrimidine series of IGF-1R inhibitors.Bioorganic & medicinal chemistry letters, , Apr-15, Volume: 26, Issue:8, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)-N'-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor.Journal of medicinal chemistry, , Apr-05, Volume: 50, Issue:7, 2007
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.European journal of medicinal chemistry, , May-15, Volume: 170, 2019
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Tyrosine Kinase Inhibitors. 20. Optimization of Substituted Quinazoline and Pyrido[3,4-d]pyrimidine Derivatives as Orally Active, Irreversible Inhibitors of the Epidermal Growth Factor Receptor Family.Journal of medicinal chemistry, , 09-08, Volume: 59, Issue:17, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold.Journal of medicinal chemistry, , Dec-08, Volume: 54, Issue:23, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK).Journal of medicinal chemistry, , Sep-22, Volume: 54, Issue:18, 2011
Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling.Proceedings of the National Academy of Sciences of the United States of America, , Dec-11, Volume: 104, Issue:50, 2007
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of RAF265: A Potent mut-B-RAF Inhibitor for the Treatment of Metastatic Melanoma.ACS medicinal chemistry letters, , Sep-10, Volume: 6, Issue:9, 2015
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase.Proceedings of the National Academy of Sciences of the United States of America, , Mar-06, Volume: 104, Issue:10, 2007
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of aurora B kinase.Journal of medicinal chemistry, , May-03, Volume: 50, Issue:9, 2007
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling.Proceedings of the National Academy of Sciences of the United States of America, , Dec-11, Volume: 104, Issue:50, 2007
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.Journal of medicinal chemistry, , Aug-27, Volume: 52, Issue:16, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer.Journal of medicinal chemistry, , Mar-11, Volume: 53, Issue:5, 2010
Structure-based design of novel class II c-Met inhibitors: 2. SAR and kinase selectivity profiles of the pyrazolone series.Journal of medicinal chemistry, , Mar-08, Volume: 55, Issue:5, 2012
Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458).Journal of medicinal chemistry, , Jul-10, Volume: 51, Issue:13, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery and development of aurora kinase inhibitors as anticancer agents.Journal of medicinal chemistry, , May-14, Volume: 52, Issue:9, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily.Journal of medicinal chemistry, , Mar-12, Volume: 52, Issue:5, 2009
[no title available],
Discovery of Zanubrutinib (BGB-3111), a Novel, Potent, and Selective Covalent Inhibitor of Bruton's Tyrosine Kinase.Journal of medicinal chemistry, , 09-12, Volume: 62, Issue:17, 2019
[no title available]European journal of medicinal chemistry, , Feb-10, Volume: 145, 2018
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Homogeneous Assay for Target Engagement Utilizing Bioluminescent Thermal Shift.ACS medicinal chemistry letters, , Jun-14, Volume: 9, Issue:6, 2018
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood, , Oct-01, Volume: 114, Issue:14, 2009
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor.Journal of medicinal chemistry, , Apr-14, Volume: 59, Issue:7, 2016
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing.Bioorganic & medicinal chemistry, , Mar-01, Volume: 18, Issue:5, 2010
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Identification of 1-(3-(6,7-dimethoxyquinazolin-4-yloxy)phenyl)-3-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)urea hydrochloride (CEP-32496), a highly potent and orally efficacious inhibitor of V-RAF murine sarcoma viral oncogene homologue B1 (BJournal of medicinal chemistry, , Feb-09, Volume: 55, Issue:3, 2012
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamJournal of medicinal chemistry, , Jul-25, Volume: 56, Issue:14, 2013
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
A quantitative analysis of kinase inhibitor selectivity.Nature biotechnology, , Volume: 26, Issue:1, 2008
The target landscape of clinical kinase drugs.Science (New York, N.Y.), , 12-01, Volume: 358, Issue:6367, 2017
Comprehensive analysis of kinase inhibitor selectivity.Nature biotechnology, , Oct-30, Volume: 29, Issue:11, 2011
Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120).Journal of medicinal chemistry, , Jul-23, Volume: 52, Issue:14, 2009
BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy.Cancer research, , Jun-15, Volume: 68, Issue:12, 2008
Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach.Journal of medicinal chemistry, , Aug-27, Volume: 52, Issue:16, 2009
Discovery of a (1H-benzoimidazol-2-yl)-1H-pyridin-2-one (BMS-536924) inhibitor of insulin-like growth factor I receptor kinase with in vivo antitumor activity.Journal of medicinal chemistry, , Sep-08, Volume: 48, Issue:18, 2005
Enables
This protein enables 18 target(s):
Target | Category | Definition |
phosphotyrosine residue binding | molecular function | Binding to a phosphorylated tyrosine residue within a protein. [PMID:14636584] |
protein tyrosine kinase activity | molecular function | Catalysis of the reaction: ATP + a protein tyrosine = ADP + protein tyrosine phosphate. [RHEA:10596] |
non-membrane spanning protein tyrosine kinase activity | molecular function | Catalysis of the reaction: ATP + protein L-tyrosine = ADP + protein L-tyrosine phosphate by a non-membrane spanning protein. [EC:2.7.10.2] |
protein serine/threonine phosphatase activity | molecular function | Catalysis of the reaction: protein serine phosphate + H2O = protein serine + phosphate, and protein threonine phosphate + H2O = protein threonine + phosphate. [GOC:bf] |
protein binding | molecular function | Binding to a protein. [GOC:go_curators] |
ATP binding | molecular function | Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator. [ISBN:0198506732] |
phospholipase activator activity | molecular function | Binds to and increases the activity of a phospholipase, an enzyme that catalyzes of the hydrolysis of a glycerophospholipid. [GOC:ai] |
protein kinase binding | molecular function | Binding to a protein kinase, any enzyme that catalyzes the transfer of a phosphate group, usually from ATP, to a protein substrate. [GOC:jl] |
protein phosphatase binding | molecular function | Binding to a protein phosphatase. [GOC:jl] |
SH2 domain binding | molecular function | Binding to a SH2 domain (Src homology 2) of a protein, a protein domain of about 100 amino-acid residues and belonging to the alpha + beta domain class. [GOC:go_curators, Pfam:PF00017] |
T cell receptor binding | molecular function | Binding to a T cell receptor, the antigen-recognizing receptor on the surface of T cells. [GOC:jl] |
CD4 receptor binding | molecular function | Binding to a CD4, a receptor found on the surface of T cells, monocytes and macrophages. [GOC:jl, MSH:D015704] |
CD8 receptor binding | molecular function | Binding to a CD8, a receptor found on the surface of thymocytes and cytotoxic and suppressor T-lymphocytes. [GOC:jl, MSH:D016827] |
identical protein binding | molecular function | Binding to an identical protein or proteins. [GOC:jl] |
phospholipase binding | molecular function | Binding to a phospholipase. [GOC:jl] |
phosphatidylinositol 3-kinase binding | molecular function | Binding to a phosphatidylinositol 3-kinase, any enzyme that catalyzes the addition of a phosphate group to an inositol lipid at the 3' position of the inositol ring. [PMID:10209156, PMID:9255069] |
ATPase binding | molecular function | Binding to an ATPase, any enzyme that catalyzes the hydrolysis of ATP. [GOC:ai] |
signaling receptor binding | molecular function | Binding to one or more specific sites on a receptor molecule, a macromolecule that undergoes combination with a hormone, neurotransmitter, drug or intracellular messenger to initiate a change in cell function. [GOC:bf, GOC:ceb, ISBN:0198506732] |
Located In
This protein is located in 6 target(s):
Target | Category | Definition |
pericentriolar material | cellular component | A network of small fibers that surrounds the centrioles in cells; contains the microtubule nucleating activity of the centrosome. [GOC:clt, ISBN:0815316194] |
immunological synapse | cellular component | An area of close contact between a lymphocyte (T-, B-, or natural killer cell) and a target cell formed through the clustering of particular signaling and adhesion molecules and their associated membrane rafts on both the lymphocyte and the target cell and facilitating activation of the lymphocyte, transfer of membrane from the target cell to the lymphocyte, and in some situations killing of the target cell through release of secretory granules and/or death-pathway ligand-receptor interaction. [GOC:mgi_curators, PMID:11244041, PMID:11376300] |
cytosol | cellular component | The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes. [GOC:hjd, GOC:jl] |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
membrane raft | cellular component | Any of the small (10-200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched membrane domains that compartmentalize cellular processes. Small rafts can sometimes be stabilized to form larger platforms through protein-protein and protein-lipid interactions. [PMID:16645198, PMID:20044567] |
extracellular exosome | cellular component | A vesicle that is released into the extracellular region by fusion of the limiting endosomal membrane of a multivesicular body with the plasma membrane. Extracellular exosomes, also simply called exosomes, have a diameter of about 40-100 nm. [GOC:BHF, GOC:mah, GOC:vesicles, PMID:15908444, PMID:17641064, PMID:19442504, PMID:19498381, PMID:22418571, PMID:24009894] |
Active In
This protein is active in 1 target(s):
Target | Category | Definition |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
Involved In
This protein is involved in 24 target(s):
Target | Category | Definition |
protein phosphorylation | biological process | The process of introducing a phosphate group on to a protein. [GOC:hb] |
intracellular zinc ion homeostasis | biological process | A homeostatic process involved in the maintenance of a steady state level of zinc ions within a cell. [GOC:ai, GOC:mah] |
activation of cysteine-type endopeptidase activity involved in apoptotic process | biological process | Any process that initiates the activity of the inactive enzyme cysteine-type endopeptidase in the context of an apoptotic process. [GOC:al, GOC:dph, GOC:jl, GOC:mtg_apoptosis, GOC:tb, PMID:14744432, PMID:18328827, Wikipedia:Caspase] |
response to xenobiotic stimulus | biological process | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus from a xenobiotic, a compound foreign to the organim exposed to it. It may be synthesized by another organism (like ampicilin) or it can be a synthetic chemical. [GOC:jl, GOC:krc] |
peptidyl-tyrosine phosphorylation | biological process | The phosphorylation of peptidyl-tyrosine to form peptidyl-O4'-phospho-L-tyrosine. [RESID:AA0039] |
hemopoiesis | biological process | The process whose specific outcome is the progression of the myeloid and lymphoid derived organ/tissue systems of the blood and other parts of the body over time, from formation to the mature structure. The site of hemopoiesis is variable during development, but occurs primarily in bone marrow or kidney in many adult vertebrates. [GOC:dgh, ISBN:0198506732] |
platelet activation | biological process | A series of progressive, overlapping events triggered by exposure of the platelets to subendothelial tissue. These events include shape change, adhesiveness, aggregation, and release reactions. When carried through to completion, these events lead to the formation of a stable hemostatic plug. [http://www.graylab.ac.uk/omd/] |
T cell differentiation | biological process | The process in which a precursor cell type acquires characteristics of a more mature T-cell. A T cell is a type of lymphocyte whose definin characteristic is the expression of a T cell receptor complex. [GO_REF:0000022, GOC:jid, GOC:mah] |
T cell costimulation | biological process | The process of providing, via surface-bound receptor-ligand pairs, a second, antigen-independent, signal in addition to that provided by the T cell receptor to augment T cell activation. [ISBN:0781735149] |
positive regulation of heterotypic cell-cell adhesion | biological process | Any process that activates or increases the frequency, rate, or extent of heterotypic cell-cell adhesion. [GOC:add] |
intracellular signal transduction | biological process | The process in which a signal is passed on to downstream components within the cell, which become activated themselves to further propagate the signal and finally trigger a change in the function or state of the cell. [GOC:bf, GOC:jl, GOC:signaling, ISBN:3527303782] |
peptidyl-tyrosine autophosphorylation | biological process | The phosphorylation by a protein of one or more of its own tyrosine amino acid residues, or a tyrosine residue on an identical protein. [PMID:10037737, PMID:10068444, PMID:10940390] |
Fc-gamma receptor signaling pathway | biological process | The series of molecular signals initiated by the binding of the Fc portion of immunoglobulin G (IgG) to an Fc-gamma receptor on the surface of a target cell, and ending with the regulation of a downstream cellular process, e.g. transcription. The Fc portion of an immunoglobulin is its C-terminal constant region. [GOC:phg, PMID:11244038] |
T cell receptor signaling pathway | biological process | The series of molecular signals initiated by the cross-linking of an antigen receptor on a T cell. [GOC:add] |
positive regulation of T cell receptor signaling pathway | biological process | Any process that activates or increases the frequency, rate or extent of signaling pathways initiated by the cross-linking of an antigen receptor on a T cell. [GOC:ai] |
positive regulation of T cell activation | biological process | Any process that activates or increases the frequency, rate or extent of T cell activation. [GOC:ai] |
leukocyte migration | biological process | The movement of a leukocyte within or between different tissues and organs of the body. [GOC:add, ISBN:0781735149, PMID:14680625, PMID:14708592, PMID:7507411, PMID:8600538] |
release of sequestered calcium ion into cytosol | biological process | The process in which calcium ions sequestered in the endoplasmic reticulum, Golgi apparatus or mitochondria are released into the cytosolic compartment. [GOC:dph, GOC:hjd, GOC:mtg_lung, PMID:1814929] |
regulation of lymphocyte activation | biological process | Any process that modulates the frequency, rate or extent of lymphocyte activation. [GOC:ai] |
positive regulation of leukocyte cell-cell adhesion | biological process | Any process that activates or increases the frequency, rate or extent of leukocyte cell-cell adhesion. [GO_REF:0000058, GOC:BHF, GOC:rl, GOC:TermGenie, PMID:21106532] |
positive regulation of intrinsic apoptotic signaling pathway | biological process | Any process that activates or increases the frequency, rate or extent of intrinsic apoptotic signaling pathway. [GOC:mtg_apoptosis] |
innate immune response | biological process | Innate immune responses are defense responses mediated by germline encoded components that directly recognize components of potential pathogens. [GO_REF:0000022, GOC:add, GOC:ebc, GOC:mtg_sensu] |
cell surface receptor protein tyrosine kinase signaling pathway | biological process | The series of molecular signals initiated by an extracellular ligand binding to a receptor on the surface of the target cell where the receptor possesses tyrosine kinase activity, and ending with the regulation of a downstream cellular process, e.g. transcription. [GOC:ceb, GOC:signaling] |
B cell receptor signaling pathway | biological process | The series of molecular signals initiated by the cross-linking of an antigen receptor on a B cell. [GOC:add] |