Page last updated: 2024-12-06

eliprodil

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

Eliprodil is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that has been investigated for its potential therapeutic effects in various neurological conditions. It was originally synthesized in the 1980s and has since been the subject of numerous preclinical and clinical studies. Eliprodil exhibits a high affinity for the NMDA receptor glycine site, blocking the influx of calcium ions into neurons. This action has been linked to its neuroprotective properties in animal models of stroke, epilepsy, and neurodegenerative disorders. Eliprodil's effects include reducing excitotoxicity, inhibiting neuronal apoptosis, and improving cognitive function. However, its clinical development has been hindered by its poor bioavailability and potential side effects, such as sedation and dizziness. Despite these challenges, Eliprodil continues to be studied as a potential therapeutic agent, particularly in the context of neuroprotection and cognitive enhancement.'

1-(4-chlorophenyl)-2-[4-(4-fluorobenzyl)piperidin-1-yl]ethanol : A member of the class of piperidines that is piperidine substituted by a 2-(4-chlorophenyl)-2-hydroxyethyl group at position 1 and by a 4-fluorobenzyl group at position 4. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID60703
CHEMBL ID28564
CHEBI ID180651
CHEBI ID91784
SCHEMBL ID154047
MeSH IDM0162174

Synonyms (74)

Synonym
bdbm50079387
HMS3268B06
1-(4-chloro-phenyl)-2-[4-(4-fluoro-benzyl)-piperidin-1-yl]-ethanol
CHEBI:180651
1-(4-chlorophenyl)-2-[4-(4-fluorobenzyl)piperidin-1-yl]ethanol
1-(4-chlorophenyl)-2-{4-[(4-fluorophenyl)methyl]piperidin-1-yl}ethan-1-ol
1-(4-chlorophenyl)-2-[4-[(4-fluorophenyl)methyl]piperidin-1-yl]ethanol
1-(4-chlorophenyl)-2-[4-[(4-fluorophenyl)methyl]piperidin-1-yl]ethan-1-ol
alpha-(4-chlorophenyl)-4-[(4-fluorophenyl)methyl]-1-piperidineethanol
BRD-A61392169-001-01-9
EU-0100467
eliprodil, >=98% (hplc), powder
PDSP1_000365
PDSP2_000363
NCGC00092329-03
NCGC00092329-01
NCGC00092329-02
1-piperidineethanol, alpha-(4-chlorophenyl)-4-(4-fluorophenyl)-, (+-)-
1-piperidineethanol, alpha-(4-chlorophenyl)-4-((4-fluorophenyl)methyl)-, (+-)-
sl 82-0715
eliprodil [inn]
(+-)-alpha-(p-chlorophenyl)-4-(p-fluorobenzyl)-1-piperidineethanol
sl-820715
c20h23clfno
NCGC00092329-04
CHEMBL28564 ,
eliprodil ,
HMS3261M16
dtxsid1045744 ,
dtxcid9025744
cas-119431-25-3
tox21_111194
119431-25-3
yw62a6tw29 ,
unii-yw62a6tw29
sl 820715
LP00467
AKOS015850327
S6731
CCG-221771
smr001456245
MLS006010706
SCHEMBL154047
NCGC00092329-06
tox21_111194_1
tox21_500467
NCGC00261152-01
?-(4-chlorophenyl)-4-[(4-fluorophenyl)methyl]-1-piperidineethanol
HB0274
HY-12881
mfcd00866651
J-004126
EX-A878
sr-01000597358
SR-01000597358-1
CHEBI:91784
AS-72184
1-(4-chlorophenyl)-2-(4-(4-fluorobenzyl)piperidin-1-yl)ethanol
DB12869
BCP23813
sl-82,0715; sl82,0715; sl 82,0715; sl-820715; sl820715; sl 820715
Q5361298
FT-0716701
HMS3677M03
1-(4-chlorophenyl)-2-(4-(4-fluorobenzyl)piperidin-1-yl)ethan-1-ol
HMS3413M03
SDCCGSBI-0633716.P001
1-(4-chlorophenyl)-2-[4-[(4-fluorophenyl)methyl]piperidin-1-yl]ethanol.
1-piperidineethanol, alpha-(4-chlorophenyl)-4-[(4-fluorophenyl)methyl]-
eliprodil (sl-820715)
AC-36819
NCGC00092329-08
(+/-)-.alpha.-(p-chlorophenyl)-4-(p-fluorobenzyl)-1-piperidineethanol
1-(4-chlorophenyl)-2-[4-[(4-fluorophenyl)methyl]-1-piperidyl]ethanol

Research Excerpts

Overview

Eliprodil is a more selective NMDA receptor antagonist. It acts at the polyamine modulatory site of NMDA receptors.

ExcerptReferenceRelevance
"Eliprodil is a more selective NMDA receptor antagonist that acts at the polyamine modulatory site of NMDA receptors."( Administration of eliprodil during ethanol withdrawal in the neonatal rat attenuates ethanol-induced learning deficits.
Dominguez, HD; Garcia, GG; Riley, EP; Thomas, JD, 2004
)
1.38

Treatment

ExcerptReferenceRelevance
"Pretreatment with eliprodil protected against such toxicity."( Protection by eliprodil against excitotoxicity in cultured rat retinal ganglion cells.
DeSantis, L; Kapin, MA; Nawy, S; Pang, IH; Wexler, EM, 1999
)
0.99

Toxicity

ExcerptReferenceRelevance
" Putrescine was moderately toxic but only at 500 microM concentration."( Neurotoxicity of polyamines and pharmacological neuroprotection in cultures of rat cerebellar granule cells.
Ciani, E; Contestabile, A; Dall'Olio, R; Gandolfi, O; Sparapani, M, 1997
)
0.3

Compound-Compound Interactions

ExcerptReferenceRelevance
" When eliprodil was combined with an ineffective dose of L-701,324 (2."( Anticonvulsant effects of eliprodil alone or combined with the glycineB receptor antagonist L-701,324 or the competitive NMDA antagonist CGP 40116 in the amygdala kindling model in rats.
Ebert, U; Löscher, W; Wlaź, P, 1999
)
1.08

Bioavailability

ExcerptReferenceRelevance
" Central bioavailability was gauged indirectly by determining anticonvulsant activity in a mouse maximal electroshock (MES) assay."( 4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist.
Bigge, CF; Boxer, PA; Cai, SX; Coughenour, LL; Espitia, SA; Hawkinson, JE; Keana, JF; Konkoy, CS; Rock, DM; Tran, M; Weber, E; Whittemore, ER; Wise, LD; Woodward, RM; Zhou, ZL, 1999
)
0.3
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (5)

ClassDescription
monochlorobenzenesAny member of the class of chlorobenzenes containing a mono- or poly-substituted benzene ring in which only one substituent is chlorine.
monofluorobenzenesAny member of the class of fluorobenzenes containing a mono- or poly-substituted benzene ring carrying a single fluorine substitutent.
piperidines
secondary alcoholA secondary alcohol is a compound in which a hydroxy group, -OH, is attached to a saturated carbon atom which has two other carbon atoms attached to it.
tertiary amino compoundA compound formally derived from ammonia by replacing three hydrogen atoms by organyl groups.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (70)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Ferritin light chainEquus caballus (horse)Potency14.12545.623417.292931.6228AID2323
thioredoxin reductaseRattus norvegicus (Norway rat)Potency0.75190.100020.879379.4328AID588453
15-lipoxygenase, partialHomo sapiens (human)Potency25.11890.012610.691788.5700AID887
RAR-related orphan receptor gammaMus musculus (house mouse)Potency20.24780.006038.004119,952.5996AID1159521; AID1159523
SMAD family member 2Homo sapiens (human)Potency15.08900.173734.304761.8120AID1346859
ATAD5 protein, partialHomo sapiens (human)Potency20.58780.004110.890331.5287AID493106
NFKB1 protein, partialHomo sapiens (human)Potency11.22020.02827.055915.8489AID895; AID928
SMAD family member 3Homo sapiens (human)Potency15.08900.173734.304761.8120AID1346859
GLI family zinc finger 3Homo sapiens (human)Potency19.33510.000714.592883.7951AID1259369; AID1259392
ThrombopoietinHomo sapiens (human)Potency15.84890.02517.304831.6228AID917; AID918
AR proteinHomo sapiens (human)Potency29.84930.000221.22318,912.5098AID1259243; AID1259247
thyroid stimulating hormone receptorHomo sapiens (human)Potency39.81070.001318.074339.8107AID926; AID938
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency25.15670.001022.650876.6163AID1224838; AID1224893
progesterone receptorHomo sapiens (human)Potency29.84930.000417.946075.1148AID1346784
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency6.64430.01237.983543.2770AID1346984; AID1645841
retinoic acid nuclear receptor alpha variant 1Homo sapiens (human)Potency33.49150.003041.611522,387.1992AID1159553
retinoid X nuclear receptor alphaHomo sapiens (human)Potency23.91450.000817.505159.3239AID1159531
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency33.49150.001530.607315,848.9004AID1224819; AID1224820
estrogen nuclear receptor alphaHomo sapiens (human)Potency25.38590.000229.305416,493.5996AID1259244; AID1259248; AID743075; AID743080; AID743091
cytochrome P450 2D6Homo sapiens (human)Potency0.03450.00108.379861.1304AID1645840
vitamin D (1,25- dihydroxyvitamin D3) receptorHomo sapiens (human)Potency32.55220.023723.228263.5986AID743222; AID743241
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency0.02510.035520.977089.1251AID504332
v-jun sarcoma virus 17 oncogene homolog (avian)Homo sapiens (human)Potency23.24560.057821.109761.2679AID1159526; AID1159528
Bloom syndrome protein isoform 1Homo sapiens (human)Potency0.00350.540617.639296.1227AID2364; AID2528
cellular tumor antigen p53 isoform aHomo sapiens (human)Potency31.62280.316212.443531.6228AID902
D(1A) dopamine receptorHomo sapiens (human)Potency15.79470.02245.944922.3872AID488981; AID488982; AID488983
chromobox protein homolog 1Homo sapiens (human)Potency39.81070.006026.168889.1251AID488953
potassium voltage-gated channel subfamily H member 2 isoform dHomo sapiens (human)Potency0.01780.01789.637444.6684AID588834
thyroid hormone receptor beta isoform 2Rattus norvegicus (Norway rat)Potency8.91950.000323.4451159.6830AID743065; AID743067
heat shock protein beta-1Homo sapiens (human)Potency31.66790.042027.378961.6448AID743210; AID743228
serine/threonine-protein kinase mTOR isoform 1Homo sapiens (human)Potency14.68920.00378.618923.2809AID2668
gemininHomo sapiens (human)Potency35.48130.004611.374133.4983AID463097
cytochrome P450 3A4 isoform 1Homo sapiens (human)Potency3.57170.031610.279239.8107AID884; AID885
muscarinic acetylcholine receptor M1Rattus norvegicus (Norway rat)Potency4.17070.00106.000935.4813AID943; AID944
neuropeptide S receptor isoform AHomo sapiens (human)Potency31.62280.015812.3113615.5000AID1461
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Polyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)Potency9.50560.316212.765731.6228AID881
Voltage-dependent calcium channel gamma-2 subunitMus musculus (house mouse)Potency29.84930.001557.789015,848.9004AID1259244
Cellular tumor antigen p53Homo sapiens (human)Potency29.84930.002319.595674.0614AID651631
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Glutamate receptor 2Rattus norvegicus (Norway rat)Potency29.84930.001551.739315,848.9004AID1259244
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Histamine H2 receptorCavia porcellus (domestic guinea pig)Potency9.50560.00638.235039.8107AID881
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Inositol monophosphatase 1Rattus norvegicus (Norway rat)Potency1.58491.000010.475628.1838AID901
GABA theta subunitRattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)Potency3.57171.000012.224831.6228AID885
2,3-bisphosphoglycerate-independent phosphoglycerate mutaseLeishmania major strain FriedlinPotency0.01077.568615.230621.3313AID504548
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
N-methyl-D-aspartate receptor Sus scrofa (pig)IC50 (µMol)0.08260.08260.08260.0826AID144175
Alpha-1B adrenergic receptorRattus norvegicus (Norway rat)IC50 (µMol)3.30000.00021.874210.0000AID36705
Alpha-1D adrenergic receptorRattus norvegicus (Norway rat)IC50 (µMol)3.30000.00021.270410.0000AID36705
Glutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)IC50 (µMol)67.13330.00071.600310.0000AID146070; AID146080; AID146089
Alpha-1A adrenergic receptorRattus norvegicus (Norway rat)IC50 (µMol)3.30000.00001.819410.0000AID36705
Glutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)IC50 (µMol)100.00000.00071.630610.0000AID146070
Glutamate receptor ionotropic, NMDA 2BRattus norvegicus (Norway rat)IC50 (µMol)1.40000.00061.525710.0000AID146080
Glutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)IC50 (µMol)100.00000.00071.747210.0000AID146089
Glutamate receptor ionotropic, NMDA 1Homo sapiens (human)Ki0.01300.00120.48246.0000AID538755
Glutamate receptor ionotropic, NMDA 2BHomo sapiens (human)Ki0.01300.00120.32686.0000AID1174070; AID1262298; AID1297657; AID1403510; AID1415567; AID1552397; AID1650557; AID1690208; AID538755
Sigma intracellular receptor 2Rattus norvegicus (Norway rat)Ki0.07100.00241.10509.3000AID1867872; AID1901324
Sigma non-opioid intracellular receptor 1Cavia porcellus (domestic guinea pig)Ki0.06700.00000.338510.0000AID1174070; AID1867871; AID1901323
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (175)

Processvia Protein(s)Taxonomy
lipid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
phospholipid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
apoptotic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell population proliferationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of macrophage derived foam cell differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonic acid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell migrationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
prostate gland developmentPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
regulation of epithelial cell differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of chemokine productionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of peroxisome proliferator activated receptor signaling pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
positive regulation of keratinocyte differentiationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell cyclePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of growthPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
hepoxilin biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
endocannabinoid signaling pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cannabinoid biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipoxin A4 biosynthetic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleic acid metabolic processPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipid oxidationPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipoxygenase pathwayPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cellular response to amyloid-betaGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
monoatomic cation transportGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
brain developmentGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
visual learningGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of calcium ion transport into cytosolGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
propylene metabolic processGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium-mediated signalingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
ionotropic glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
regulation of membrane potentialGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
response to ethanolGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
regulation of synaptic plasticityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
regulation of neuronal synaptic plasticityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
protein heterotetramerizationGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium ion homeostasisGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium ion transmembrane import into cytosolGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
excitatory chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of reactive oxygen species biosynthetic processGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
regulation of monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
response to glycineGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
positive regulation of excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
brain developmentGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
learning or memoryGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
calcium-mediated signalingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
ionotropic glutamate receptor signaling pathwayGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
response to ethanolGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
regulation of synaptic plasticityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
regulation of neuronal synaptic plasticityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
protein heterotetramerizationGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
positive regulation of synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
calcium ion transmembrane import into cytosolGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
excitatory chemical synaptic transmissionGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
regulation of presynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
negative regulation of dendritic spine maintenanceGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
regulation of monoatomic cation transmembrane transportGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
positive regulation of excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
positive regulation of cysteine-type endopeptidase activityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
long-term synaptic potentiationGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
synaptic transmission, glutamatergicGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
excitatory postsynaptic potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (53)

Processvia Protein(s)Taxonomy
iron ion bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
calcium ion bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
protein bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
lipid bindingPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleate 13S-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonate 8(S)-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
arachidonate 15-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
linoleate 9S-lipoxygenase activityPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium channel activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
amyloid-beta bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calcium ion bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
protein bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
calmodulin bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
glycine bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
glutamate bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
glutamate-gated calcium ion channel activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
protein-containing complex bindingGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
signaling receptor activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
ligand-gated monoatomic ion channel activityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
amyloid-beta bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
NMDA glutamate receptor activityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
protein bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
zinc ion bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
glycine bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
glutamate bindingGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
glutamate-gated calcium ion channel activityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potentialGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (42)

Processvia Protein(s)Taxonomy
nucleusPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cytosolPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
cytoskeletonPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
plasma membranePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
adherens junctionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
focal adhesionPolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
membranePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
extracellular exosomePolyunsaturated fatty acid lipoxygenase ALOX15BHomo sapiens (human)
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
plasma membraneGamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)
plasma membraneGlutamate receptor 2Rattus norvegicus (Norway rat)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)
plasma membraneGlutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)
plasma membraneGamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)
plasma membraneGlutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2BRattus norvegicus (Norway rat)
plasma membraneGlutamate receptor ionotropic, NMDA 2BRattus norvegicus (Norway rat)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)
plasma membraneGlutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)
cytoplasmGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synaptic vesicleGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
cell surfaceGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
postsynaptic densityGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
NMDA selective glutamate receptor complexGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
dendriteGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
neuron projectionGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synaptic cleftGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
terminal boutonGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
dendritic spineGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synapseGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
postsynaptic membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
excitatory synapseGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synaptic membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
synapseGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
neuron projectionGlutamate receptor ionotropic, NMDA 1Homo sapiens (human)
cytoplasmGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
lysosomeGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
late endosomeGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
endoplasmic reticulum membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
cytoskeletonGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
cell surfaceGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
postsynaptic densityGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
NMDA selective glutamate receptor complexGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
neuron projectionGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
postsynaptic membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
synaptic membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
plasma membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
postsynaptic density membraneGlutamate receptor ionotropic, NMDA 2BHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (116)

Assay IDTitleYearJournalArticle
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588349qHTS for Inhibitors of ATXN expression: Validation of Cytotoxic Assay
AID1508627Counterscreen qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: GLuc-NoTag assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347410qHTS for inhibitors of adenylyl cyclases using a fission yeast platform: a pilot screen against the NCATS LOPAC library2019Cellular signalling, 08, Volume: 60A fission yeast platform for heterologous expression of mammalian adenylyl cyclases and high throughput screening.
AID1347151Optimization of GU AMC qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347045Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot counterscreen GloSensor control cell line2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1508628Confirmatory qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID686947qHTS for small molecule inhibitors of Yes1 kinase: Primary Screen2013Bioorganic & medicinal chemistry letters, Aug-01, Volume: 23, Issue:15
Identification of potent Yes1 kinase inhibitors using a library screening approach.
AID588378qHTS for Inhibitors of ATXN expression: Validation
AID1347405qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS LOPAC collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1347049Natriuretic polypeptide receptor (hNpr1) antagonism - Pilot screen2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347050Natriuretic polypeptide receptor (hNpr2) antagonism - Pilot subtype selectivity assay2019Science translational medicine, 07-10, Volume: 11, Issue:500
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
AID1347059CD47-SIRPalpha protein protein interaction - Alpha assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1508629Cell Viability qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347058CD47-SIRPalpha protein protein interaction - HTRF assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347057CD47-SIRPalpha protein protein interaction - LANCE assay qHTS validation2019PloS one, , Volume: 14, Issue:7
Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors.
AID504836Inducers of the Endoplasmic Reticulum Stress Response (ERSR) in human glioma: Validation2002The Journal of biological chemistry, Apr-19, Volume: 277, Issue:16
Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347113qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347110qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for A673 cells)2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347121qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347124qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347126qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347114qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347117qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347123qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347128qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347112qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347111qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347118qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347122qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347127qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347116qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347129qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347125qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347115qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347109qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347119qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID131357ED50 value was calculated by mouse electric shock assay (MES). 1999Journal of medicinal chemistry, Jul-29, Volume: 42, Issue:15
4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist.
AID217466Inhibition of voltage -gated K+ currents was measured by whole cell voltage clamp recordings from dissociated rat superior cervical ganglion neurons at 10 uM1999Journal of medicinal chemistry, Jul-29, Volume: 42, Issue:15
4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist.
AID1415570Displacement of [3H]-di-o-tolylguanidine from sigma 2 receptor in rat liver membranes after 120 mins by scintillation counting analysis2017MedChemComm, May-01, Volume: 8, Issue:5
Do GluN2B subunit containing NMDA receptors tolerate a fluorine atom in the phenylalkyl side chain?
AID1378102Displacement of [3H]ifenprodil from recombinant human GluN1A/GluN2B receptor expressed in mouse L(tk-) cell membranes after 120 mins by microbeta scintillation counting method2017European journal of medicinal chemistry, Sep-29, Volume: 138Deconstruction - reconstruction approach to analyze the essential structural elements of tetrahydro-3-benzazepine-based antagonists of GluN2B subunit containing NMDA receptors.
AID524795Antiplasmodial activity against Plasmodium falciparum HB3 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID1519017Displacement of [3H]ifenprodil from GluN1A/GluN2B (unknown origin) expressed in mouse L(tk-) cell membranes after 120 mins by solid scintillation counting method
AID1552397Displacement of [3H]ifenprodil from human GluN2B expressed in mouse L(tk-) cell membranes co-expressing GluN1a incubated for 120 mins by scintillation counting method2019Bioorganic & medicinal chemistry, 08-15, Volume: 27, Issue:16
Modification of the 4-phenylbutyl side chain of potent 3-benzazepine-based GluN2B receptor antagonists.
AID1597398Displacement of [3H]-di-o-tolylguanidine from sigma2 receptor in rat liver membranes incubated for 120 mins by scintillation counting method
AID36705Affinity for alpha-1 adrenergic receptor in rat was determined by [3H]- prazosin binding assay1999Journal of medicinal chemistry, Jul-29, Volume: 42, Issue:15
4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist.
AID1415571Displacement of [3H](+)-Pentazocine from sigma 1 receptor in guinea pig brain membranes after 120 mins by scintillation counting analysis2017MedChemComm, May-01, Volume: 8, Issue:5
Do GluN2B subunit containing NMDA receptors tolerate a fluorine atom in the phenylalkyl side chain?
AID1901324Displacement of [3H]di-O-tolylguanidine from sigma 2 receptor in rat liver membrane by competitive radioligand receptor binding assay
AID1262298Displacement of [3H]ifenprodil from Glun2B receptor (unknown origin) expressed in mouse L(tk-) cell membranes after 120 mins by scintillation counting analysis2015Bioorganic & medicinal chemistry letters, Dec-15, Volume: 25, Issue:24
Benzo[7]annulene-based GluN2B selective NMDA receptor antagonists: Surprising effect of a nitro group in 2-position.
AID1650560Displacement of [3H]-di-o-tolylguanidine from sigma2 receptor in rat liver membranes incubated for 120 mins in the presence of sigma1 receptor ligand (+)-pentazocine by scintillation counting method2020Bioorganic & medicinal chemistry, 01-15, Volume: 28, Issue:2
Thiophene bioisosteres of GluN2B selective NMDA receptor antagonists: Synthesis and pharmacological evaluation of [7]annuleno[b]thiophen-6-amines.
AID1297657Displacement of [3H]ifenprodil from recombinant human GluN2B expressed in mouse L(tk-) cell membranes incubated for 120 mins by microbeta scintillation counting analysis2016European journal of medicinal chemistry, Jun-30, Volume: 116Benzimidazolone bioisosteres of potent GluN2B selective NMDA receptor antagonists.
AID1415568Displacement of [3H]-(+)-MK-801 from PCP binding site of NMDA receptor in pig brain cortex membranes after 90 mins by scintillation counting method2017MedChemComm, May-01, Volume: 8, Issue:5
Do GluN2B subunit containing NMDA receptors tolerate a fluorine atom in the phenylalkyl side chain?
AID1867872Displacement of [3H]-DTG from sigma 2 receptor in rat liver membrane measured after 120 mins by microbeta counting analysis2022European journal of medicinal chemistry, Jul-05, Volume: 237Synthesis and biological evaluation of conformationally restricted GluN2B ligands derived from eliprodil.
AID146070In vitro inhibitory concentration against NMDA responses at cloned NR1A/2A receptors expressed in Xenopus oocytes 1999Journal of medicinal chemistry, Jul-29, Volume: 42, Issue:15
4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist.
AID524796Antiplasmodial activity against Plasmodium falciparum W2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID1650559Displacement of [3H]-(+)-pentazocine from sigma1 receptor in guinea pig brain membranes incubated for 120 mins by scintillation counting method2020Bioorganic & medicinal chemistry, 01-15, Volume: 28, Issue:2
Thiophene bioisosteres of GluN2B selective NMDA receptor antagonists: Synthesis and pharmacological evaluation of [7]annuleno[b]thiophen-6-amines.
AID1415567Displacement of [3H]-ifenprodil from GluN2B receptor (unknown origin) expressed in mouse L (tk-) cell membranes after 120 mins by scintillation counting method2017MedChemComm, May-01, Volume: 8, Issue:5
Do GluN2B subunit containing NMDA receptors tolerate a fluorine atom in the phenylalkyl side chain?
AID1597396Displacement of [3H]-(+)-MK-801 from NMDA PCP binding site in pig brain cortex membrane at 1 uM incubated for 120 mins by scintillation counting method relative to control
AID1901323Displacement of [3H]-(+)-pentazocine from sigma1 receptor in guinea pig brain membrane by competitive radioligand receptor binding assay
AID1867870Displacement of [3H]ifenprodil from recombinant human GluN1A/GluN2B expressed in mouse L-M(TK-) cell membranes after 120 mins by microbeta scintillation counting method2022European journal of medicinal chemistry, Jul-05, Volume: 237Synthesis and biological evaluation of conformationally restricted GluN2B ligands derived from eliprodil.
AID524790Antiplasmodial activity against Plasmodium falciparum 3D7 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID146080In vitro inhibitory concentration against NMDA responses at NR1A/2B receptors expressed in Xenopus oocytes1999Journal of medicinal chemistry, Jul-29, Volume: 42, Issue:15
4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist.
AID1403510Displacement of [3H]Ifenprodil from GluN2B receptor (unknown origin) expressed in mouse L(tk-) cell membranes incubated for 120 mins measured for 5 mins by scintillation counting method
AID1650557Displacement of [3H]ifenprodil from human recombinant GluN2B expressed in mouse L(tk-) cell membranes co-expressing GluN1a incubated for 120 mins by scintillation counting method2020Bioorganic & medicinal chemistry, 01-15, Volume: 28, Issue:2
Thiophene bioisosteres of GluN2B selective NMDA receptor antagonists: Synthesis and pharmacological evaluation of [7]annuleno[b]thiophen-6-amines.
AID146089In vitro inhibitory concentration against NMDA responses at NR1A/2C receptors expressed in Xenopus oocytes1999Journal of medicinal chemistry, Jul-29, Volume: 42, Issue:15
4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist.
AID144173Compound was tested for inhibition of [3H]MK-801 binding to N-methyl-D-aspartate glutamate receptor at NR2B subunit in high affinity fraction of porcine brain membranes2000Bioorganic & medicinal chemistry letters, Jun-19, Volume: 10, Issue:12
Synthesis and resolution of racemic eliprodil and evaluation of the enantiomers of eliprodil as NMDA receptor antagonists.
AID1690208Displacement of [3H]ifenprodil from human GluN2B expressed in mouse L(tk-) cell membranes co-expressing GluN1a incubated for 2 hrs by scintillation counting method
AID524792Antiplasmodial activity against Plasmodium falciparum D10 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID1867871Displacement of [3H]-(+)-pentazocine from sigma1 receptor in guinea pig brain cortex membranes measured after 120 mins by scintillation counting method2022European journal of medicinal chemistry, Jul-05, Volume: 237Synthesis and biological evaluation of conformationally restricted GluN2B ligands derived from eliprodil.
AID1597395Displacement of [3H] ifenprodil from GluN2B/GluN1a (unknown origin) expressed in mouse L(tk-) cell membranes incubated for 120 mins by scintillation counting method
AID524791Antiplasmodial activity against Plasmodium falciparum 7G8 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID144174Compound was tested for inhibition of [3H]MK-801 binding to N-methyl-D-aspartate glutamate receptor lacking NR2B subunit in low affinity fraction of porcine brain membranes2000Bioorganic & medicinal chemistry letters, Jun-19, Volume: 10, Issue:12
Synthesis and resolution of racemic eliprodil and evaluation of the enantiomers of eliprodil as NMDA receptor antagonists.
AID1597397Displacement of [3H]-(+)-pentazocine from sigma1 receptor in guinea pig brain cortex membranes incubated for 120 mins by scintillation counting method
AID1174070Displacement of [3H]ifenprodil from human GluN2B expressed in mouse L(tk-) cells co-expressing GluN1a after 120 mins by scintillation counting method2014Bioorganic & medicinal chemistry, Dec-01, Volume: 22, Issue:23
Synthesis, GluN2B affinity and selectivity of benzo[7]annulen-7-amines.
AID524793Antiplasmodial activity against Plasmodium falciparum Dd2 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID524794Antiplasmodial activity against Plasmodium falciparum GB4 after 72 hrs by SYBR green assay2009Nature chemical biology, Oct, Volume: 5, Issue:10
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
AID144175Displacement of [3H]ifendropil from binding site of N-methyl-D-aspartate glutamate receptor was evaluated employing synaptosomal fraction of porcine hippocampal brain membranes2000Bioorganic & medicinal chemistry letters, Jun-19, Volume: 10, Issue:12
Synthesis and resolution of racemic eliprodil and evaluation of the enantiomers of eliprodil as NMDA receptor antagonists.
AID538755Displacement of [3H]ifenprodil from human recombinant NR1-1a/NR2B receptor expressed in mouse L(tk-) cells after 120 mins by scintillation counting2010Bioorganic & medicinal chemistry, Nov-15, Volume: 18, Issue:22
Conformationally constrained NR2B selective NMDA receptor antagonists derived from ifenprodil: Synthesis and biological evaluation of tetrahydro-3-benzazepine-1,7-diols.
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID493017Wombat Data for BeliefDocking2000Bioorganic & medicinal chemistry letters, Jun-19, Volume: 10, Issue:12
Synthesis and resolution of racemic eliprodil and evaluation of the enantiomers of eliprodil as NMDA receptor antagonists.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).2014Journal of biomolecular screening, Jul, Volume: 19, Issue:6
A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum.
AID1794808Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL).
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (103)

TimeframeStudies, This Drug (%)All Drugs %
pre-19904 (3.88)18.7374
1990's55 (53.40)18.2507
2000's12 (11.65)29.6817
2010's21 (20.39)24.3611
2020's11 (10.68)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 24.39

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index24.39 (24.57)
Research Supply Index4.68 (2.92)
Research Growth Index5.74 (4.65)
Search Engine Demand Index26.67 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (24.39)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials3 (2.88%)5.53%
Reviews3 (2.88%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other98 (94.23%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Clinical Trials (1)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
NMDA-Receptor Blockade With Eliprodil in Parkinson's Disease [NCT00001929]Phase 220 participants Interventional1999-03-31Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]