Page last updated: 2024-09-20

ethenzamide

Description

ethenzamide: structure [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID3282
CHEMBL ID1483877
CHEBI ID31564
SCHEMBL ID25624
MeSH IDM0070963

Synonyms (93)

Synonym
ethenzamide [inn:ban:jan]
ethenzamidum
4-10-00-00175 (beilstein handbook reference)
l929zck4bf ,
etenzamida
unii-l929zck4bf
lucamide
ethenzamid
etosalicyl
eusal
ethosalicyl
etenzamide
938-73-8
2-ethoxybenzamide
etamide
etosalicil
wln: zvr bo2
katagrippe
nsc-28787
benzamide, o-ethoxy-
etocil
nsc28787
ethbenzamide
protopyrin
benzamide, 2-ethoxy-
pirosolvina
o-ethoxybenzamide
ethenzamide
trancalgyl
inchi=1/c9h11no2/c1-2-12-8-6-4-3-5-7(8)9(10)11/h3-6h,2h2,1h3,(h2,10,11
STK105005
NCGC00091616-01
2-eethoxybenzamide
nsc 28787
etenzamida [inn-spanish]
brn 2208582
h.p. 209
einecs 213-346-4
anovigam
ethenzamidum [inn-latin]
ccris 9124
etenzamide [dcit]
2-ethoxybenzamide, 97%
ethenzamide (jp17/inn)
ethenzamide (tn)
D01466
AC-11991
smr001307304
MLS002302987
E0222
2-ethoxybenzoylamide
AKOS003280312
A844727
NCGC00091616-02
j3.352i ,
CHEMBL1483877
HMS3039J16
tox21_200025
NCGC00257579-01
dtxsid4020581 ,
dtxcid40581
cas-938-73-8
tox21_111156
S4524
FT-0612206
CCG-213844
SCHEMBL25624
tox21_111156_1
NCGC00091616-03
ethanzamide
KS-5320
orthoethoxybenzamide
ethenzamide [mi]
ethenzamide [who-dd]
ethenzamide [inn]
ethenzamide [jan]
ethenzamide [mart.]
CS-4916
Q-201075
HY-B1428
AB01010349_03
mfcd00007977
SR-01000877236-2
sr-01000877236
CHEBI:31564
ethenzamide 1.0 mg/ml in methanol
Z54953371
Q553324
DB13544
D70657
ethenzamide 100 microg/ml in acetonitrile
EN300-6492973
SY015492

Drug Classes (1)

ClassDescription
organic molecular entityAny molecular entity that contains carbon.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (21)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
hypoxia-inducible factor 1 alpha subunitHomo sapiens (human)Potency26.83253.189029.884159.4836AID1224846
GLI family zinc finger 3Homo sapiens (human)Potency10.45790.000714.592883.7951AID1259369; AID1259392
AR proteinHomo sapiens (human)Potency24.32860.000221.22318,912.5098AID1259247; AID588516
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency36.88710.001022.650876.6163AID1224838; AID1224839; AID1224893
progesterone receptorHomo sapiens (human)Potency26.60320.000417.946075.1148AID1346795
glucocorticoid receptor [Homo sapiens]Homo sapiens (human)Potency0.23910.000214.376460.0339AID720691
retinoic acid nuclear receptor alpha variant 1Homo sapiens (human)Potency29.42390.003041.611522,387.1992AID1159552; AID1159553; AID1159555
retinoid X nuclear receptor alphaHomo sapiens (human)Potency28.46950.000817.505159.3239AID1159527; AID1159531
farnesoid X nuclear receptorHomo sapiens (human)Potency0.66820.375827.485161.6524AID743220
estrogen nuclear receptor alphaHomo sapiens (human)Potency61.72780.000229.305416,493.5996AID743069
peroxisome proliferator-activated receptor deltaHomo sapiens (human)Potency33.48890.001024.504861.6448AID743212; AID743215
vitamin D (1,25- dihydroxyvitamin D3) receptorHomo sapiens (human)Potency23.86560.023723.228263.5986AID743222; AID743241
aryl hydrocarbon receptorHomo sapiens (human)Potency47.80200.000723.06741,258.9301AID743085; AID743122
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105), isoform CRA_aHomo sapiens (human)Potency30.106519.739145.978464.9432AID1159509
v-jun sarcoma virus 17 oncogene homolog (avian)Homo sapiens (human)Potency21.04610.057821.109761.2679AID1159526; AID1159528
Histone H2A.xCricetulus griseus (Chinese hamster)Potency59.64370.039147.5451146.8240AID1224845; AID1224896
thyroid hormone receptor beta isoform aHomo sapiens (human)Potency1.25890.010039.53711,122.0200AID588545
heat shock protein beta-1Homo sapiens (human)Potency14.95890.042027.378961.6448AID743210; AID743228
lethal factor (plasmid)Bacillus anthracis str. A2012Potency31.62280.020010.786931.6228AID912
Spike glycoproteinSevere acute respiratory syndrome-related coronavirusPotency39.81070.009610.525035.4813AID1479145
TAR DNA-binding protein 43Homo sapiens (human)Potency8.91251.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (18)

Processvia Protein(s)Taxonomy
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (10)

Processvia Protein(s)Taxonomy
virion membraneSpike glycoproteinSevere acute respiratory syndrome-related coronavirus
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (44)

Assay IDTitleYearJournalArticle
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID603953In-vivo plasma to lung partition coefficients of the compound, logP(lung) in rat2008European journal of medicinal chemistry, Mar, Volume: 43, Issue:3
Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (84)

TimeframeStudies, This Drug (%)All Drugs %
pre-199020 (23.81)18.7374
1990's12 (14.29)18.2507
2000's17 (20.24)29.6817
2010's22 (26.19)24.3611
2020's13 (15.48)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews1 (1.16%)6.00%
Case Studies7 (8.14%)4.05%
Observational0 (0.00%)0.25%
Other78 (90.70%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research Highlights

Pharmacokinetics (5)

ArticleYear
Physiological pharmacokinetics of ethoxybenzamide based on biochemical data obtained in vitro as well as on physiological data.
Journal of pharmacokinetics and biopharmaceutics, Volume: 10, Issue: 6
1982
In vitro and in vivo evaluation of the tissue-to-blood partition coefficient for physiological pharmacokinetic models.
Journal of pharmacokinetics and biopharmaceutics, Volume: 10, Issue: 6
1982
[Evaluation of the tissue-to-blood partition coefficient R for physiological pharmacokinetic models].
Zhongguo yao li xue bao = Acta pharmacologica Sinica, Volume: 13, Issue: 4
1992
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Bioavailability (4)

ArticleYear
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology, Volume: 96, Issue: 5
2019
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
The Journal of biological chemistry, 11-15, Volume: 294, Issue: 46
2019
Effect of particle shape of active pharmaceutical ingredients prepared by fluidized-bed jet-milling on cohesiveness.
Journal of pharmaceutical sciences, Volume: 94, Issue: 5
2005
[Application of multi-lines fitting technic for ethenzamide elimination with capacity-limited process in the rabbit plasma].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, Volume: 109, Issue: 7
1989
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Dosage (4)

ArticleYear
Studies on the number of contacts between ibuprofen and ethenzamide using thermal analysis.
Chemical & pharmaceutical bulletin, Volume: 48, Issue: 1
2000
Carcinogenicity of o-ethoxybenzamide in (C57BL/6N X C3H/HeN)F1 mice.
Journal of the National Cancer Institute, Volume: 76, Issue: 1
1986
[Application of multi-lines fitting technic for ethenzamide elimination with capacity-limited process in the rabbit plasma].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, Volume: 109, Issue: 7
1989
Studies on combination dosing (III). Aspirin and ethenzamide.
Japanese journal of pharmacology, Volume: 28, Issue: 6
1978
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]