Page last updated: 2024-12-06

ryodipine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

ryodipine: structure given in first source; an antianginal agent [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID68909
CHEMBL ID347573
CHEMBL ID1891684
SCHEMBL ID636400
MeSH IDM0133282

Synonyms (47)

Synonym
HMS1769O09
3,5-dimethyl 4-[2-(difluoromethoxy)phenyl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate
phoridone
riodipine
pp-1466
foridone
ryodipine
riodipino [spanish]
dimethyl 4-(o-(difluoromethoxy)phenyl)-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate
foridon
riodipinum [latin]
riodipine [inn]
2,6-dimethyl-3,5-dimethoxycarbonyl-4-(o-difluoromethoxyphenyl)-1,4-dihydropyridine
3,5-pyridinedicarboxylic acid, 1,4-dihydro-4-(2-(difluoromethoxy)phenyl)-2,6-dimethyl-, dimethyl ester
brn 0498820
NCGC00160435-01
CHEMBL347573 ,
dimethyl 4-[2-(difluoromethoxy)phenyl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate
AKOS001033755
NCGC00160435-02
unii-w12vdb26lb
w12vdb26lb ,
riodipinum
71653-63-9
riodipino
dtxcid3026148
tox21_111809
cas-71653-63-9
dtxsid5046148 ,
CHEMBL1891684
riodipine [who-dd]
SCHEMBL636400
NCGC00160435-03
tox21_111809_1
dimethyl 4-[2-(difluoromethoxy)phenyl]-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate
dimethyl 4-[o-(difluoromethoxy)phenyl]-1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate
sr-01000025566
SR-01000025566-1
bdbm50103630
dimethyl 4-(2-(difluoromethoxy)phenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate
Z56760414
dimethyl4-[2-(difluoromethoxy)phenyl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate
Q7385274
foridon; pp-1466;
bdbm50472420
CS-0066116
EN300-16738

Research Excerpts

Overview

Ryodipine is a recently developed dihydropyridine calcium channel blocker. chemically similar to nifedipine but with some advantages: light stability, low toxicity, etc.

ExcerptReferenceRelevance
"Ryodipine is a recently developed dihydropyridine calcium channel blocker, chemically similar to nifedipine but with some advantages: light stability, low toxicity, etc. "( Ryodipine-induced enhancement of farmarubicin cytotoxicity against human leukemia cells in vitro.
Ancheva, M; Mircheva, J; Staneva-Stoytcheva, D, 1990
)
3.16

Toxicity

ExcerptReferenceRelevance
" A clear species difference in LD50 values was found in acute toxicity of PP-1466, and rabbits were the most sensitive between animal species used, then dogs, mice and rats in order."( Acute and subacute toxicity of 2,6-dimethyl-3,5-dimethoxycarbonyl-4-(o-difluoromethoxyphenyl)-1 ,4-dihydropyridine (PP-1466).
Aikawa, K; Fujikura, M; Gomi, T; Hirao, A; Kobayashi, M; Okumura, M; Ozeki, M; Tateishi, T; Yamamoto, H; Yumoto, S, 1985
)
0.27

Bioavailability

ExcerptReferenceRelevance
" The addition of 40 mg foridon, a calcium antagonist from dihydropyridine series increased the absorption rate of glucose, Na+ and water by 28."( [Stimulating effects of a calcium antagonist foridon on absorption detected by segmental perfusion of the small intestine].
Fazylov, AV; Parfenov, AI; Poleva, NI, 1994
)
0.29
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (23)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
RAR-related orphan receptor gammaMus musculus (house mouse)Potency10.59090.006038.004119,952.5996AID1159521
USP1 protein, partialHomo sapiens (human)Potency79.43280.031637.5844354.8130AID504865
TDP1 proteinHomo sapiens (human)Potency27.31710.000811.382244.6684AID686978; AID686979
AR proteinHomo sapiens (human)Potency28.22630.000221.22318,912.5098AID1259243; AID1259247
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency15.76540.001022.650876.6163AID1224838; AID1224839; AID1224893
progesterone receptorHomo sapiens (human)Potency26.60320.000417.946075.1148AID1346795
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency1.25890.01237.983543.2770AID1346984
pregnane X nuclear receptorHomo sapiens (human)Potency2.01060.005428.02631,258.9301AID1346982; AID1346985
estrogen nuclear receptor alphaHomo sapiens (human)Potency23.89110.000229.305416,493.5996AID743075
GVesicular stomatitis virusPotency1.09640.01238.964839.8107AID1645842
aryl hydrocarbon receptorHomo sapiens (human)Potency5.95570.000723.06741,258.9301AID743085
activating transcription factor 6Homo sapiens (human)Potency0.21310.143427.612159.8106AID1159516
nuclear receptor subfamily 1, group I, member 2Rattus norvegicus (Norway rat)Potency7.94330.10009.191631.6228AID1346983
thyroid hormone receptor beta isoform 2Rattus norvegicus (Norway rat)Potency0.37580.000323.4451159.6830AID743067
Interferon betaHomo sapiens (human)Potency7.98410.00339.158239.8107AID1347407; AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency1.09640.01238.964839.8107AID1645842
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency1.09640.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency1.09640.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Voltage-dependent L-type calcium channel subunit alpha-1CRattus norvegicus (Norway rat)IC50 (µMol)6,000,000.00000.00132.24956.9000AID95591
Voltage-dependent L-type calcium channel subunit alpha-1DRattus norvegicus (Norway rat)IC50 (µMol)6,000,000.00000.00131.991510.0000AID95591
Voltage-dependent L-type calcium channel subunit alpha-1SRattus norvegicus (Norway rat)IC50 (µMol)6,000,000.00000.00131.60206.9000AID95591
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Nuclear receptor subfamily 1 group I member 2Homo sapiens (human)EC50 (µMol)6.56670.00203.519610.0000AID1215086; AID1215087; AID1215094
Nuclear receptor subfamily 1 group I member 2Rattus norvegicus (Norway rat)EC50 (µMol)1.80000.01004.139410.0000AID1215090
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (57)

Processvia Protein(s)Taxonomy
negative regulation of DNA-templated transcriptionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
regulation of DNA-templated transcriptionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
xenobiotic metabolic processNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
signal transductionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
steroid metabolic processNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
positive regulation of gene expressionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
intracellular receptor signaling pathwayNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
xenobiotic catabolic processNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
xenobiotic transportNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
positive regulation of DNA-templated transcriptionNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
positive regulation of transcription by RNA polymerase IINuclear receptor subfamily 1 group I member 2Homo sapiens (human)
cell differentiationNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
negative regulation of transcription by RNA polymerase IINuclear receptor subfamily 1 group I member 2Homo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (26)

Processvia Protein(s)Taxonomy
RNA polymerase II transcription regulatory region sequence-specific DNA bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
nuclear receptor activityNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
protein bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
zinc ion bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
nuclear receptor bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
sequence-specific double-stranded DNA bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (26)

Processvia Protein(s)Taxonomy
nucleoplasmNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
transcription regulator complexNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
nuclear bodyNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
intermediate filament cytoskeletonNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
chromatinNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
nucleusNuclear receptor subfamily 1 group I member 2Homo sapiens (human)
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (54)

Assay IDTitleYearJournalArticle
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1215086Activation of human PXR expressed in human HepG2 (DPX-2) cells after 24 hrs by luciferase reporter gene based luminescent analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215087Activation of human PXR expressed in human HepG2 (DPX-2) cells assessed as induction of CYP3A4 after 24 hrs by luminescent analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215090Activation of rat PXR expressed in human HepG2 cells after 24 hrs by luciferase reporter gene based luminescent analysis2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215099Selectivity ratio of EC50 for rat PXR to EC50 for human PAR2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215095Competitive binding affinity to human PXR LBD (111 to 434) by TR-FRET assay relative to SR128132011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215094Competitive binding affinity to human PXR LBD (111 to 434) by TR-FRET assay2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215097Activation of rat PXR expressed in human HepG2 cells after 24 hrs by luciferase reporter gene based luminescent analysis relative to dexamethasone2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215089Activation of human PXR expressed in human HepG2 (DPX-2) cells assessed as induction of CYP3A4 after 24 hrs by luminescent analysis relative to rifampicin2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID1215096Activation of human PXR expressed in human HepG2 (DPX-2) cells after 24 hrs by luciferase reporter gene based luminescent analysis relative to rifampicin2011Drug metabolism and disposition: the biological fate of chemicals, Jan, Volume: 39, Issue:1
Identification of clinically used drugs that activate pregnane X receptors.
AID45047Inhibition of VGCC alpha-1C-b expressed in CHO cells -80 mV holding potential, peak Ba2+ current, at 10e-8 M1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID217611Inhibition of [3H]P1075 binding to ATP-sensitive potassium channels of rat cardiac membranes1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID195416Vasorelaxation in rat mesenteric arteries after contractile stimulus (norepinephrine+glibenclamide)1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID44910Inhibition of VGCC alpha-1C-b expressed in CHO cells -30 mV holding potential, peak Ba2+ current, at 10e-8 M1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID195415Vasorelaxation activity in rat mesenteric arteries after contractile stimulus (norepinephrine)1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID44908Inhibition of VGCC alpha-1C-b expressed in CHO cells -30 mV holding potential, peak Ba2+ current, at 10e-5 M1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID195413Vasorelaxation activity in rat mesenteric arteries after contractile stimulus(K+ depolarization)1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID95591Competitive binding of 3[H]+isradipine to calcium channels of rat cardiac membranes1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID45045Inhibition of VGCC alpha-1C-b expressed in CHO cells -80 mV holding potential, peak Ba2+ current, at 10e-5 M1999Journal of medicinal chemistry, Dec-16, Volume: 42, Issue:25
Vasorelaxation by new hybrid compounds containing dihydropyridine and pinacidil-like moieties.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (55)

TimeframeStudies, This Drug (%)All Drugs %
pre-199018 (32.73)18.7374
1990's21 (38.18)18.2507
2000's3 (5.45)29.6817
2010's7 (12.73)24.3611
2020's6 (10.91)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 10.50

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index10.50 (24.57)
Research Supply Index4.28 (2.92)
Research Growth Index4.78 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (10.50)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials6 (9.23%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other59 (90.77%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]