Page last updated: 2024-11-06

atipamezole

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Atipamezole is an α2-adrenergic receptor antagonist. It is used to reverse the effects of α2-agonists, such as dexmedetomidine and medetomidine, which are used as sedatives and analgesics in veterinary medicine. Atipamezole works by blocking the binding of α2-agonists to their receptors. This action results in the reversal of the sedative, analgesic, and hypotensive effects of α2-agonists. Atipamezole is administered intravenously, intramuscularly, or subcutaneously. It is a fast-acting drug, with effects typically seen within 5-10 minutes. Atipamezole is a safe and effective drug for reversing the effects of α2-agonists. It is commonly used in veterinary medicine to reverse sedation and analgesia after surgery or other procedures. It is also used to treat α2-agonist overdosage. Atipamezole is important in veterinary medicine because it allows for the safe and effective reversal of α2-agonist effects. This is important for the welfare of animals and for the efficient management of their care.'

Cross-References

ID SourceID
PubMed CID71310
CHEMBL ID353972
SCHEMBL ID304971
MeSH IDM0144628

Synonyms (69)

Synonym
AC-1614
antisedan
atipamezole
mpv-1248
atipamezole (usan/inn)
D03002
antisedan (tn)
104054-27-5
PDSP2_001566
PDSP1_001582
mpv 1248
atipamezolum [latin]
antipamezole
1h-imidazole, 4-(2-ethyl-2,3-dihydro-1h-inden-2-yl)-
atipamezol [spanish]
4-(2-ethyl-2-indanyl)imidazole
L000823
5-(2-ethyl-1,3-dihydroinden-2-yl)-1h-imidazole
4-(2-ethyl-2,3-dihydro-1h-inden-2-yl)-1h-imidazole
4-(2-ethyl-2-indanyl)imidazole.
CHEMBL353972
cas_104054-27-5
bdbm81807
nsc_71310
A26271
NCGC00182707-01
tox21_113005
dtxcid9029061
dtxsid2049135 ,
cas-104054-27-5
S4650
atipamezolum
03n9u5jaf6 ,
unii-03n9u5jaf6
atipamezol
atipamezole [usan:inn:ban]
FT-0603697
atipamezole [inn]
atipamezole [usan]
atipamezole [mi]
atipamezole [mart.]
AKOS015900246
SCHEMBL304971
tox21_113005_1
NCGC00182707-03
CS-3390
308081-08-5
HY-12380A
5-(2-ethyl-2,3-dihydro-1h-inden-2-yl)-1h-imidazole
mfcd00864502
J-513300
atipamezole, >=98% (hplc)
SR-01000944943-1
sr-01000944943
AKOS032960366
Q413894
mpv1248
DB11481
4719B
BCP02215
AMY10902
HMS3885F14
CCG-266667
AS-56282
zeolite, type
gtpl12576
atipamezolum (latin)
atipamezole base
atipamezole (mart.)

Research Excerpts

Overview

Atipamezole is a new, highly selective alpha2-adrenoceptor antagonist currently undergoing clinical trials as an antagonist for dexmedetomidine, a potent alpha2 agonist with sedative and analgesic properties.

ExcerptReferenceRelevance
"Atipamezole is an alpha2-adrenoceptor antagonist with an imidazole structure. "( Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective alpha2-adrenoceptor antagonist.
Haapalinna, A; Pertovaara, A; Sirviö, J; Virtanen, R, 2005
)
1.99
"Atipamezole is a new, highly selective alpha2-adrenoceptor antagonist currently undergoing clinical trials as an antagonist for dexmedetomidine, a potent alpha2 agonist with sedative and analgesic properties. "( Atipamezole, an alpha 2 antagonist, augments opiate-induced muscle rigidity in the rat.
Bednarczyk, JM; Weinger, MB, 1994
)
3.17
"Atipamezole is an effective antagonist for reversing psychomotor impairment following dexmedetomidine sedation."( Comparison of dexmedetomidine and midazolam sedation and antagonism of dexmedetomidine with atipamezole.
Aho, M; Erkola, O; Kallio, A; Korttila, K; Scheinin, H,
)
1.79
"Atipamezole thus proved to be a most effective antagonist to sedation with alpha 2-adrenoceptor agonist drugs, without disturbing excitatory effects."( Alpha 2-adrenoceptors and vigilance in cats: antagonism of medetomidine sedation by atipamezole.
Porkka-Heiskanen, T; Stenberg, D; Toppila, J, 1993
)
1.23
"Atipamezole is a specific centrally acting alpha 2 receptor antagonist and when given with DMED in isoflurane-anesthetized dogs prevented the ventilatory depression."( Ventilatory effects of dexmedetomidine, atipamezole, and isoflurane in dogs.
Abdul-Rasool, I; Bloor, B; Hadlock, S; Hsieh, J; Kobayashi, D; Nguyen, D; Singer, F; Ward, D, 1992
)
1.27
"Atipamezole is a new specific alpha 2-adrenoceptor antagonist. "( 3H-atipamezole binding sites in mouse cerebral cortex: possible involvement of alpha 2-adrenoceptors in sexual behavior.
Airaksinen, MM; Nieminen, SA; Rägo, L; Saano, V; Tupala, E,
)
2.2
"Atipamezole is an alpha-adrenoceptor antagonist with high affinity and selectivity for the alpha 2-receptor. "( Quantitative in vitro and ex vivo autoradiography of the alpha 2-adrenoceptor antagonist [3H]atipamezole.
Biegon, A; Budinger, TF; Mathis, CA, 1992
)
1.95

Actions

Atipamezole did not enhance short-term or long-term memory in either TMT or control groups. The increase in blood pressure was significantly attenuated by pretreatment with DGG (200 micrograms i.c.v.)

ExcerptReferenceRelevance
"The atipamezole-induced increase in LC activity and blood pressure was significantly attenuated by pretreatment with DGG (200 micrograms i.c.v.)."( The role of excitatory amino acids in the expression of precipitated acute and chronic clonidine withdrawal: an in vivo voltammetric study in the rat locus coeruleus.
Duggan, S; Hong, M; Jhamandas, K; Milne, B, 1994
)
0.77
"Atipamezole did not enhance short-term or long-term memory in either TMT or control groups."( Systemic administration of atipamezole, a selective antagonist of alpha-2 adrenoceptors, facilitates behavioural activity but does not influence short-term or long-term memory in trimethyltin-intoxicated and control rats.
Haapalinna, A; Jolkkonen, J; Lappalainen, R; Niittykoski, M; Riekkinen, P; Sirviö, J, 1998
)
1.32

Treatment

Atipamezole treatment significantly increased actual urinary flow rates and rhabdosphincter EMG amplitude. The number of times flow was interrupted was increased during the voiding cycle, leading to increased overall micturition time.

ExcerptReferenceRelevance
"Atipamezole treatment significantly increased actual urinary flow rates and rhabdosphincter EMG amplitude, but the number of times flow was interrupted was increased during the voiding cycle, leading to increased overall micturition time."( Voiding effects mediated by α2-adrenoceptors in the anaesthetized male rat.
Andersson, KE; Santti, R; Streng, T, 2010
)
1.08
"Atipamezole pretreatment significantly improved performance on the stages of the attentional task requiring an extradimensional shift in attention, and those involving stimulus reversals, whereas clonidine had no effect at any stage."( Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability.
Lapiz, MD; Morilak, DA, 2006
)
1.06
"Atipamezole given to rats treated chronically with clonidine produced the following effects: no change in MAP, severe tachycardia, sustained increase in splanchnic sympathetic nerve discharge (SND; +75 +/- 13%), transient increase in lumbar SND (+23 +/- 7%), ON-OFF activity pattern in the locus coeruleus (LC)."( Antagonist precipitated clonidine withdrawal in rat: effects on locus coeruleus neurons, sympathetic nerves and cardiovascular parameters.
Baertschi, AJ; Grubb, MC; Guyenet, PG; Pence, R; Stornetta, RL, 1998
)
1.02
"Atipamezole treatment (0.3 mg/kg) facilitated the acquisition of this task in the aged rats as they committed fewer errors and completed the task more quickly than saline-treated aged control rats."( The effects of a specific alpha(2)-adrenoceptor antagonist, atipamezole, on cognitive performance and brain neurochemistry in aged Fisher 344 rats.
Haapalinna, A; Heinonen, E; MacDonald, E; Sirviö, J; Virtanen, R, 2000
)
1.27
"Atipamezole treatment did not affect the use of the impaired forelimb to retrieve pellets following transient MCA occlusion, but there was a tendency to facilitate impaired forelimb use following permanent MCA occlusion (Time*Treatment interaction, P = 0.086)."( Differential effect of the alpha2-adrenoceptor antagonist, atipamezole, in limb-placing task and skilled forepaw use following experimental stroke.
Butovas, S; Jolkkonen, J; Lukkarinen, J; Sivenius, J; Virtanen, T, 2001
)
1.28

Toxicity

There were few adverse side effects, but they included prolonged sedation, hypothermia, apnoea and bradycardia. No adverse effects were observed after the administration of atipamezole.

ExcerptReferenceRelevance
"To evaluate the toxic effects of amitraz in dogs and their reversal by various doses of atipamezole."( Toxicity and kinetics of amitraz in dogs.
Berny, PJ; Buronrosse, F; Cadoré, JL; Hugnet, C; Lorgue, G; Pineau, X, 1996
)
0.52
" In the present study, the alpha2-adrenergic agonists xylazine and medetomidine were combined with tribromoethanol to examine their use as alternate and safe anesthetic regimes in rats."( Tribromoethanol-medetomidine combination provides a safe and reversible anesthetic effect in Sprague-Dawley rats.
Bay, TN; Brown, SR; Gopalan, C; Hegade, GM; Talcott, MR, 2005
)
0.33
" The reporting of adverse events was low and the most commonly observed event was vomiting (7%)."( Evaluation of the clinical efficacy and safety of dexmedetomidine or medetomidine in cats and their reversal with atipamezole.
Aspegrén, JC; Granholm, M; McKusick, BC; Westerholm, FC, 2006
)
0.54
" There were few adverse side effects, but they included prolonged sedation, hypothermia, apnoea and bradycardia; no adverse effects were observed after the administration of atipamezole, which effectively reversed all the clinical effects of dexmedetomidine and medetomidine."( Evaluation of the clinical efficacy and safety of intramuscular and intravenous doses of dexmedetomidine and medetomidine in dogs and their reversal with atipamezole.
Aspegrén, JC; Granholm, M; McKusick, BC; Westerholm, FC, 2007
)
0.73

Pharmacokinetics

Medetomidine had only statistically significant effects on the pharmacokinetics of atipamezole in this study. Other pharmacokinetic parameters were not significantly altered by atipAMEzole.

ExcerptReferenceRelevance
" Furthermore, the pharmacodynamic action of alpha-2 adrenergic agonists, like many other sedative hypnotics (e."( Alpha-2 adrenergic modulation of sleep: time-of-day-dependent pharmacodynamic profiles of dexmedetomidine and clonidine in the rat.
Dement, WC; Edgar, DM; Maze, M; Seidel, WF, 1995
)
0.29
" The only statistically significant effects of medetomidine on the pharmacokinetics of atipamezole in this study were the slight decrease of Cl and Cmax as well as the increase of AUC."( Atipamezole increases medetomidine clearance in the dog: an agonist-antagonist interaction.
Anttila, M; Salonen, S; Vainio, O; Vuorilehto, L, 1995
)
1.96
" Other pharmacokinetic parameters of medetomidine were not significantly altered by atipamezole."( Pharmacokinetics of medetomidine and atipamezole in dairy calves: an agonist-antagonist interaction.
Arnemo, JM; Horsberg, TE; Ranheim, B; Ryeng, KA; Søli, NE, 1998
)
0.8

Compound-Compound Interactions

The time course of the effects of ethanol alone and in combination with the selective alpha 2-adrenoceptor agonist dexmedetomidine was studied in NIH-Swiss mice. To evaluate the anesthetic and cardiopulmonary effects of ketamine-dexmedetmidine combined with local anesthesia, associated or not in the postoperative period with different doses of atipamezole, for orchiectomy in cats.

ExcerptReferenceRelevance
"The time course of the effects of ethanol alone and in combination with the selective alpha 2-adrenoceptor agonist dexmedetomidine and the alpha-adrenoceptor antagonist atipamezole was studied in NIH-Swiss mice."( The effects of ethanol in combination with the alpha 2-adrenoceptor agonist dexmedetomidine and the alpha 2-adrenoceptor antagonist atipamezole on brain monoamine metabolites and motor performance of mice.
Björn, M; Idänpään-Heikkilä, JJ; Seppälä, T, 1995
)
0.69
" For rehabilitation, housing in an enriched environment was combined with exploration in a labyrinth."( Studies on the influence of enriched-environment housing combined with systemic administration of an alpha2-adrenergic antagonist on spatial learning and hyperactivity after global ischemia in rats.
Haapalinna, A; Koistinaho, J; Miettinen, R; Puurunen, K; Riekkinen, P; Sirviö, J; Sivenius, J, 1997
)
0.3
"To compare efficacy and cardiorespiratory effects of dexmedetomidine and ketamine in combination with butorphanol, hydromorphone, or buprenorphine (with or without reversal by atipamezole) in dogs undergoing castration."( Evaluation of dexmedetomidine and ketamine in combination with opioids as injectable anesthesia for castration in dogs.
Austin, BR; Barletta, M; Inoue, T; Ko, JC; Payton, ME; Weil, AB, 2011
)
0.56
"Pigeons were sedated by INS MID alone at a dose of 5 mg kg(-1) (group MID, n = 6) or in combination with INS DXM at a dose 80 μg kg(-1) (group MID-DXM, n = 6)."( A preliminary trial of the sedation induced by intranasal administration of midazolam alone or in combination with dexmedetomidine and reversal by atipamezole for a short-term immobilization in pigeons.
Bilek, J; Hornak, S; Hromada, R; Ledecky, V; Liptak, T; Mazensky, D; Petrovic, V, 2015
)
0.62
"To evaluate the anesthetic and cardiopulmonary effects of ketamine-dexmedetomidine combined with local anesthesia, associated or not in the postoperative period with different doses of atipamezole, for orchiectomy in cats."( Ketamine-dexmedetomidine combined with local anesthesia, with or without different doses of atipamezole in the postoperative period, for orchiectomy in cats.
Cappelli, N; da Silva, MFA; de Carvalho, WTS; Gomes, VH; Mignani, BTG; Pimentel, VC, 2022
)
1.13
"Cats received ketamine (7 mg/kg) combined with dexmedetomidine (10 µg/kg) IM, and 1 mL of saline (group KDSAL), 25 µg/kg (group KDAT25), or 50 µg/kg (group KDAT50) of atipamezole IV, postoperatively."( Ketamine-dexmedetomidine combined with local anesthesia, with or without different doses of atipamezole in the postoperative period, for orchiectomy in cats.
Cappelli, N; da Silva, MFA; de Carvalho, WTS; Gomes, VH; Mignani, BTG; Pimentel, VC, 2022
)
1.14
"At the doses used, ketamine-dexmedetomidine combined with local anesthesia allowed the performance of orchiectomy."( Ketamine-dexmedetomidine combined with local anesthesia, with or without different doses of atipamezole in the postoperative period, for orchiectomy in cats.
Cappelli, N; da Silva, MFA; de Carvalho, WTS; Gomes, VH; Mignani, BTG; Pimentel, VC, 2022
)
0.94

Bioavailability

ExcerptReferenceRelevance
" In part two, a mean bioavailability of 33% was calculated for buccal administration (compared with intravenous), whereas systemic availability after an oral dose was < 2%."( Buccal delivery of an alpha 2-adrenergic receptor antagonist, atipamezole, in humans.
Anttila, M; Huupponen, R; Karhuvaara, S; Scheinin, H; Vuorilehto, L, 1995
)
0.53
"Atipamezole hydrochloride is well absorbed systemically through oral mucosa."( Buccal delivery of an alpha 2-adrenergic receptor antagonist, atipamezole, in humans.
Anttila, M; Huupponen, R; Karhuvaara, S; Scheinin, H; Vuorilehto, L, 1995
)
1.97
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

Drowsiness was found in calves given the lowest dosage of atipamezole (3 micrograms/kg) after the calves stood. Dose correlated with shoulder height (SH) in centimeters for effective immobilization of free-ranging giraffes.

ExcerptRelevanceReference
" The dose-response curve of medetomidine resembles that of guanfacine, another alpha-2 agonist."( Effects of medetomidine, an alpha-2 adrenoceptor agonist, and atipamezole, an alpha-2 antagonist, on spatial memory performance in adult and aged rats.
Carlson, S; Mecke, E; Pertovaara, A; Rämä, P; Tanila, H, 1992
)
0.52
" Drowsiness was found in calves given the lowest dosage of atipamezole (3 micrograms/kg) after the calves stood."( Antagonistic effect of atipamezole on xylazine-induced sedation, bradycardia, and ruminal atony in calves.
Hsu, WH; Kersting, KW; Thompson, JR, 1991
)
0.84
"The dose-response curves for a number of alpha-adrenergic drugs were investigated to estimate a possible role of the alpha 2/alpha 1 selectivity of these drugs on the incidence of cortical high voltage spindles (HVS), reflecting level of vigilance."( Some unusual effects of alpha 2-adrenergic drugs on cortical high voltage spindles in rats.
Haapalinna, A; Riekkinen, P; Sirviö, J; Yavich, L, 1994
)
0.29
" The combination of an opioid with DMED might reduce the dosage requirements for each drug and thereby allow the same anesthetic depth to be achieved with lesser degrees of their individual side effects."( Anesthetic and hemodynamic interactions of dexmedetomidine and fentanyl in dogs.
Hug, CC; Salmenperä, MT; Szlam, F, 1994
)
0.29
" Microinjections of medetomidine into the cerebellum or the PAG produced an identical dose-response curve in the tail-flick test as that obtained following microinjection into the RVM."( The rostroventromedial medulla is not involved in alpha 2-adrenoceptor-mediated antinociception in the rat.
Hämäläinen, MM; Pertovaara, A, 1993
)
0.29
" Oral dosing of diazinon at 75 and 100 mg/kg produced signs of toxicosis in mice characteristic of cholinergic over-stimulation, and the percentages of deaths were 90 and 100%, respectively."( Medetomidine protection against diazinon-induced toxicosis in mice.
Mohammad, FK; Yakoub, LK, 1997
)
0.3
"To develop a dosage correlated with shoulder height (SH) in centimeters for effective immobilization of free-ranging giraffes, using a combination of medetomidine (MED) and ketamine (KET) and reversal with atipamezole (ATP)."( Use of medetomidine and ketamine for immobilization of free-ranging giraffes.
Bush, M; Grobler, DG; Lance, WR; Phillips, LG; Raath, JP; Stamper, MA, 2001
)
0.5
" Thirty healthy adult turtles were assigned randomly to one of two dosage groups."( Medetomidine-ketamine anesthesia in red-eared slider turtles (Trachemys scripta elegans).
Diggs, HE; Greer, LL; Jenne, KJ, 2001
)
0.31
" Bilateral VLPO lesions attenuated the sedative response to dexmedetomidine, and the dose-response curve to dexmedetomidine was shifted right by gabazine administered systemically or directly into the TMN."( The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects.
Franks, NP; Guo, T; Lu, J; Maze, M; Nelson, LE; Saper, CB, 2003
)
0.32
"This study was performed to determine the optimal reversal dosage of atipamezole on medetomidine-ketamine combination anesthesia."( Reversal of medetomidine-ketamine combination anesthesia in rabbits by atipamezole.
Jeong, SM; Kim, MS; Nam, TC; Park, JH; Seo, KM, 2004
)
0.79
") 10 min after anesthetic induction, and group 2 received the same dosage at 20 min post-induction."( Tribromoethanol-medetomidine combination provides a safe and reversible anesthetic effect in Sprague-Dawley rats.
Bay, TN; Brown, SR; Gopalan, C; Hegade, GM; Talcott, MR, 2005
)
0.33
" A combination of 500 mg zolazepam, 500 mg tiletamine, 500 mg xylazine, and 1000 mg (10 ml) ketamine, administered in a dosage of 1 ml per 100-150 kg bodyweight (depending on the species), proved to be most reliable and effective."( [Immobilization of cattle and bison with a combination of xylazine, zolazepam-tiletamine and ketamine].
Hofkes, LM; Hoyer, MJ; Overgaauw, PA; van Dijk, P, 2005
)
0.33
" The addition of flumazenil showed no significant difference to atipamezole alone, but subcutaneous administration of atipamezole alone was not sufficient in the dosage used to show an advantage compared to non-reversed cats."( Partial antagonization of midazolam-medetomidine-ketamine in cats--atipamezole versus combined atipamezole and flumazenil.
Baumgartner, C; Ebner, J; Erhardt, W; Henke, J; Wehr, U, 2007
)
0.81
" At the conclusion of the procedures, 70 min after medetomidine administration, three animals were injected with atipamezole IM into the opposite triceps muscle at a dosage based on body surface area."( Medetomidine immobilisation and atipamezole reversal in large estuarine crocodiles (Crocodylus porosus) using metabolically scaled dosages.
Olsson, A; Phalen, D, 2012
)
0.87
"Medetomidine at a metabolically scaled dosage delivered IM into the forelimb was effective for immobilising large estuarine crocodiles for at least 40 min."( Medetomidine immobilisation and atipamezole reversal in large estuarine crocodiles (Crocodylus porosus) using metabolically scaled dosages.
Olsson, A; Phalen, D, 2012
)
0.66
" Secondly, we examined how different dosage and optimum injection timing of ATI affected mice recovery from anesthesia."( Anesthetic effects of a three-drugs mixture--comparison of administrative routes and antagonistic effects of atipamezole in mice.
Kirihara, Y; Kobayashi, Y; Kurosaki, K; Saito, Y; Takechi, M; Takeuchi, T, 2015
)
0.63
" Les chats dans les autres groupes reçurent de la xylazine par voie intramusculaire à un dosage de 2 mg/kg de poids corporel (PC), et de la saline (comme témoin); 160 μg/kg PC de prazosin; ou 40, 160, ou 480 μg/kg PC d’atipamezole ou de yohimbine par voie intraveineuse 0,5 h plus tard."( Antagonistic effects of atipamezole, yohimbine, and prazosin on xylazine-induced diuresis in clinically normal cats.
Hikasa, Y; Miki, Y; Murahata, Y, 2014
)
0.89
" Although atipamezole and yohimbine dosing guidelines are available for mice, no controlled comparison has been performed to guide the lab animal community in the selection of one over the other."( Comparison of Atipamezole with Yohimbine for Antagonism of Xylazine in Mice Anesthetized with Ketamine and Xylazine.
Janssen, CF; Kracinovsky, KB; Maiello, P; Newsome, JT; Wright, MJ, 2017
)
1.22
" Importantly, the dose-response curve for this action was right-shifted relative to working memory, as seen with systemic administration."( Receptor and circuit mechanisms underlying differential procognitive actions of psychostimulants.
Berridge, CW; Spencer, RC, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (38)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
hypoxia-inducible factor 1 alpha subunitHomo sapiens (human)Potency20.46603.189029.884159.4836AID1224846; AID1224894
GALC proteinHomo sapiens (human)Potency0.631028.183828.183828.1838AID1159614
TDP1 proteinHomo sapiens (human)Potency28.60660.000811.382244.6684AID686978; AID686979
AR proteinHomo sapiens (human)Potency10.08460.000221.22318,912.5098AID743053
estrogen receptor 2 (ER beta)Homo sapiens (human)Potency17.23250.000657.913322,387.1992AID1259377; AID1259378
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency10.22220.001022.650876.6163AID1224838; AID1224893
progesterone receptorHomo sapiens (human)Potency23.86750.000417.946075.1148AID1346784; AID1346795
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency0.97720.01237.983543.2770AID1645841
glucocorticoid receptor [Homo sapiens]Homo sapiens (human)Potency21.31380.000214.376460.0339AID720691
farnesoid X nuclear receptorHomo sapiens (human)Potency18.83220.375827.485161.6524AID743217
estrogen nuclear receptor alphaHomo sapiens (human)Potency23.91450.000229.305416,493.5996AID743075
GVesicular stomatitis virusPotency0.87090.01238.964839.8107AID1645842
cytochrome P450 2D6Homo sapiens (human)Potency0.30900.00108.379861.1304AID1645840
peroxisome proliferator-activated receptor deltaHomo sapiens (human)Potency26.60110.001024.504861.6448AID743215
peroxisome proliferator activated receptor gammaHomo sapiens (human)Potency16.78420.001019.414170.9645AID743191
aryl hydrocarbon receptorHomo sapiens (human)Potency9.20560.000723.06741,258.9301AID743085; AID743122
activating transcription factor 6Homo sapiens (human)Potency9.00290.143427.612159.8106AID1159516; AID1159519
nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105), isoform CRA_aHomo sapiens (human)Potency9.520519.739145.978464.9432AID1159509
v-jun sarcoma virus 17 oncogene homolog (avian)Homo sapiens (human)Potency10.68220.057821.109761.2679AID1159526
heat shock protein beta-1Homo sapiens (human)Potency18.83220.042027.378961.6448AID743210
nuclear factor erythroid 2-related factor 2 isoform 1Homo sapiens (human)Potency26.60110.000627.21521,122.0200AID743202
Interferon betaHomo sapiens (human)Potency0.87090.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency0.87090.01238.964839.8107AID1645842
Cellular tumor antigen p53Homo sapiens (human)Potency29.84930.002319.595674.0614AID651631
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency0.87090.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency0.87090.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Alpha-2A adrenergic receptorHomo sapiens (human)Ki0.00210.00010.807410.0000AID1306485; AID36350; AID516907
Alpha-1B adrenergic receptorRattus norvegicus (Norway rat)Ki1.99530.00010.949010.0000AID36017
Alpha-2B adrenergic receptorHomo sapiens (human)Ki0.00220.00020.725710.0000AID516908
Alpha-2C adrenergic receptorHomo sapiens (human)Ki0.00420.00030.483410.0000AID516909
Alpha-2B adrenergic receptorRattus norvegicus (Norway rat)Ki0.99770.00000.929610.0000AID35630; AID36017
Alpha-2C adrenergic receptorRattus norvegicus (Norway rat)Ki0.99770.00000.970810.0000AID35630; AID36017
Alpha-2A adrenergic receptorRattus norvegicus (Norway rat)Ki0.99770.00000.937510.0000AID35630; AID36017
Alpha-1D adrenergic receptorRattus norvegicus (Norway rat)Ki1.99530.00000.575110.0000AID36017
Sodium-dependent serotonin transporterRattus norvegicus (Norway rat)Ki3.16230.00000.705610.0000AID196234
Alpha-1B adrenergic receptorHomo sapiens (human)Ki1.94980.00000.471310.0000AID516906
Alpha-1A adrenergic receptorRattus norvegicus (Norway rat)Ki1.99530.00000.965010.0000AID36017
TransporterRattus norvegicus (Norway rat)Ki10.00000.00010.866710.0000AID196233
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (223)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
positive regulation of cytokine productionAlpha-2A adrenergic receptorHomo sapiens (human)
DNA replicationAlpha-2A adrenergic receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayAlpha-2A adrenergic receptorHomo sapiens (human)
adenylate cyclase-activating G protein-coupled receptor signaling pathwayAlpha-2A adrenergic receptorHomo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled receptor signaling pathwayAlpha-2A adrenergic receptorHomo sapiens (human)
Ras protein signal transductionAlpha-2A adrenergic receptorHomo sapiens (human)
Rho protein signal transductionAlpha-2A adrenergic receptorHomo sapiens (human)
female pregnancyAlpha-2A adrenergic receptorHomo sapiens (human)
positive regulation of cell population proliferationAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of norepinephrine secretionAlpha-2A adrenergic receptorHomo sapiens (human)
regulation of vasoconstrictionAlpha-2A adrenergic receptorHomo sapiens (human)
actin cytoskeleton organizationAlpha-2A adrenergic receptorHomo sapiens (human)
platelet activationAlpha-2A adrenergic receptorHomo sapiens (human)
positive regulation of cell migrationAlpha-2A adrenergic receptorHomo sapiens (human)
activation of protein kinase activityAlpha-2A adrenergic receptorHomo sapiens (human)
activation of protein kinase B activityAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of epinephrine secretionAlpha-2A adrenergic receptorHomo sapiens (human)
cellular response to hormone stimulusAlpha-2A adrenergic receptorHomo sapiens (human)
receptor transactivationAlpha-2A adrenergic receptorHomo sapiens (human)
vasodilationAlpha-2A adrenergic receptorHomo sapiens (human)
glucose homeostasisAlpha-2A adrenergic receptorHomo sapiens (human)
fear responseAlpha-2A adrenergic receptorHomo sapiens (human)
positive regulation of potassium ion transportAlpha-2A adrenergic receptorHomo sapiens (human)
positive regulation of MAP kinase activityAlpha-2A adrenergic receptorHomo sapiens (human)
positive regulation of MAPK cascadeAlpha-2A adrenergic receptorHomo sapiens (human)
positive regulation of epidermal growth factor receptor signaling pathwayAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of calcium ion-dependent exocytosisAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of insulin secretionAlpha-2A adrenergic receptorHomo sapiens (human)
intestinal absorptionAlpha-2A adrenergic receptorHomo sapiens (human)
thermoceptionAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of lipid catabolic processAlpha-2A adrenergic receptorHomo sapiens (human)
positive regulation of membrane protein ectodomain proteolysisAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of calcium ion transportAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of insulin secretion involved in cellular response to glucose stimulusAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of uterine smooth muscle contractionAlpha-2A adrenergic receptorHomo sapiens (human)
adrenergic receptor signaling pathwayAlpha-2A adrenergic receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayAlpha-2A adrenergic receptorHomo sapiens (human)
adenylate cyclase-inhibiting adrenergic receptor signaling pathwayAlpha-2A adrenergic receptorHomo sapiens (human)
phospholipase C-activating adrenergic receptor signaling pathwayAlpha-2A adrenergic receptorHomo sapiens (human)
positive regulation of wound healingAlpha-2A adrenergic receptorHomo sapiens (human)
presynaptic modulation of chemical synaptic transmissionAlpha-2A adrenergic receptorHomo sapiens (human)
negative regulation of calcium ion transmembrane transporter activityAlpha-2A adrenergic receptorHomo sapiens (human)
MAPK cascadeAlpha-2B adrenergic receptorHomo sapiens (human)
angiogenesisAlpha-2B adrenergic receptorHomo sapiens (human)
regulation of vascular associated smooth muscle contractionAlpha-2B adrenergic receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayAlpha-2B adrenergic receptorHomo sapiens (human)
cell-cell signalingAlpha-2B adrenergic receptorHomo sapiens (human)
female pregnancyAlpha-2B adrenergic receptorHomo sapiens (human)
negative regulation of norepinephrine secretionAlpha-2B adrenergic receptorHomo sapiens (human)
platelet activationAlpha-2B adrenergic receptorHomo sapiens (human)
activation of protein kinase B activityAlpha-2B adrenergic receptorHomo sapiens (human)
negative regulation of epinephrine secretionAlpha-2B adrenergic receptorHomo sapiens (human)
receptor transactivationAlpha-2B adrenergic receptorHomo sapiens (human)
positive regulation of MAPK cascadeAlpha-2B adrenergic receptorHomo sapiens (human)
positive regulation of neuron differentiationAlpha-2B adrenergic receptorHomo sapiens (human)
positive regulation of blood pressureAlpha-2B adrenergic receptorHomo sapiens (human)
positive regulation of uterine smooth muscle contractionAlpha-2B adrenergic receptorHomo sapiens (human)
adrenergic receptor signaling pathwayAlpha-2B adrenergic receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayAlpha-2B adrenergic receptorHomo sapiens (human)
regulation of smooth muscle contractionAlpha-2C adrenergic receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayAlpha-2C adrenergic receptorHomo sapiens (human)
cell-cell signalingAlpha-2C adrenergic receptorHomo sapiens (human)
negative regulation of norepinephrine secretionAlpha-2C adrenergic receptorHomo sapiens (human)
regulation of vasoconstrictionAlpha-2C adrenergic receptorHomo sapiens (human)
platelet activationAlpha-2C adrenergic receptorHomo sapiens (human)
activation of protein kinase B activityAlpha-2C adrenergic receptorHomo sapiens (human)
negative regulation of epinephrine secretionAlpha-2C adrenergic receptorHomo sapiens (human)
receptor transactivationAlpha-2C adrenergic receptorHomo sapiens (human)
positive regulation of MAPK cascadeAlpha-2C adrenergic receptorHomo sapiens (human)
positive regulation of neuron differentiationAlpha-2C adrenergic receptorHomo sapiens (human)
adrenergic receptor signaling pathwayAlpha-2C adrenergic receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayAlpha-2C adrenergic receptorHomo sapiens (human)
negative regulation of insulin secretionAlpha-2C adrenergic receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayAlpha-1B adrenergic receptorHomo sapiens (human)
adenylate cyclase-modulating G protein-coupled receptor signaling pathwayAlpha-1B adrenergic receptorHomo sapiens (human)
regulation of vasoconstrictionAlpha-1B adrenergic receptorHomo sapiens (human)
intracellular signal transductionAlpha-1B adrenergic receptorHomo sapiens (human)
positive regulation of MAPK cascadeAlpha-1B adrenergic receptorHomo sapiens (human)
regulation of cardiac muscle contractionAlpha-1B adrenergic receptorHomo sapiens (human)
neuron-glial cell signalingAlpha-1B adrenergic receptorHomo sapiens (human)
adenylate cyclase-activating adrenergic receptor signaling pathwayAlpha-1B adrenergic receptorHomo sapiens (human)
cell-cell signalingAlpha-1B adrenergic receptorHomo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwayAlpha-1B adrenergic receptorHomo sapiens (human)
positive regulation of cytosolic calcium ion concentrationAlpha-1B adrenergic receptorHomo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (62)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
alpha2-adrenergic receptor activityAlpha-2A adrenergic receptorHomo sapiens (human)
protein bindingAlpha-2A adrenergic receptorHomo sapiens (human)
protein kinase bindingAlpha-2A adrenergic receptorHomo sapiens (human)
alpha-1B adrenergic receptor bindingAlpha-2A adrenergic receptorHomo sapiens (human)
alpha-2C adrenergic receptor bindingAlpha-2A adrenergic receptorHomo sapiens (human)
thioesterase bindingAlpha-2A adrenergic receptorHomo sapiens (human)
heterotrimeric G-protein bindingAlpha-2A adrenergic receptorHomo sapiens (human)
protein homodimerization activityAlpha-2A adrenergic receptorHomo sapiens (human)
protein heterodimerization activityAlpha-2A adrenergic receptorHomo sapiens (human)
epinephrine bindingAlpha-2A adrenergic receptorHomo sapiens (human)
norepinephrine bindingAlpha-2A adrenergic receptorHomo sapiens (human)
guanyl-nucleotide exchange factor activityAlpha-2A adrenergic receptorHomo sapiens (human)
alpha2-adrenergic receptor activityAlpha-2B adrenergic receptorHomo sapiens (human)
protein bindingAlpha-2B adrenergic receptorHomo sapiens (human)
epinephrine bindingAlpha-2B adrenergic receptorHomo sapiens (human)
alpha2-adrenergic receptor activityAlpha-2C adrenergic receptorHomo sapiens (human)
protein bindingAlpha-2C adrenergic receptorHomo sapiens (human)
alpha-2A adrenergic receptor bindingAlpha-2C adrenergic receptorHomo sapiens (human)
protein homodimerization activityAlpha-2C adrenergic receptorHomo sapiens (human)
protein heterodimerization activityAlpha-2C adrenergic receptorHomo sapiens (human)
epinephrine bindingAlpha-2C adrenergic receptorHomo sapiens (human)
guanyl-nucleotide exchange factor activityAlpha-2C adrenergic receptorHomo sapiens (human)
protein bindingAlpha-1B adrenergic receptorHomo sapiens (human)
protein heterodimerization activityAlpha-1B adrenergic receptorHomo sapiens (human)
alpha1-adrenergic receptor activityAlpha-1B adrenergic receptorHomo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (49)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
cytoplasmAlpha-2A adrenergic receptorHomo sapiens (human)
plasma membraneAlpha-2A adrenergic receptorHomo sapiens (human)
basolateral plasma membraneAlpha-2A adrenergic receptorHomo sapiens (human)
neuronal cell bodyAlpha-2A adrenergic receptorHomo sapiens (human)
axon terminusAlpha-2A adrenergic receptorHomo sapiens (human)
presynaptic active zone membraneAlpha-2A adrenergic receptorHomo sapiens (human)
dopaminergic synapseAlpha-2A adrenergic receptorHomo sapiens (human)
postsynaptic density membraneAlpha-2A adrenergic receptorHomo sapiens (human)
glutamatergic synapseAlpha-2A adrenergic receptorHomo sapiens (human)
GABA-ergic synapseAlpha-2A adrenergic receptorHomo sapiens (human)
receptor complexAlpha-2A adrenergic receptorHomo sapiens (human)
plasma membraneAlpha-2A adrenergic receptorHomo sapiens (human)
cytosolAlpha-2B adrenergic receptorHomo sapiens (human)
plasma membraneAlpha-2B adrenergic receptorHomo sapiens (human)
cell surfaceAlpha-2B adrenergic receptorHomo sapiens (human)
intracellular membrane-bounded organelleAlpha-2B adrenergic receptorHomo sapiens (human)
plasma membraneAlpha-2B adrenergic receptorHomo sapiens (human)
cytoplasmAlpha-2C adrenergic receptorHomo sapiens (human)
endosomeAlpha-2C adrenergic receptorHomo sapiens (human)
plasma membraneAlpha-2C adrenergic receptorHomo sapiens (human)
plasma membraneAlpha-2C adrenergic receptorHomo sapiens (human)
nucleusAlpha-1B adrenergic receptorHomo sapiens (human)
cytoplasmAlpha-1B adrenergic receptorHomo sapiens (human)
plasma membraneAlpha-1B adrenergic receptorHomo sapiens (human)
caveolaAlpha-1B adrenergic receptorHomo sapiens (human)
nuclear membraneAlpha-1B adrenergic receptorHomo sapiens (human)
plasma membraneAlpha-1B adrenergic receptorHomo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (71)

Assay IDTitleYearJournalArticle
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347122qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347110qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for A673 cells)2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347123qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347127qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347129qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347112qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347124qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347119qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347116qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347114qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347111qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347128qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347125qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347117qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347109qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347126qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347115qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347121qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347113qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347118qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Confirmatory screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID516912Ratio of ED50 for santihypothermic activity in po dosed NMRI mouse to ED50 for antihypothermic activity in ip dosed NMRI mouse2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID36349Antagonistic activity as [35S]GTP gamma-S binding at alpha-2a adrenergic receptor expressed in CHO cells2001Journal of medicinal chemistry, Mar-01, Volume: 44, Issue:5
Potential antidepressants displayed combined alpha(2)-adrenoceptor antagonist and monoamine uptake inhibitor properties.
AID196233In vitro binding affinity was determined against NA (noradrenaline) reuptake site of rat in presence of [3H]nisoxetine radioligand2001Journal of medicinal chemistry, Mar-01, Volume: 44, Issue:5
Potential antidepressants displayed combined alpha(2)-adrenoceptor antagonist and monoamine uptake inhibitor properties.
AID36350Binding affinity for human alpha-2 adrenergic receptor expressed in CHO cell2001Journal of medicinal chemistry, Mar-01, Volume: 44, Issue:5
Potential antidepressants displayed combined alpha(2)-adrenoceptor antagonist and monoamine uptake inhibitor properties.
AID1306485Displacement of [3H]RS-79948-197 from recombinant human alpha2A adrenoreceptor expressed in CHOK1 cell membrane by scintillation counting method2016Bioorganic & medicinal chemistry, 07-15, Volume: 24, Issue:14
A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin.
AID35630In vitro binding affinity against alpha-2 adrenergic receptor of rat in presence of [3H]-RX 821002 radioligand2001Journal of medicinal chemistry, Mar-01, Volume: 44, Issue:5
Potential antidepressants displayed combined alpha(2)-adrenoceptor antagonist and monoamine uptake inhibitor properties.
AID516908Displacement of [3H]-RX821002 from human adrenergic alpha2B receptor expressed in rat C6 cells after 120 mins by liquid scintillation counting2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID516909Displacement of [3H]-RX821002 from human adrenergic Alpha-2C receptor expressed in rat C6 cells after 120 mins by liquid scintillation counting2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID516907Displacement of [3H]-RX821002 from human adrenergic alpha2A receptor expressed in rat C6 cells after 120 mins by liquid scintillation counting2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID1306487Intrinsic activity at recombinant human alpha2A adrenoreceptor expressed in CHOK1 cell membrane incubated for 30 mins by [35S]GTPgammaS binding assay relative to adrenaline2016Bioorganic & medicinal chemistry, 07-15, Volume: 24, Issue:14
A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin.
AID516905Antagonist activity at human adrenergic alpha2A receptor expressed in CHO cells assessed as inhibition of adrenaline-induced [35S]GTPgammaS binding after 30 mins by scintillation counting2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID516911Antihypothermic activity in po dosed NMRI mouse assessed as inhibition of guanabenz-induced hypothermia administered 35 mins before guanabenz challenge measured after 25 mins2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID516910Antihypothermic activity in ip dosed NMRI mouse assessed as inhibition of guanabenz-induced hypothermia administered 5 mins before guanabenz challenge measured after 25 mins2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID1306486Agonist activity at recombinant human alpha2A adrenoreceptor expressed in CHOK1 cell membrane incubated for 30 mins by [35S]GTPgammaS binding assay2016Bioorganic & medicinal chemistry, 07-15, Volume: 24, Issue:14
A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin.
AID516906Displacement of [3H]-prazosin from human adrenergic alpha-1b receptor expressed in CHO cells after 120 mins by liquid scintillation counting2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID516915Increase of normetanephrine level in NMRI mouse cortex at 10 mg/kg, ip after 1 hr microwave irradiation2010Journal of medicinal chemistry, Oct-14, Volume: 53, Issue:19
Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences.
AID196234In vitro binding affinity was determined against serotonin reuptake site of rat in presence of [3H]paroxetine radioligand2001Journal of medicinal chemistry, Mar-01, Volume: 44, Issue:5
Potential antidepressants displayed combined alpha(2)-adrenoceptor antagonist and monoamine uptake inhibitor properties.
AID36017In vitro binding affinity against alpha-1 adrenergic receptor of rat in presence of [3H]-prazosin radioligand2001Journal of medicinal chemistry, Mar-01, Volume: 44, Issue:5
Potential antidepressants displayed combined alpha(2)-adrenoceptor antagonist and monoamine uptake inhibitor properties.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (521)

TimeframeStudies, This Drug (%)All Drugs %
pre-199012 (2.30)18.7374
1990's206 (39.54)18.2507
2000's146 (28.02)29.6817
2010's125 (23.99)24.3611
2020's32 (6.14)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 59.84

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be very strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index59.84 (24.57)
Research Supply Index6.39 (2.92)
Research Growth Index5.88 (4.65)
Search Engine Demand Index99.22 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (59.84)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials64 (12.08%)5.53%
Reviews5 (0.94%)6.00%
Case Studies6 (1.13%)4.05%
Observational1 (0.19%)0.25%
Other454 (85.66%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Clinical Trials (2)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Turning Dexmedetomidine Into a Powerful Anesthetic That Can be Rapidly and Completely Reversed [NCT04942340]Phase 10 participants (Actual)Interventional2023-05-31Withdrawn(stopped due to Withdrawn secondary to a change in protocol design forthcoming.)
Competition With Striatal [11C]ORM-13070 Binding by Atipamezole and Endogenous Noradrenaline - a PET Study in Healthy Human Subjects [NCT01435213]Phase 110 participants (Actual)Interventional2011-09-30Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]