Proteins > Gamma-aminobutyric acid receptor subunit rho-3
Page last updated: 2024-08-07 12:28:03
Gamma-aminobutyric acid receptor subunit rho-3
A gamma-aminobutyric acid receptor subunit rho-3 that is encoded in the genome of human. [PRO:DNx, UniProtKB:A8MPY1]
Synonyms
GABA(A) receptor subunit rho-3;
GABA(C) receptor
Research
Bioassay Publications (1)
Timeframe | Studies on this Protein(%) | All Drugs % |
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Compounds (10)
Drugs with Activation Measurements
Drugs with Other Measurements
Enables
This protein enables 4 target(s):
Target | Category | Definition |
GABA-A receptor activity | molecular function | Combining with the amino acid gamma-aminobutyric acid (GABA, 4-aminobutyrate) to initiate a change in cell activity. GABA-A receptors function as chloride channels. [PMID:8974333] |
protein domain specific binding | molecular function | Binding to a specific domain of a protein. [GOC:go_curators] |
GABA-gated chloride ion channel activity | molecular function | Enables the transmembrane transfer of a chloride ion by a channel that opens when GABA has been bound by the channel complex or one of its constituent parts. [GOC:mtg_transport, ISBN:0815340729] |
neurotransmitter receptor activity | molecular function | Combining with a neurotransmitter and transmitting the signal to initiate a change in cell activity. [GOC:jl, GOC:signaling] |
Located In
This protein is located in 2 target(s):
Target | Category | Definition |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
postsynaptic membrane | cellular component | A specialized area of membrane facing the presynaptic membrane on the tip of the nerve ending and separated from it by a minute cleft (the synaptic cleft). Neurotransmitters cross the synaptic cleft and transmit the signal to the postsynaptic membrane. [ISBN:0198506732] |
Active In
This protein is active in 4 target(s):
Target | Category | Definition |
cellular_component | cellular component | A location, relative to cellular compartments and structures, occupied by a macromolecular machine. There are three types of cellular components described in the gene ontology: (1) the cellular anatomical entity where a gene product carries out a molecular function (e.g., plasma membrane, cytoskeleton) or membrane-enclosed compartments (e.g., mitochondrion); (2) virion components, where viral proteins act, and (3) the stable macromolecular complexes of which gene product are parts (e.g., the clathrin complex). [GOC:pdt] |
plasma membrane | cellular component | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. [ISBN:0716731363] |
neuron projection | cellular component | A prolongation or process extending from a nerve cell, e.g. an axon or dendrite. [GOC:jl, http://www.cogsci.princeton.edu/~wn/] |
synapse | cellular component | The junction between an axon of one neuron and a dendrite of another neuron, a muscle fiber or a glial cell. As the axon approaches the synapse it enlarges into a specialized structure, the presynaptic terminal bouton, which contains mitochondria and synaptic vesicles. At the tip of the terminal bouton is the presynaptic membrane; facing it, and separated from it by a minute cleft (the synaptic cleft) is a specialized area of membrane on the receiving cell, known as the postsynaptic membrane. In response to the arrival of nerve impulses, the presynaptic terminal bouton secretes molecules of neurotransmitters into the synaptic cleft. These diffuse across the cleft and transmit the signal to the postsynaptic membrane. [GOC:aruk, ISBN:0198506732, PMID:24619342, PMID:29383328, PMID:31998110] |
Part Of
This protein is part of 3 target(s):
Target | Category | Definition |
chloride channel complex | cellular component | An ion channel complex through which chloride ions pass. [GOC:mah] |
GABA-A receptor complex | cellular component | A protein complex which is capable of GABA-A receptor activity. In human, it is usually composed of either two alpha, two beta and one gamma chain of the GABA-A receptor subunits or 5 chains of the GABA-A receptor subunits rho1-3 (formally known as GABA-C receptor). [GO_REF:0000088, GOC:bhm, GOC:TermGenie, PMID:18790874] |
transmembrane transporter complex | cellular component | A transmembrane protein complex which enables the transfer of a substance from one side of a membrane to the other. [GOC:bhm, GOC:TermGenie, PMID:18024586] |
Involved In
This protein is involved in 4 target(s):
Target | Category | Definition |
gamma-aminobutyric acid signaling pathway | biological process | The series of molecular signals generated by the binding of gamma-aminobutyric acid (GABA, 4-aminobutyrate), an amino acid which acts as a neurotransmitter in some organisms, to its receptor on the surface of a target cell. [GOC:mah] |
chemical synaptic transmission | biological process | The vesicular release of classical neurotransmitter molecules from a presynapse, across a chemical synapse, the subsequent activation of neurotransmitter receptors at the postsynapse of a target cell (neuron, muscle, or secretory cell) and the effects of this activation on the postsynaptic membrane potential and ionic composition of the postsynaptic cytosol. This process encompasses both spontaneous and evoked release of neurotransmitter and all parts of synaptic vesicle exocytosis. Evoked transmission starts with the arrival of an action potential at the presynapse. [GOC:jl, MeSH:D009435] |
chloride transmembrane transport | biological process | The process in which chloride is transported across a membrane. [GOC:TermGenie, GOC:vw] |
regulation of membrane potential | biological process | Any process that modulates the establishment or extent of a membrane potential, the electric potential existing across any membrane arising from charges in the membrane itself and from the charges present in the media on either side of the membrane. [GOC:jl, GOC:mtg_cardio, GOC:tb, ISBN:0198506732] |