Page last updated: 2024-11-05

alizarin red s

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth

Description

Alizarin Red S: RN given refers to parent cpd; structure [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

alizarin red S : An organic sodium salt having 3,4-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate as the counterion. It is commonly used to stain embryo skeletons in cleared whole mounts, usually of small mammals. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID3955344
CHEMBL ID175336
CHEBI ID87358
SCHEMBL ID728494
MeSH IDM0045534

Synonyms (86)

Synonym
nsc-56653
alizarine carmine
2-anthracenesulfonic acid, 9,10-dihydro-3,4-dihydroxy-9,10-dioxo-, monosodium salt
alizarine red s (biological stain)
einecs 204-981-8
alizarin carmine (biological stain)
ext d and c red no. 7
nsc 56653
sodium 9,10-dihydro-3,4-dihydroxy-9,10-dioxoanthracene-2-sulphonate monohydrate
2-anthraquinonesulfonic acid, 3,4-dihydroxy-, sodium salt
alizarinrot-s [german]
9,10-dihydro-3,4-dihydroxy-9,10-dioxo-2-anthracenesulfonic acid monosodium salt
mordant red 3
c.i. 58005
alizarin-3-sulfonate sodium salt
alizarine s extra conc. a export
alizarine carmine (biological stain)
sodium 3,4-dihydroxyanthraquinone-2-sulfonate
130-22-3
calcochrome alizarine red sc
alizarine red w
alizarine s extra pure a
sodium alizarinesulfonate
alizarine red sz
acid red alizarine
ahcoquinone red s
alizarine red ws
chrome red alizarine
alizarine red wa
alizarine red sw
alizarine red a
oxanal fast red sw
alizarine carmine indicator
alizarine red as
alizarin carmine
alizarin s
alizarin red s
fenakrom red w
c.i. mordant red 3
sodium alizarin-3-sulfonate
mitsui alizarine red s
alizarine s
diamond red w
alizarine red s sodium salt
alizarine red indicator
carnelio rubine lake
STK076707
sodium 3,4-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate
chebi:87358 ,
CHEMBL175336 ,
EN300-92948
AKOS004901450
3,4-dihydroxy-9,10-dioxoanthracene-2-sulfonic acid, sodium salt
unii-3f3at0q12h
alizarinrot-s
2-anthracenesulfonic acid, 9,10-dihydro-3,4-dihydroxy-9,10-dioxo-, sodium salt (1:1)
3f3at0q12h ,
FT-0621968
AKOS015903821
sodium alizarinesulfonate [mi]
SCHEMBL728494
AKOS024282311
alizarin sulfonate sodium
3,4-dihydroxy-9,10-dioxo-2-anthracenesulfonic acid sodium salt
mfcd00013049
alizarin red s (c.i. 58005)
STL445507
alizarin red s sodium salt
J-005770
alizarinreds
CS-0078416
HY-120601
alizarin red s (sodium)
Q4062337
HFVAFDPGUJEFBQ-UHFFFAOYSA-M
alizarin red s sodium salt, technical grade
AS-14628
alizarin red s sodium
ars sodium
alizarin red s 1% w/v aq. sol
sodium;3,4-dihydroxy-9,10-dioxoanthracene-2-sulfonate
DTXSID6052744
F82315
AKOS037478382
A888777
Z2768168435

Research Excerpts

Compound-Compound Interactions

ExcerptReferenceRelevance
" In the present study, the effects of staphylococcal enterotoxin C injection in combination with ascorbic acid (SEC-AA) on the differentiation of bone marrow-derived mesenchymal stem cells (MSCs) and their influences on the mineralization of osteoblasts were investigated."( Staphylococcal enterotoxin C injection in combination with ascorbic acid promotes the differentiation of bone marrow-derived mesenchymal stem cells into osteoblasts in vitro.
Chen, HX; Hong, D; Li, DM; Li, JC; Li, M; Liu, CP; Wan, XC, 2008
)
0.35
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (1)

RoleDescription
histological dyeA dye used in microscopic or electron microscopic examination of cells and tissues to give contrast and to highlight particular features of interest, such as nuclei and cytoplasm.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (2)

ClassDescription
organic sodium salt
organosulfonate saltAny organic salt prepared using an organosulfonic acid as the acid component.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (4)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Tyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)IC50 (µMol)40.00000.00053.49849.7600AID157217
Phosphoglycerate mutase 1Homo sapiens (human)IC50 (µMol)2.30000.49002.14677.2000AID1708712
Tyrosine-protein phosphatase 1Saccharomyces cerevisiae S288CIC50 (µMol)48.00001.20004.30007.4000AID220230
Pyruvate kinase PKLRHomo sapiens (human)IC50 (µMol)0.20000.20000.20000.2000AID1879867
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (39)

Processvia Protein(s)Taxonomy
positive regulation of JUN kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein dephosphorylationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of signal transductionTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of signal transductionTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
actin cytoskeleton organizationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of endocytosisTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of vascular endothelial growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulum unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of intracellular protein transportTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cellular response to unfolded proteinTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
peptidyl-tyrosine dephosphorylationTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
platelet-derived growth factor receptor-beta signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
IRE1-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor recyclingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of MAP kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of insulin receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of type I interferon-mediated signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
growth hormone receptor signaling pathway via JAK-STATTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of protein tyrosine kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of ERK1 and ERK2 cascadeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
regulation of hepatocyte growth factor receptor signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathwayTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of IRE1-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
negative regulation of PERK-mediated unfolded protein responseTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
peptidyl-tyrosine dephosphorylation involved in inactivation of protein kinase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
positive regulation of receptor catabolic processTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
gluconeogenesisPhosphoglycerate mutase 1Homo sapiens (human)
canonical glycolysisPhosphoglycerate mutase 1Homo sapiens (human)
response to hypoxiaPyruvate kinase PKLRHomo sapiens (human)
glycolytic processPyruvate kinase PKLRHomo sapiens (human)
response to nutrientPyruvate kinase PKLRHomo sapiens (human)
response to glucosePyruvate kinase PKLRHomo sapiens (human)
response to metal ionPyruvate kinase PKLRHomo sapiens (human)
response to ATPPyruvate kinase PKLRHomo sapiens (human)
pyruvate biosynthetic processPyruvate kinase PKLRHomo sapiens (human)
response to cAMPPyruvate kinase PKLRHomo sapiens (human)
cellular response to epinephrine stimulusPyruvate kinase PKLRHomo sapiens (human)
cellular response to insulin stimulusPyruvate kinase PKLRHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (22)

Processvia Protein(s)Taxonomy
RNA bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein tyrosine phosphatase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
insulin receptor bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
zinc ion bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
enzyme bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein kinase bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
receptor tyrosine kinase bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cadherin bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
ephrin receptor bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein phosphatase 2A bindingTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
non-membrane spanning protein tyrosine phosphatase activityTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
bisphosphoglycerate mutase activityPhosphoglycerate mutase 1Homo sapiens (human)
phosphoglycerate mutase activityPhosphoglycerate mutase 1Homo sapiens (human)
protein bindingPhosphoglycerate mutase 1Homo sapiens (human)
hydrolase activityPhosphoglycerate mutase 1Homo sapiens (human)
protein kinase bindingPhosphoglycerate mutase 1Homo sapiens (human)
2,3-bisphosphoglycerate-dependent phosphoglycerate mutase activityPhosphoglycerate mutase 1Homo sapiens (human)
magnesium ion bindingPyruvate kinase PKLRHomo sapiens (human)
pyruvate kinase activityPyruvate kinase PKLRHomo sapiens (human)
protein bindingPyruvate kinase PKLRHomo sapiens (human)
ATP bindingPyruvate kinase PKLRHomo sapiens (human)
kinase activityPyruvate kinase PKLRHomo sapiens (human)
potassium ion bindingPyruvate kinase PKLRHomo sapiens (human)
monosaccharide bindingPyruvate kinase PKLRHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (16)

Processvia Protein(s)Taxonomy
plasma membraneTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
mitochondrial matrixTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
early endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulumTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytosolTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
mitochondrial cristaTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endosome lumenTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
sorting endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmic side of endoplasmic reticulum membraneTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
protein-containing complexTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
endoplasmic reticulumTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
cytoplasmTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
early endosomeTyrosine-protein phosphatase non-receptor type 1Homo sapiens (human)
extracellular regionPhosphoglycerate mutase 1Homo sapiens (human)
cytoplasmPhosphoglycerate mutase 1Homo sapiens (human)
cytosolPhosphoglycerate mutase 1Homo sapiens (human)
membranePhosphoglycerate mutase 1Homo sapiens (human)
secretory granule lumenPhosphoglycerate mutase 1Homo sapiens (human)
extracellular exosomePhosphoglycerate mutase 1Homo sapiens (human)
ficolin-1-rich granule lumenPhosphoglycerate mutase 1Homo sapiens (human)
cytosolPyruvate kinase PKLRHomo sapiens (human)
extracellular exosomePyruvate kinase PKLRHomo sapiens (human)
cytoplasmPyruvate kinase PKLRHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (8)

Assay IDTitleYearJournalArticle
AID1708712Inhibition of PGAM1 (unknown origin)2021Bioorganic & medicinal chemistry letters, 03-15, Volume: 36Design, synthesis, and biological evaluation of 1,3,6,7-tetrahydroxyxanthone derivatives as phosphoglycerate mutase 1 inhibitors.
AID157217Inhibition of human PTPase 1B2004Bioorganic & medicinal chemistry letters, Apr-19, Volume: 14, Issue:8
Evans Blue and other dyes as protein tyrosine phosphatase inhibitors.
AID1879867Inhibition of PKL (unknown origin) for 30 mins by Kinase-Glo Max reagent based luminescence assay2022European journal of medicinal chemistry, Apr-15, Volume: 234Anthraquinone derivatives as ADP-competitive inhibitors of liver pyruvate kinase.
AID220230Inhibitory activity against Saccharomyces cerevisiae Tyrosine phosphatase 12004Bioorganic & medicinal chemistry letters, Apr-19, Volume: 14, Issue:8
Evans Blue and other dyes as protein tyrosine phosphatase inhibitors.
AID99424Inhibition of human Leukocyte Antigen Related(LAR) protein tyrosine phosphatase D12004Bioorganic & medicinal chemistry letters, Apr-19, Volume: 14, Issue:8
Evans Blue and other dyes as protein tyrosine phosphatase inhibitors.
AID1879868Inhibition of PKL (unknown origin) at 10 uM for 30 mins by Kinase-Glo Max reagent based luminescence assay2022European journal of medicinal chemistry, Apr-15, Volume: 234Anthraquinone derivatives as ADP-competitive inhibitors of liver pyruvate kinase.
AID1083211Bactericidal activity against Erwinia amylovora 295/93 assessed as growth inhibition in King's B full medium measured at pH 7.2 after overnight incubation by suspension culture assay2012Journal of agricultural and food chemistry, Dec-12, Volume: 60, Issue:49
Potent and specific bactericidal effect of juglone (5-hydroxy-1,4-naphthoquinone) on the fire blight pathogen Erwinia amylovora.
AID1879869Inhibition of PKL in human PKM2 knockout HepG2 cells at 10 uM incubated for 5 mins by Microplate reader based analysis relative to control2022European journal of medicinal chemistry, Apr-15, Volume: 234Anthraquinone derivatives as ADP-competitive inhibitors of liver pyruvate kinase.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (271)

TimeframeStudies, This Drug (%)All Drugs %
pre-199048 (17.71)18.7374
1990's26 (9.59)18.2507
2000's63 (23.25)29.6817
2010's108 (39.85)24.3611
2020's26 (9.59)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials1 (0.35%)5.53%
Reviews2 (0.70%)6.00%
Case Studies2 (0.70%)4.05%
Observational0 (0.00%)0.25%
Other281 (98.25%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]