Page last updated: 2024-11-05

8-hydroxyquinoline N-oxide

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

8-hydroxyquinoline N-oxide, also known as oxine N-oxide, is a chelating agent with a wide range of applications. It is synthesized through the oxidation of 8-hydroxyquinoline. 8-hydroxyquinoline N-oxide exhibits antimicrobial, antifungal, and antiparasitic activities, making it a potential candidate for pharmaceutical development. Its ability to bind to metal ions is particularly important, as it finds use in analytical chemistry for the determination of various metals. Furthermore, it has garnered attention for its potential in treating Alzheimer's disease due to its ability to inhibit the aggregation of amyloid-beta peptides. Research into its mechanisms of action and its therapeutic potential continues to be an active area of study.'

8-hydroxyquinoline N-oxide : A quinoline N-oxide carrying a hydroxy substituent at position 8. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID14312
CHEMBL ID1650601
CHEBI ID192375
SCHEMBL ID100824

Synonyms (41)

Synonym
AC-7833
8-quinolinol, n-oxide
quinolin-8-ol 1-oxide
8-hydroxyquinoline-n-oxide
8-hydroxyquinoline n-oxide
8-hydroxyquinoline 1-oxide
nsc21656
nsc-21656
mls002638801 ,
o-hydroxyquinoline n-oxide
8-quinolinol, 1-oxide
1127-45-3
8-quinolinol n-oxide, 98%
H1272
8-quinolinol n-oxide
smr001548266
1-oxidoquinolin-1-ium-8-ol
CHEBI:192375
1-oxo-1lambda(5)-quinolin-8-ol
8-hydroxyquinolin-1-ium-1-olate
CHEMBL1650601
HMS3082E11
tmi4ld989p ,
FT-0633376
AKOS015897108
oxyquinoline n-oxide
hydroxyquinoline 1-oxide, 8-
8-hydroxyquinolin-n-oxide
SCHEMBL100824
FJKUOCCQEBLPNX-UHFFFAOYSA-N
quinolin-8-ol-n-oxide
mfcd00006739
8-hydroxychinolin-n-oxid
W-108639
DTXSID70150142
8-hydroxyquinoline1-oxide
SY009330
8-hydroxyquinolin n-oxide
AS-13601
Q27290026
acidviolet6bn
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (2)

ClassDescription
monohydroxyquinolineA hydroxyquinoline carrying a single hydroxy substituent.
quinoline N-oxide
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Pathways (3)

PathwayProteinsCompounds
NADH to cytochrome bd oxidase electron transfer II418
succinate to cytochrome bd oxidase electron transfer723
NADH to cytochrome bd oxidase electron transfer I1627

Protein Targets (4)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
TDP1 proteinHomo sapiens (human)Potency29.09290.000811.382244.6684AID686979
flap endonuclease 1Homo sapiens (human)Potency35.48130.133725.412989.1251AID588795
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency100.00000.050127.073689.1251AID588590
Guanine nucleotide-binding protein GHomo sapiens (human)Potency1.00001.995325.532750.1187AID624287
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (5)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (2)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (1)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (20)

Assay IDTitleYearJournalArticle
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID566703Inhibition of human recombinant MMP2 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566705Inhibition of human recombinant MMP8 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566704Inhibition of human recombinant MMP3 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566707Inhibition of mouse recombinant iNOS at 1 mM after 40 mins by colorimetric assay2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566699Inhibition of mushroom tyrosinase at 1 mM after 10 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566700Inhibition of human recombinant 5-lipoxygenase at 1 mM after 10 mins by fluorescence assay2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566701Inhibition of recombinant anthrax lethal factor at 1 mM after 30 mins by fluorescence assay2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566702Inhibition of human recombinant MMP1 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
AID566706Inhibition of human recombinant MMP9 at 1 mM after 30 mins2011Journal of medicinal chemistry, Jan-27, Volume: 54, Issue:2
Identifying chelators for metalloprotein inhibitors using a fragment-based approach.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 20.16

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index20.16 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.32 (4.65)
Search Engine Demand Index15.26 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (20.16)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]