Page last updated: 2024-11-04

azosemide

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

azosemide : A sulfonamide that is benzenesulfonamide which is substituted at positions 2, 4, and 5 by chlorine, (2-thienylmethyl)amino and 1H-tetrazol-5-yl groups, respectively. It is a diuretic that has been used in the management of oedema and hypertension. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID2273
CHEMBL ID1097235
CHEBI ID31248
SCHEMBL ID48976
MeSH IDM0069534

Synonyms (70)

Synonym
AC-096
ple 1053
azosemide
luret
diart
sk 110
NCGC00181340-01
azosemide (jp17/usan/inn)
diart (tn)
D01323
27589-33-9
sulfanilamide, 2-chloro-5-(1h-tetrazol-5-yl)-n(sup 4)-2-thenyl-
c12h11cln6o2s2
sk-110
azosemid
azosemidum [inn-latin]
azosemide [usan:inn:jan]
brn 1178491
einecs 248-549-7
azosemida [inn-spanish]
2-chloro-5-(1h-tetrazol-5-yl)-n(sup 4)-2-thenylsulfanilamide
benzenesulfonamide, 2-chloro-5-(1h-tetrazol-5-yl)-4-((2-thienylmethyl)amino)-
5-(4'-chloro-5'-sulfamoyl-2'-thenylaminophenyl)-tetrazole
2-chloro-5-(1h-tetrazol-5-yl)-n(4)-2-thenylsulfanilamide
2-chloro-5-(1h-tetrazol-5-yl)-4-[(thiophen-2-ylmethyl)amino]benzenesulfonamide
azosemida
CHEBI:31248 ,
azosemidum
5-(4'-chloro-5'-sulfamoyl-2'-thenylaminophenyl)tetrazole
CHEMBL1097235
2-chloro-5-(2h-tetrazol-5-yl)-4-(thiophen-2-ylmethylamino)benzenesulfonamide
dtxsid7046910 ,
dtxcid5026910
tox21_112799
cas-27589-33-9
AKOS015961824
unii-mr40vt1l8z
mr40vt1l8z ,
FT-0602886
SCHEMBL48976
tox21_112799_1
NCGC00181340-02
HMEDEBAJARCKCT-UHFFFAOYSA-N
azosemide [mi]
azosemide [usan]
azosemide [inn]
azosemide [mart.]
azosemide [who-dd]
azosemide [jan]
2-chloro-5-(2h-1,2,3,4-tetrazol-5-yl)-4-[(thiophen-2-ylmethyl)amino]benzene-1-sulfonamide
EX-A1266
5-(4-chloro-5-sulfamoyl-2-thenylaminophenyl)-tetrazole
2-chloro-5-(2h-tetrazol-5-yl)-4-((thiophen-2-ylmethyl)amino)benzenesulfonamide
DB08961
2-chloro-5-(1h-tetrazol-5-yl)-n4-2-thenylsulfanilamide
2-chloro-5-(1h-tetrazol-5-yl)-4-(thiophen-2-ylmethylamino)benzenesulfonamide
Q4832859
CS-0028137
HY-107321
AS-12235
benzenesulfonamide, 2-chloro-5-(2h-tetrazol-5-yl)-4-[(2-thienylmethyl)amino]-
mfcd30541344
AMY7468
C74435
A913169
2-chloranyl-5-(1~{h}-1,2,3,4-tetrazol-5-yl)-4-(thiophen-2-ylmethylamino)benzenesulfonamide
mfcd00867321
SY288607
IWE ,
2-chloro-5-(1h-tetrazol-5-yl)-4-((thiophen-2-ylmethyl)amino)benzenesulfonamide

Research Excerpts

Overview

Azosemide is a new monosulfamyl diuretic. potency and spectrum of effects similar to those of furosemide. It has been shown to affect solute transport proximal to the diluting segment.

ExcerptReferenceRelevance
"Azosemide is a loop diuretic that may also affect sodium reabsorption at the proximal tubule. "( Azosemide kinetics and dynamics.
Anderson, S; Brater, DC; Day, B; Seiwell, R, 1983
)
3.15
"Azosemide is a new monosulfamyl diuretic with potency and spectrum of effects similar to those of furosemide. "( Renal sites of action of azosemide.
Brater, DC, 1979
)
2.01
"Azosemide is a new loop diuretic which has been shown to affect solute transport proximal to the diluting segment. "( Effects in normal subjects of long-term administration of azosemide.
Anderson, S; Brater, C; Muckleroy, C, 1979
)
1.95

Effects

ExcerptReferenceRelevance
"Thus azosemide has an estimated bioavailability of 10%."( Azosemide kinetics and dynamics.
Anderson, S; Brater, DC; Day, B; Seiwell, R, 1983
)
2.16
"Thus azosemide has an estimated bioavailability of 10%."( Azosemide kinetics and dynamics.
Anderson, S; Brater, DC; Day, B; Seiwell, R, 1983
)
2.16

Toxicity

ExcerptReferenceRelevance
" The method is based on the determination of the toxic dose (TD50) which causes a defined hearing loss in 50% of the animals tested."( Quantitative evaluation of ototoxic side effects of furosemide, piretanide, bumetanide, azosemide and ozolinone in the cat--a new approach to the problem of ototoxicity.
Göttl, KH; Klinke, R; Roesch, A, 1985
)
0.49
" The adverse event rate was 23."( [Efficacy and safety of azosemide in patients with edema and ascites].
Chen, JZ; Hu, XS; Hu, YL; Huang, GZ; Huang, XS; Lin, WQ; Wu, ZG; Zhang, Y; Zheng, JC, 2005
)
0.64

Pharmacokinetics

azosemide, 10 mg/kg, to rats with PCMC without pretreatment 3-methylcholanthrene. Time-averaged nonrenal clearance and apparent volume of distribution at steady state were comparable to those in control rats. terminal half-life and mean residence time were significantly shorter.

ExcerptReferenceRelevance
" Detailed analysis showed significant differences in various pharmacokinetic parameters, such as initial volume of distribution, apparent volume of distribution at steady state, and mean residence time based on arterial or venous data."( Arterial and venous blood sampling in pharmacokinetic studies: azosemide in rabbits.
Kim, ND; Lee, MG; Lee, SH; Shin, WG, 1994
)
0.53
" Pharmacokinetic parameters of azosemide were not significantly different between the two groups of rats except t(1/2), MRT, and V(ss)."( Effect of a hepatoprotective agent, YH-439, on the pharmacokinetics of furosemide and azosemide in rats.
Kim, ND; Kim, SH; Lee, JW; Lee, MG; Park, KJ; Yoon, WH, 1996
)
0.8
" This could be rationalized by the concept of a single maximally efficient excretion rate of the drug in the pharmacodynamic model (sigmoid Emax), as shown for furosemide."( Effect of water deprivation for 48 hours on the pharmacokinetics and pharmacodynamics of azosemide in rats.
Ha, HA; Kim, ON; Kim, SH; Lee, MG; Lee, SH, 1996
)
0.52
" After both intravenous and oral administration some pharmacokinetic and pharmacodynamic parameters of azosemide were significantly different in AIDRs."( Pharmacokinetics and pharmacodynamics of azosemide after intravenous and oral administration to rats with alloxan-induced diabetes mellitus.
Lee, MG; Park, KJ; Shin, WG; Yoon, WH, 1996
)
0.77
" Some pharmacokinetic parameters of azosemide were different between treatments I and II."( The effect of intravenous infusion time on the pharmacokinetics and pharmacodynamics of the same total dose of azosemide in rabbits.
Lee, MG; Park, KJ; Shin, WG; Yoon, WH, 1997
)
0.78
"The effects of pretreatment with the enzyme inducers phenobarbital (PB) and 3-methylcholanthrene (3-MC) and the enzyme inhibitor chloramphenicol (CM) on the pharmacokinetic and pharmacodynamic parameters of azosemide were examined after intravenous (i."( Effect of phenobarbital, 3-methylcholanthrene, and chloramphenicol pretreatment on the pharmacokinetics and pharmacodynamics of azosemide in rats.
Lee, MG; Lee, SH, 1997
)
0.69
" After intravenous (iv) dose, the pharmacokinetic parameters of azosemide such as t1/2."( Pharmacokinetics and pharmacodynamics of azosemide after intravenous and oral administration to rats: absorption from various GI segments.
Lee, MG; Lee, SH, 1996
)
0.8
"The pharmacokinetic and pharmacodynamic differences of azosemide were investigated after intravenous (i."( Pharmacokinetic and pharmacodynamic changes of azosemide after intravenous and oral administration of azosemide to uranyl nitrate-induced acute renal failure rats.
Kim, SH; Lee, MG; Park, KJ; Shin, WG; Yoon, WH, 1998
)
0.8
" The pharmacodynamic parameters of azosemide were not significantly different after oral administration of the drug to both groups of rats."( Circadian changes in the pharmacokinetics and pharmacodynamics of azosemide in rats.
Han, KS; Lee, MG, 1998
)
0.81
" After intravenous administration to rats with PCMC, some pharmacokinetic parameters restored fully or more than the level of control rats; the time-averaged nonrenal clearance (2."( Effects of cysteine on the pharmacokinetics and pharmacodynamics of intravenous and oral azosemide in rats with protein-calorie malnutrition.
Cho, MK; Kim, SG; Kim, SH; Kim, YG; Kwon, JW; Lee, MG, 2001
)
0.53
" It was reported that after intravenous administration of azosemide, 10 mg/kg, to rats with PCMC without pretreatment 3-methylcholanthrene, some pharmacokinetic parameters restored fully or more than the level of control rats; the time-averaged nonrenal clearance and apparent volume of distribution at steady state were comparable to those in control rats, but the terminal half-life and mean residence time were significantly shorter, AUC was significantly smaller, and time-averaged renal clearance and CL were significantly faster than those in control rats."( No effect of cysteine on the pharmacokinetics of intravenous azosemide in rats with protein-calorie malnutrition by pretreatment with 3-methylcholanthrene.
Cho, MK; Kim, SG; Kim, SH; Kim, YG; Kwon, JW; Lee, MG, 2001
)
0.8

Compound-Compound Interactions

ExcerptReferenceRelevance
"This study was performed to compare the acute-renal toxicity of azosemide (SK-110) or furosemide (FM) treatment in combination with cephaloridine (CER)."( [Effect of diuretic, azosemide (SK-110), in combination with antibiotic, cephaloridine, on kidney].
Asaeda, N; Ikawa, E; Iwai, H; Koide, M; Nagai, N; Shinoda, M; Tagawa, Y; Tamano, S; Yoshiyasu, T, 1984
)
0.83

Bioavailability

azosemide has an estimated bioavailability of 10%. To increase the extent of comparative oral bioavailability, ascorbic acid was co administered to rats.

ExcerptReferenceRelevance
" Thus azosemide has an estimated bioavailability of 10%."( Azosemide kinetics and dynamics.
Anderson, S; Brater, DC; Day, B; Seiwell, R, 1983
)
2.19
" The estimated extent of absolute oral bioavailability in humans was approximately 20."( Pharmacokinetics and pharmacodynamics of azosemide.
Kim, SH; Lee, MG; Suh, OK, 2003
)
0.58
"To increase the extent of comparative oral bioavailability (F) value and the diuretic and natriuretic effects of orally administered azosemide, ascorbic acid was coadministered to rats."( Mechanism of enhanced bioavailability and diuretic effect of azosemide by ascorbic acid in rats.
Choi, KY; Kim, YC; Lee, MG, 2006
)
0.78
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51

Dosage Studied

azosemide appeared to be more effective than furosemide in those patients in whom a dose-response curve was established. Some implications for the bioequivalence evaluation of dosage forms of azoseMide are discussed.

ExcerptRelevanceReference
" When administered intravenously, Ple 1053 was approximately 5 times more potent on a weight basis than furosemide, its dose-response relationship was closer and the slope was steeper."( Clinical and pharmacological investigations of the new saluretic azosemid.
Bablok, W; Besenfelder, E; Betzien, G; Kaufmann, B; Krück, F, 1978
)
0.26
" Dose-response studies of these two drugs suggested that azosemide was about 5 times as potent as furosemide."( Effect of azosemide on the in vitro perfused thick ascending limb of Henle's loop from the mouse.
Marumo, F; Sasaki, S; Tsuchiya, K, 1990
)
0.93
" A single dose of each compound was administered orally, or intraperitoneally, while multiple oral dosing was carried out once daily for a week."( [Effect of azosemide (SK-110) and its metabolites on mouse liver].
Asaeda, N; Haruyama, K; Ikawa, E; Koide, M; Shinoda, M; Tagawa, Y; Tamano, S, 1984
)
0.66
" After intravenous dosing the elimination t 1/2 was approximately 2 hr; 20% of a dose was recovered unchanged."( Azosemide kinetics and dynamics.
Anderson, S; Brater, DC; Day, B; Seiwell, R, 1983
)
1.71
" However, azosemide appeared to be more effective than furosemide in those patients in whom a dose-response curve was established."( Comparison of azosemide and furosemide in ascitic patients without and during administration of spironolactone.
Gercsák, G; Hartai, A; Molnár, Z; Radó, JP, 1982
)
1.03
" Some implications for the bioequivalence evaluation of dosage forms of azosemide are discussed."( Effects of the rate and composition of fluid replacement on the pharmacokinetics and pharmacodynamics of intravenous azosemide.
Lee, MG; Park, KJ; Shin, WG; Yoon, WH, 1997
)
0.74
" The dosage were adjusted to azosemide 60 mg/d (cardiac, renal edema), 90 mg (hepatogeic edema); or furosemide 40 mg/d (cardiac, renal edema), 60 mg (hepatogeic edema), if diuretic effects were not obtained at the end of third day."( [Efficacy and safety of azosemide in patients with edema and ascites].
Chen, JZ; Hu, XS; Hu, YL; Huang, GZ; Huang, XS; Lin, WQ; Wu, ZG; Zhang, Y; Zheng, JC, 2005
)
0.93
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
loop diureticA diuretic that acts on the ascending loop of Henle in the kidney.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (4)

ClassDescription
tetrazolesAn azole in which the five-membered heterocyclic aromatic skeleton contains four N atoms and one C atom.
monochlorobenzenesAny member of the class of chlorobenzenes containing a mono- or poly-substituted benzene ring in which only one substituent is chlorine.
sulfonamideAn amide of a sulfonic acid RS(=O)2NR'2.
thiophenesCompounds containing at least one thiophene ring.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (18)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
LuciferasePhotinus pyralis (common eastern firefly)Potency32.19680.007215.758889.3584AID624030
RAR-related orphan receptor gammaMus musculus (house mouse)Potency33.49150.006038.004119,952.5996AID1159521
GLS proteinHomo sapiens (human)Potency31.62280.35487.935539.8107AID624170
nuclear receptor subfamily 1, group I, member 3Homo sapiens (human)Potency23.26380.001022.650876.6163AID1224838; AID1224893
cytochrome P450 family 3 subfamily A polypeptide 4Homo sapiens (human)Potency9.52150.01237.983543.2770AID1645841
retinoic acid nuclear receptor alpha variant 1Homo sapiens (human)Potency31.67040.003041.611522,387.1992AID1159552; AID1159555
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency29.84930.001530.607315,848.9004AID1224849
pregnane X nuclear receptorHomo sapiens (human)Potency13.33320.005428.02631,258.9301AID1346982
GVesicular stomatitis virusPotency15.09060.01238.964839.8107AID1645842
nuclear receptor subfamily 1, group I, member 2Rattus norvegicus (Norway rat)Potency14.12540.10009.191631.6228AID1346983
vitamin D3 receptor isoform VDRAHomo sapiens (human)Potency89.12510.354828.065989.1251AID504847
thyroid hormone receptor beta isoform 2Rattus norvegicus (Norway rat)Potency3.34910.000323.4451159.6830AID743065
nuclear factor erythroid 2-related factor 2 isoform 1Homo sapiens (human)Potency12.77450.000627.21521,122.0200AID743202; AID743219
Interferon betaHomo sapiens (human)Potency15.09060.00339.158239.8107AID1645842
HLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)Potency15.09060.01238.964839.8107AID1645842
Cellular tumor antigen p53Homo sapiens (human)Potency10.59090.002319.595674.0614AID651631
Inositol hexakisphosphate kinase 1Homo sapiens (human)Potency15.09060.01238.964839.8107AID1645842
cytochrome P450 2C9, partialHomo sapiens (human)Potency15.09060.01238.964839.8107AID1645842
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (168)

Processvia Protein(s)Taxonomy
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell activation involved in immune responseInterferon betaHomo sapiens (human)
cell surface receptor signaling pathwayInterferon betaHomo sapiens (human)
cell surface receptor signaling pathway via JAK-STATInterferon betaHomo sapiens (human)
response to virusInterferon betaHomo sapiens (human)
positive regulation of autophagyInterferon betaHomo sapiens (human)
cytokine-mediated signaling pathwayInterferon betaHomo sapiens (human)
natural killer cell activationInterferon betaHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylation of STAT proteinInterferon betaHomo sapiens (human)
cellular response to interferon-betaInterferon betaHomo sapiens (human)
B cell proliferationInterferon betaHomo sapiens (human)
negative regulation of viral genome replicationInterferon betaHomo sapiens (human)
innate immune responseInterferon betaHomo sapiens (human)
positive regulation of innate immune responseInterferon betaHomo sapiens (human)
regulation of MHC class I biosynthetic processInterferon betaHomo sapiens (human)
negative regulation of T cell differentiationInterferon betaHomo sapiens (human)
positive regulation of transcription by RNA polymerase IIInterferon betaHomo sapiens (human)
defense response to virusInterferon betaHomo sapiens (human)
type I interferon-mediated signaling pathwayInterferon betaHomo sapiens (human)
neuron cellular homeostasisInterferon betaHomo sapiens (human)
cellular response to exogenous dsRNAInterferon betaHomo sapiens (human)
cellular response to virusInterferon betaHomo sapiens (human)
negative regulation of Lewy body formationInterferon betaHomo sapiens (human)
negative regulation of T-helper 2 cell cytokine productionInterferon betaHomo sapiens (human)
positive regulation of apoptotic signaling pathwayInterferon betaHomo sapiens (human)
response to exogenous dsRNAInterferon betaHomo sapiens (human)
B cell differentiationInterferon betaHomo sapiens (human)
natural killer cell activation involved in immune responseInterferon betaHomo sapiens (human)
adaptive immune responseInterferon betaHomo sapiens (human)
T cell activation involved in immune responseInterferon betaHomo sapiens (human)
humoral immune responseInterferon betaHomo sapiens (human)
positive regulation of T cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
adaptive immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class I via ER pathway, TAP-independentHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of T cell anergyHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
defense responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
detection of bacteriumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-12 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of interleukin-6 productionHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protection from natural killer cell mediated cytotoxicityHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
innate immune responseHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
regulation of dendritic cell differentiationHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
antigen processing and presentation of endogenous peptide antigen via MHC class IbHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
inositol phosphate metabolic processInositol hexakisphosphate kinase 1Homo sapiens (human)
phosphatidylinositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
negative regulation of cold-induced thermogenesisInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol phosphate biosynthetic processInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (50)

Processvia Protein(s)Taxonomy
cytokine activityInterferon betaHomo sapiens (human)
cytokine receptor bindingInterferon betaHomo sapiens (human)
type I interferon receptor bindingInterferon betaHomo sapiens (human)
protein bindingInterferon betaHomo sapiens (human)
chloramphenicol O-acetyltransferase activityInterferon betaHomo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
signaling receptor bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
peptide antigen bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
TAP bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
protein-folding chaperone bindingHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
inositol-1,3,4,5,6-pentakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol heptakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
protein bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
ATP bindingInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 1-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol hexakisphosphate 3-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol 5-diphosphate pentakisphosphate 5-kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
inositol diphosphate tetrakisphosphate kinase activityInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (36)

Processvia Protein(s)Taxonomy
extracellular spaceInterferon betaHomo sapiens (human)
extracellular regionInterferon betaHomo sapiens (human)
Golgi membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
endoplasmic reticulumHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
Golgi apparatusHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
cell surfaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
ER to Golgi transport vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
secretory granule membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
phagocytic vesicle membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
early endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
recycling endosome membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular exosomeHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
lumenal side of endoplasmic reticulum membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
MHC class I protein complexHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
extracellular spaceHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
external side of plasma membraneHLA class I histocompatibility antigen, B alpha chain Homo sapiens (human)
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
fibrillar centerInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
cytosolInositol hexakisphosphate kinase 1Homo sapiens (human)
nucleusInositol hexakisphosphate kinase 1Homo sapiens (human)
cytoplasmInositol hexakisphosphate kinase 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (35)

Assay IDTitleYearJournalArticle
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID504749qHTS profiling for inhibitors of Plasmodium falciparum proliferation2011Science (New York, N.Y.), Aug-05, Volume: 333, Issue:6043
Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID1347082qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: LASV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347083qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lassa (LASV) Arenavirus: Viability assay - alamar blue signal for LASV Primary Screen2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID1347098qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347091qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347090qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347108qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347105qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347099qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347104qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347424RapidFire Mass Spectrometry qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347097qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Saos-2 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347107qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347089qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for TC32 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID1347425Rhodamine-PBP qHTS Assay for Modulators of WT P53-Induced Phosphatase 1 (WIP1)2019The Journal of biological chemistry, 11-15, Volume: 294, Issue:46
Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens.
AID1347407qHTS to identify inhibitors of the type 1 interferon - major histocompatibility complex class I in skeletal muscle: primary screen against the NCATS Pharmaceutical Collection2020ACS chemical biology, 07-17, Volume: 15, Issue:7
High-Throughput Screening to Identify Inhibitors of the Type I Interferon-Major Histocompatibility Complex Class I Pathway in Skeletal Muscle.
AID1347095qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347102qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh18 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347093qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347100qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347103qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347092qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347094qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-37 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347101qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347106qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for control Hh wild type fibroblast cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347096qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for U-2 OS cells2018Oncotarget, Jan-12, Volume: 9, Issue:4
Quantitative high-throughput phenotypic screening of pediatric cancer cell lines identifies multiple opportunities for drug repurposing.
AID1347086qHTS for Inhibitors of the Functional Ribonucleoprotein Complex (vRNP) of Lymphocytic Choriomeningitis Arenaviruses (LCMV): LCMV Primary Screen - GLuc reporter signal2020Antiviral research, 01, Volume: 173A cell-based, infectious-free, platform to identify inhibitors of lassa virus ribonucleoprotein (vRNP) activity.
AID476929Human intestinal absorption in po dosed human2010European journal of medicinal chemistry, Mar, Volume: 45, Issue:3
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (92)

TimeframeStudies, This Drug (%)All Drugs %
pre-199029 (31.52)18.7374
1990's24 (26.09)18.2507
2000's17 (18.48)29.6817
2010's13 (14.13)24.3611
2020's9 (9.78)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 37.22

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index37.22 (24.57)
Research Supply Index4.65 (2.92)
Research Growth Index4.50 (4.65)
Search Engine Demand Index51.48 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (37.22)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials11 (11.83%)5.53%
Reviews1 (1.08%)6.00%
Case Studies1 (1.08%)4.05%
Observational0 (0.00%)0.25%
Other80 (86.02%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Clinical Trials (1)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Japanese Multicenter Evaluation of Long- Versus Short-acting Diuretics in Congestive Heart Failure [NCT00355667]Phase 4320 participants (Actual)Interventional2006-06-30Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]