Page last updated: 2024-12-09

stf 083010

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

STF 083010: inhibits Ire1 endonuclease; structure in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID135398515
CHEMBL ID3192687
SCHEMBL ID4539950
SCHEMBL ID15380298
MeSH IDM0555773
PubMed CID729483
CHEMBL ID1538026
MeSH IDM0555773

Synonyms (43)

Synonym
MLS000530655
n-[(2-hydroxy-1-naphthyl)methylene]-2-thiophenesulfonamide
smr000135633
IDI1_010656
HMS1425O17
AB00450878-02
chembl3192687 ,
bdbm50013793
AKOS001671555
REGID_FOR_CID_6537512
S7771
CS-3989
SCHEMBL4539950
(e/z)-n-((2-hydroxynaphthalen-1-yl)methylene)thiophene-2-sulfonamide
stf 083010
SCHEMBL15380298
HY-15845
stf-083010, >=98% (hplc)
J-018127
n-((2-hydroxynaphthalen-1-yl)methylene)thiophene-2-sulfonamide
(ne)-n-[(2-hydroxynaphthalen-1-yl)methylidene]thiophene-2-sulfonamide
CCG-267670
EX-A1923
NCGC00263141-05
A925141
AS-56191
AKOS037645022
AC-36252
EU-0079319
IFLAB1_004901
n-[(z)-(2-oxonaphthalen-1-ylidene)methyl]thiophene-2-sulfonamide
HMS2427H09
NCGC00263141-01
CHEMBL1538026
n-[(2-hydroxy-1-naphthalenyl)methylene]-2-thiophenesulfonamide
307543-71-1
stf-083010
stf083010
(e)-n-((2-hydroxynaphthalen-1-yl)methylene)thiophene-2-sulfonamide
BCP16458
C74585
n-[(2-hydroxynaphthalen-1-yl)methylidene]thiophene-2-sulfonamide
DTXSID701177936

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (13)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Putative fructose-1,6-bisphosphate aldolaseGiardia intestinalisPotency22.33420.140911.194039.8107AID2451
Chain A, 2-oxoglutarate OxygenaseHomo sapiens (human)Potency39.81070.177814.390939.8107AID2147
Microtubule-associated protein tauHomo sapiens (human)Potency38.14560.180013.557439.8107AID1460; AID1468
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency11.22020.011212.4002100.0000AID1030
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency1.41250.035520.977089.1251AID504332
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency31.62280.001815.663839.8107AID894
thyroid hormone receptor beta isoform aHomo sapiens (human)Potency29.90330.010039.53711,122.0200AID1469; AID1479
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency14.12540.00798.23321,122.0200AID2551
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency31.62280.00419.962528.1838AID2675
EWS/FLI fusion proteinHomo sapiens (human)Potency2.39160.001310.157742.8575AID1259252; AID1259253; AID1259255; AID1259256
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Serine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)IC50 (µMol)9.93900.04532.28609.9390AID1140864
Indoleamine 2,3-dioxygenase 1Homo sapiens (human)IC50 (µMol)1.39000.05373.075710.0000AID1754168
Tryptophan 2,3-dioxygenaseHomo sapiens (human)IC50 (µMol)11.31000.11001.66929.8000AID1754169
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (42)

Processvia Protein(s)Taxonomy
endothelial cell proliferationSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
mRNA catabolic processSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
protein phosphorylationSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
regulation of macroautophagySerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
positive regulation of RNA splicingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
cellular response to unfolded proteinSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
response to endoplasmic reticulum stressSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
cellular response to vascular endothelial growth factor stimulusSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
peptidyl-serine autophosphorylationSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
IRE1-mediated unfolded protein responseSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
positive regulation of JUN kinase activitySerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
protein autophosphorylationSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
mRNA splicing, via endonucleolytic cleavage and ligationSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
cellular response to hydrogen peroxideSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
cellular response to glucose stimulusSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
positive regulation of endoplasmic reticulum unfolded protein responseSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
insulin metabolic processSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
positive regulation of vascular associated smooth muscle cell proliferationSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
peptidyl-serine trans-autophosphorylationSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
regulation of activated T cell proliferationIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
positive regulation of T cell tolerance inductionIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
positive regulation of chronic inflammatory responseIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
positive regulation of type 2 immune responseIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
tryptophan catabolic processIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
inflammatory responseIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
female pregnancyIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
tryptophan catabolic process to kynurenineIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
response to lipopolysaccharideIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
negative regulation of interleukin-10 productionIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
positive regulation of interleukin-12 productionIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
multicellular organismal response to stressIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
kynurenic acid biosynthetic processIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
swimming behaviorIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
T cell proliferationIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
negative regulation of T cell proliferationIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
negative regulation of T cell apoptotic processIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
positive regulation of T cell apoptotic processIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
'de novo' NAD biosynthetic process from tryptophanIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
tryptophan catabolic process to kynurenineTryptophan 2,3-dioxygenaseHomo sapiens (human)
protein homotetramerizationTryptophan 2,3-dioxygenaseHomo sapiens (human)
response to nitroglycerinTryptophan 2,3-dioxygenaseHomo sapiens (human)
tryptophan catabolic process to acetyl-CoATryptophan 2,3-dioxygenaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (21)

Processvia Protein(s)Taxonomy
magnesium ion bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
RNA endonuclease activitySerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
protein serine/threonine kinase activitySerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
platelet-derived growth factor receptor bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
protein bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
ATP bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
enzyme bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
Hsp70 protein bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
identical protein bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
protein homodimerization activitySerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
ADP bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
Hsp90 protein bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
protein serine kinase activitySerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
unfolded protein bindingSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
electron transfer activityIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
heme bindingIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
indoleamine 2,3-dioxygenase activityIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
metal ion bindingIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
tryptophan 2,3-dioxygenase activityIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
tryptophan 2,3-dioxygenase activityTryptophan 2,3-dioxygenaseHomo sapiens (human)
protein bindingTryptophan 2,3-dioxygenaseHomo sapiens (human)
amino acid bindingTryptophan 2,3-dioxygenaseHomo sapiens (human)
oxygen bindingTryptophan 2,3-dioxygenaseHomo sapiens (human)
heme bindingTryptophan 2,3-dioxygenaseHomo sapiens (human)
identical protein bindingTryptophan 2,3-dioxygenaseHomo sapiens (human)
metal ion bindingTryptophan 2,3-dioxygenaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (12)

Processvia Protein(s)Taxonomy
nuclear inner membraneSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
cytoplasmSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
mitochondrionSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
endoplasmic reticulumSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
endoplasmic reticulum membraneSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
Ire1 complexSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
AIP1-IRE1 complexSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
IRE1-TRAF2-ASK1 complexSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
IRE1-RACK1-PP2A complexSerine/threonine-protein kinase/endoribonuclease IRE1Homo sapiens (human)
cytosolIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
smooth muscle contractile fiberIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
stereocilium bundleIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
cytoplasmIndoleamine 2,3-dioxygenase 1Homo sapiens (human)
cytosolTryptophan 2,3-dioxygenaseHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (38)

Assay IDTitleYearJournalArticle
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1754168Inhibition of recombinant human IDO1 expressed in Escherichia coli EC538 assessed as reduction in N-formylkynurenine formation using L-tryptophan as substrate incubated for 30 mins by methylene blue reagent based concurrent assay
AID1754169Inhibition of recombinant human TDO2 expressed in Escherichia coli BL21 (DE3) assessed as reduction in N-formylkynurenine formation using L-tryptophan as substrate incubated for 30 mins by methylene blue reagent based concurrent assay
AID1754173Selectivity index, ratio of IC50 for inhibition of recombinant human IDO1 expressed in Escherichia coli EC538 to IC50 for inhibition of recombinant human TDO2 expressed in Escherichia coli BL21 (DE3)
AID1140864Inhibition of human recombinant puritin-His-tagged IRE-1 RNase expressed in SF21 cells using XBP-1 RNA stem loop as substrate incubated for 30 mins prior to substrate addition measured after 2 hrs by FRET-suppression assay2014Journal of medicinal chemistry, May-22, Volume: 57, Issue:10
Synthesis of novel tricyclic chromenone-based inhibitors of IRE-1 RNase activity.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID686947qHTS for small molecule inhibitors of Yes1 kinase: Primary Screen2013Bioorganic & medicinal chemistry letters, Aug-01, Volume: 23, Issue:15
Identification of potent Yes1 kinase inhibitors using a library screening approach.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (38)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's24 (63.16)24.3611
2020's14 (36.84)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 28.86

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index28.86 (24.57)
Research Supply Index2.20 (2.92)
Research Growth Index4.56 (4.65)
Search Engine Demand Index32.99 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (28.86)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Trials0 (0.00%)5.53%
Reviews4 (12.90%)6.00%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Observational0 (0.00%)0.25%
Other27 (87.10%)84.16%
Other8 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]