Page last updated: 2024-11-13

gsk 1016790a

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

GSK1016790A : A tertiary carboxamide that is piperazine in which one of the amino groups has undergone condensation with the carboxy group of N-[(2,4-dichlorophenyl)sulfonyl]-L-serine, while the other has undergone condensation with the carboxy group of N-(1-benzothiophen-2-ylcarbonyl)-L-leucine. It is a cell-permeable, potent and selective agonist of the TRPV4 (transient receptor potential vanilloid 4) channel. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID23630211
CHEMBL ID4461515
CHEBI ID140524
SCHEMBL ID5007988
MeSH IDM0523717

Synonyms (34)

Synonym
n-[(2s)-1-(4-{n-[(2,4-dichlorophenyl)sulfonyl]-l-seryl}piperazin-1-yl)-4-methyl-1-oxopentan-2-yl]-1-benzothiophene-2-carboxamide
gsk-1016790a
gsk1016790a
n-[(2s)-1-{4-[(2s)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl]piperazin-1-yl}-4-methyl-1-oxopentan-2-yl]-1-benzothiophene-2-carboxamide
gsk 1016790a
CHEBI:140524
(n-((1s)-1-{[4-((2s)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide
942206-85-1
NCGC00250409-01
S8107
n-[(2s)-1-[4-[(2s)-2-[(2,4-dichlorophenyl)sulfonylamino]-3-hydroxypropanoyl]piperazin-1-yl]-4-methyl-1-oxopentan-2-yl]-1-benzothiophene-2-carboxamide
gtpl4205
SCHEMBL5007988
n-((1s)-1-{[4-((2s)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide
IVYQPSHHYIAUFO-VXKWHMMOSA-N ,
AC-33152
DTXSID30635248
HY-19608
CS-5660
AKOS030527025
gsk1016790a, >=98% (hplc)
n-((1s)-1-{[4-((2s)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methyl-butyl)-1-benzothiophene-2-carboxamide
CHEMBL4461515 ,
E73440
gsk101
n-((s)-1-(4-((s)-2-(2,4-dichlorophenylsulfonamido)-3-hydroxypropanoyl)piperazin-1-yl)-4-methyl-1-oxopentan-2-yl)benzo[b]thiophene-2-carboxamide
Q27077862
n-[(1s)-1-[[4-[(2s)-2-[[(2,4-dichlorophenyl)sulfonyl]amino]-3-hydroxy-1-oxopropyl]-1-piperazinyl]carbonyl]-3-methylbutyl]benzo[b]thiophene-2-carboxamide
CCG-270334
EX-A1885
BS-52116
bdbm50525957
xq3 ,
n-[(2s)-1-{4-[n-(2,4-dichlorobenzene-1-sulfonyl)-l-seryl]piperazin-1-yl}-4-methyl-1-oxopentan-2-yl]-1-benzothiophene-2-carboxamide

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
TRPV4 agonistAn agonist at the transient receptor potential vanilloid 4 (TRPV4).
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (6)

ClassDescription
1-benzothiophenes
N-acylpiperazine
sulfonamideAn amide of a sulfonic acid RS(=O)2NR'2.
dichlorobenzeneAny member of the class of chlorobenzenes carrying two chloro groups at unspecified positions.
tertiary carboxamideA carboxamide resulting from the formal condensation of a carboxylic acid with a secondary amine; formula RC(=O)NHR(1)R(2).
aromatic primary alcoholAny primary alcohol in which the alcoholic hydroxy group is attached to a carbon which is itself bonded to an aromatic ring.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (8)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Fumarate hydrataseHomo sapiens (human)Potency37.22120.00308.794948.0869AID1347053
PPM1D proteinHomo sapiens (human)Potency46.61280.00529.466132.9993AID1347411
EWS/FLI fusion proteinHomo sapiens (human)Potency22.84650.001310.157742.8575AID1259252; AID1259253; AID1259255; AID1259256
polyproteinZika virusPotency37.22120.00308.794948.0869AID1347053
Interferon betaHomo sapiens (human)Potency46.61280.00339.158239.8107AID1347411
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)EC50 (µMol)0.04900.04900.04900.0490AID1601539
Estradiol 17-beta-dehydrogenase 2Mus musculus (house mouse)EC50 (µMol)0.04900.04900.04900.0490AID1601539
Transient receptor potential cation channel subfamily V member 4Homo sapiens (human)EC50 (µMol)0.04900.04902.60986.4000AID1601539
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (81)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
in utero embryonic development17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
placenta development17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
estrogen biosynthetic process17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
androgen metabolic process17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
response to retinoic acid17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
steroid metabolic process17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
negative regulation of transcription by RNA polymerase IITransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
response to hypoxiaTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
diet induced thermogenesisTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
calcium ion transportTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
intracellular calcium ion homeostasisTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cell volume homeostasisTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
actin filament organizationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cell-cell junction assemblyTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of cytosolic calcium ion concentrationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
osmosensory signaling pathwayTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
response to mechanical stimulusTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of macrophage chemotaxisTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
negative regulation of neuron projection developmentTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
actin cytoskeleton organizationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
vasopressin secretionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of microtubule depolymerizationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of interleukin-6 productionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
response to insulinTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cellular response to heatTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
hyperosmotic salinity responseTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
glucose homeostasisTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of vascular permeabilityTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cortical microtubule organizationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of striated muscle contractionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of JNK cascadeTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
microtubule polymerizationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
regulation of response to osmotic stressTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of inflammatory responseTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
multicellular organismal-level water homeostasisTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cartilage development involved in endochondral bone morphogenesisTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
calcium ion importTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
calcium ion transmembrane transportTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cellular response to osmotic stressTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cellular hypotonic responseTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cellular hypotonic salinity responseTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of monocyte chemotactic protein-1 productionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of macrophage inflammatory protein 1 alpha productionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of chemokine (C-C motif) ligand 5 productionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
blood vessel endothelial cell delaminationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
calcium ion import into cytosolTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
negative regulation of brown fat cell differentiationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
regulation of aerobic respirationTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
positive regulation of chemokine (C-X-C motif) ligand 1 productionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
calcium ion import across plasma membraneTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (25)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
estradiol 17-beta-dehydrogenase [NAD(P)] activity17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
17-alpha,20-alpha-dihydroxypregn-4-en-3-one dehydrogenase activity17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
testosterone dehydrogenase (NAD+) activity17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
actin bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
osmosensor activityTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
protein kinase C bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
monoatomic cation channel activityTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
calcium channel activityTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
protein bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
calmodulin bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
ATP bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
microtubule bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
lipid bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
stretch-activated, monoatomic cation-selective, calcium channel activityTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
protein kinase bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
SH2 domain bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
identical protein bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
alpha-tubulin bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
metal ion bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
beta-tubulin bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
actin filament bindingTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (18)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
endoplasmic reticulum membrane17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
intracellular membrane-bounded organelle17-beta-hydroxysteroid dehydrogenase type 2Homo sapiens (human)
cytoplasmic microtubuleTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
endoplasmic reticulumTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
plasma membraneTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
adherens junctionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
focal adhesionTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
ciliumTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cell surfaceTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
membraneTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
apical plasma membraneTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
lamellipodiumTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
filopodiumTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
growth coneTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
cortical actin cytoskeletonTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
ruffle membraneTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
plasma membraneTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
ciliumTransient receptor potential cation channel subfamily V member 4Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (62)

Assay IDTitleYearJournalArticle
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347121qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347113qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347126qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347109qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347119qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508629Cell Viability qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347117qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347114qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347129qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347116qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508627Counterscreen qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: GLuc-NoTag assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347128qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID686947qHTS for small molecule inhibitors of Yes1 kinase: Primary Screen2013Bioorganic & medicinal chemistry letters, Aug-01, Volume: 23, Issue:15
Identification of potent Yes1 kinase inhibitors using a library screening approach.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347112qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347110qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for A673 cells)2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347115qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347127qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347125qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347124qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347123qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347111qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508628Confirmatory qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347122qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347118qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1601546Protein binding in plasma (unknown origin)2019Journal of medicinal chemistry, 02-14, Volume: 62, Issue:3
Discovery of Novel Transient Receptor Potential Vanilloid 4 (TRPV4) Agonists as Regulators of Chondrogenic Differentiation: Identification of Quinazolin-4(3 H)-ones and in Vivo Studies on a Surgically Induced Rat Model of Osteoarthritis.
AID1601539Agonist activity at recombinant human TRPV4 expressed in HEK293 cells assessed as increase in intracellular calcium level after 30 mins by Fura-2 AM/Pluronic F-127 probe based fluorescence assay2019Journal of medicinal chemistry, 02-14, Volume: 62, Issue:3
Discovery of Novel Transient Receptor Potential Vanilloid 4 (TRPV4) Agonists as Regulators of Chondrogenic Differentiation: Identification of Quinazolin-4(3 H)-ones and in Vivo Studies on a Surgically Induced Rat Model of Osteoarthritis.
AID1601541Agonist activity at human TRPV1 assessed as increase in intracellular calcium level at 10 uM relative to control2019Journal of medicinal chemistry, 02-14, Volume: 62, Issue:3
Discovery of Novel Transient Receptor Potential Vanilloid 4 (TRPV4) Agonists as Regulators of Chondrogenic Differentiation: Identification of Quinazolin-4(3 H)-ones and in Vivo Studies on a Surgically Induced Rat Model of Osteoarthritis.
AID1601545Solubility of the compound in saline2019Journal of medicinal chemistry, 02-14, Volume: 62, Issue:3
Discovery of Novel Transient Receptor Potential Vanilloid 4 (TRPV4) Agonists as Regulators of Chondrogenic Differentiation: Identification of Quinazolin-4(3 H)-ones and in Vivo Studies on a Surgically Induced Rat Model of Osteoarthritis.
AID1601538Agonist activity at recombinant human TRPV4 expressed in human ATDC5 cells by SOX9 luciferase reporter gene assay2019Journal of medicinal chemistry, 02-14, Volume: 62, Issue:3
Discovery of Novel Transient Receptor Potential Vanilloid 4 (TRPV4) Agonists as Regulators of Chondrogenic Differentiation: Identification of Quinazolin-4(3 H)-ones and in Vivo Studies on a Surgically Induced Rat Model of Osteoarthritis.
AID1347411qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Mechanism Interrogation Plate v5.0 (MIPE) Libary2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1346605Human TRPV4 (Transient Receptor Potential channels)2008The Journal of pharmacology and experimental therapeutics, Aug, Volume: 326, Issue:2
N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinar
AID1346607Mouse TRPV4 (Transient Receptor Potential channels)2008The Journal of pharmacology and experimental therapeutics, Aug, Volume: 326, Issue:2
N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinar
AID1346615Rat TRPV4 (Transient Receptor Potential channels)2008The Journal of pharmacology and experimental therapeutics, Aug, Volume: 326, Issue:2
Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (12)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (16.67)29.6817
2010's4 (33.33)24.3611
2020's6 (50.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 27.21

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index27.21 (24.57)
Research Supply Index2.56 (2.92)
Research Growth Index5.10 (4.65)
Search Engine Demand Index29.35 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (27.21)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other12 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]