Page last updated: 2024-12-11

(R)-citalopram

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

## (R)-citalopram: The Enantiomer with the Punch

(R)-citalopram is one enantiomer of the racemic drug **citalopram**, a selective serotonin reuptake inhibitor (SSRI) commonly used to treat depression. Enantiomers are mirror images of each other, meaning they have the same chemical formula but different spatial arrangements of atoms.

**Why is (R)-citalopram important for research?**

* **Higher efficacy:** Studies show that (R)-citalopram is **more potent and effective** in treating depression than its enantiomer (S)-citalopram. It exhibits a stronger affinity for the serotonin transporter, leading to more significant serotonin reuptake inhibition and better therapeutic outcomes.
* **Fewer side effects:** (R)-citalopram is associated with **fewer side effects** than the racemic mixture. This is due to the fact that (S)-citalopram can bind to other receptors, leading to unwanted effects.
* **Understanding mechanisms:** Studying (R)-citalopram allows researchers to **unravel the specific molecular mechanisms** involved in its antidepressant effects. By comparing its activity to the racemic mixture and (S)-citalopram, researchers can better understand the role of each enantiomer in drug efficacy and side effects.
* **Future drug development:** The understanding gained from studying (R)-citalopram can inform the development of **novel antidepressant drugs** with enhanced efficacy and reduced side effects. This includes:
* **Developing pure enantiomers:** Producing (R)-citalopram as a pure enantiomer could be more effective and have fewer side effects than the racemic mixture.
* **Designing new drugs:** Studying the specific pharmacodynamic properties of (R)-citalopram can guide the development of new drugs with similar therapeutic activity but potentially fewer side effects.

**In summary:** (R)-citalopram is crucial for research because it offers a unique opportunity to investigate the specific role of enantiomers in drug efficacy and side effects. This knowledge is essential for developing more effective and safer treatments for depression.

(R)-citalopram : A 1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-5-carbonitrile that has R-configuration at the chiral centre. It is the inactive enantiomer of citalopram. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID6101829
CHEMBL ID399730
CHEBI ID36792
SCHEMBL ID13235283

Synonyms (29)

Synonym
BIDD:GT0160
BIDD:PXR0176
CHEBI:36792 ,
(r)-(-)-citalopram
(-)-citalopram
(r)-citalopram
(1r)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-5-carbonitrile
PDSP1_001303
PDSP2_001287
smr000550474
MLS001165696
CHEMBL399730
(1r)-1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-3h-2-benzofuran-5-carbonitrile
r-citalopram
128196-02-1
bdbm86046
HMS2231B13
AKOS015914557
HMS3369A13
SCHEMBL13235283
citalopram, (r)-
1TH2C9NJHL ,
5-isobenzofurancarbonitrile, 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydro-, (1r)-
unii-1th2c9njhl
NCGC00389194-01
Q27116962
(r)-1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile
DTXSID201317195
EN300-49846

Research Excerpts

Bioavailability

ExcerptReferenceRelevance
" Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects."( Hologram QSAR model for the prediction of human oral bioavailability.
Andricopulo, AD; Moda, TL; Montanari, CA, 2007
)
0.34
"The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs."( A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Ambudkar, SV; Brimacombe, KR; Chen, L; Gottesman, MM; Guha, R; Hall, MD; Klumpp-Thomas, C; Lee, OW; Lee, TD; Lusvarghi, S; Robey, RW; Shen, M; Tebase, BG, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
1-[3-(dimethylamino)propyl]-1-(4-fluorophenyl)-1,3-dihydro-2-benzofuran-5-carbonitrileA nitrile that is 1,3-dihydro-2-benzofuran-5-carbonitrile in which one of the hydrogens at position 1 is replaced by a p-fluorophenyl group, while the other is replaced by a 3-(dimethylamino)propyl group.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (5)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
glp-1 receptor, partialHomo sapiens (human)Potency11.22020.01846.806014.1254AID624417
TDP1 proteinHomo sapiens (human)Potency23.10930.000811.382244.6684AID686978
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency89.12510.050127.073689.1251AID588590
gemininHomo sapiens (human)Potency2.90930.004611.374133.4983AID624297
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Sodium-dependent serotonin transporterHomo sapiens (human)IC50 (µMol)0.17000.00010.86458.7096AID1434653
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Sodium-dependent serotonin transporterHomo sapiens (human)EC50 (µMol)25.00000.00112.38838.7000AID1434655
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (31)

Processvia Protein(s)Taxonomy
monoamine transportSodium-dependent serotonin transporterHomo sapiens (human)
response to hypoxiaSodium-dependent serotonin transporterHomo sapiens (human)
neurotransmitter transportSodium-dependent serotonin transporterHomo sapiens (human)
response to nutrientSodium-dependent serotonin transporterHomo sapiens (human)
memorySodium-dependent serotonin transporterHomo sapiens (human)
circadian rhythmSodium-dependent serotonin transporterHomo sapiens (human)
response to xenobiotic stimulusSodium-dependent serotonin transporterHomo sapiens (human)
response to toxic substanceSodium-dependent serotonin transporterHomo sapiens (human)
positive regulation of gene expressionSodium-dependent serotonin transporterHomo sapiens (human)
positive regulation of serotonin secretionSodium-dependent serotonin transporterHomo sapiens (human)
negative regulation of cerebellar granule cell precursor proliferationSodium-dependent serotonin transporterHomo sapiens (human)
negative regulation of synaptic transmission, dopaminergicSodium-dependent serotonin transporterHomo sapiens (human)
response to estradiolSodium-dependent serotonin transporterHomo sapiens (human)
social behaviorSodium-dependent serotonin transporterHomo sapiens (human)
vasoconstrictionSodium-dependent serotonin transporterHomo sapiens (human)
sperm ejaculationSodium-dependent serotonin transporterHomo sapiens (human)
negative regulation of neuron differentiationSodium-dependent serotonin transporterHomo sapiens (human)
positive regulation of cell cycleSodium-dependent serotonin transporterHomo sapiens (human)
negative regulation of organ growthSodium-dependent serotonin transporterHomo sapiens (human)
behavioral response to cocaineSodium-dependent serotonin transporterHomo sapiens (human)
enteric nervous system developmentSodium-dependent serotonin transporterHomo sapiens (human)
brain morphogenesisSodium-dependent serotonin transporterHomo sapiens (human)
serotonin uptakeSodium-dependent serotonin transporterHomo sapiens (human)
membrane depolarizationSodium-dependent serotonin transporterHomo sapiens (human)
platelet aggregationSodium-dependent serotonin transporterHomo sapiens (human)
cellular response to retinoic acidSodium-dependent serotonin transporterHomo sapiens (human)
cellular response to cGMPSodium-dependent serotonin transporterHomo sapiens (human)
regulation of thalamus sizeSodium-dependent serotonin transporterHomo sapiens (human)
conditioned place preferenceSodium-dependent serotonin transporterHomo sapiens (human)
sodium ion transmembrane transportSodium-dependent serotonin transporterHomo sapiens (human)
amino acid transportSodium-dependent serotonin transporterHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (14)

Processvia Protein(s)Taxonomy
integrin bindingSodium-dependent serotonin transporterHomo sapiens (human)
monoatomic cation channel activitySodium-dependent serotonin transporterHomo sapiens (human)
neurotransmitter transmembrane transporter activitySodium-dependent serotonin transporterHomo sapiens (human)
serotonin:sodium:chloride symporter activitySodium-dependent serotonin transporterHomo sapiens (human)
protein bindingSodium-dependent serotonin transporterHomo sapiens (human)
monoamine transmembrane transporter activitySodium-dependent serotonin transporterHomo sapiens (human)
antiporter activitySodium-dependent serotonin transporterHomo sapiens (human)
syntaxin-1 bindingSodium-dependent serotonin transporterHomo sapiens (human)
cocaine bindingSodium-dependent serotonin transporterHomo sapiens (human)
sodium ion bindingSodium-dependent serotonin transporterHomo sapiens (human)
identical protein bindingSodium-dependent serotonin transporterHomo sapiens (human)
nitric-oxide synthase bindingSodium-dependent serotonin transporterHomo sapiens (human)
actin filament bindingSodium-dependent serotonin transporterHomo sapiens (human)
serotonin bindingSodium-dependent serotonin transporterHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (10)

Processvia Protein(s)Taxonomy
plasma membraneSodium-dependent serotonin transporterHomo sapiens (human)
focal adhesionSodium-dependent serotonin transporterHomo sapiens (human)
endosome membraneSodium-dependent serotonin transporterHomo sapiens (human)
endomembrane systemSodium-dependent serotonin transporterHomo sapiens (human)
presynaptic membraneSodium-dependent serotonin transporterHomo sapiens (human)
membrane raftSodium-dependent serotonin transporterHomo sapiens (human)
synapseSodium-dependent serotonin transporterHomo sapiens (human)
postsynaptic membraneSodium-dependent serotonin transporterHomo sapiens (human)
serotonergic synapseSodium-dependent serotonin transporterHomo sapiens (human)
synapseSodium-dependent serotonin transporterHomo sapiens (human)
plasma membraneSodium-dependent serotonin transporterHomo sapiens (human)
neuron projectionSodium-dependent serotonin transporterHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (22)

Assay IDTitleYearJournalArticle
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1296008Cytotoxic Profiling of Annotated Libraries Using Quantitative High-Throughput Screening2020SLAS discovery : advancing life sciences R & D, 01, Volume: 25, Issue:1
Cytotoxic Profiling of Annotated and Diverse Chemical Libraries Using Quantitative High-Throughput Screening.
AID1347160Primary screen NINDS Rhodamine qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1347159Primary screen GU Rhodamine qHTS for Zika virus inhibitors: Unlinked NS2B-NS3 protease assay2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346986P-glycoprotein substrates identified in KB-3-1 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID1346987P-glycoprotein substrates identified in KB-8-5-11 adenocarcinoma cell line, qHTS therapeutic library screen2019Molecular pharmacology, 11, Volume: 96, Issue:5
A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
AID311524Oral bioavailability in human2007Bioorganic & medicinal chemistry, Dec-15, Volume: 15, Issue:24
Hologram QSAR model for the prediction of human oral bioavailability.
AID1434653Inhibition of [3H]5-HT uptake by SERT primary site (S1) (unknown origin) expressed in African green monkey COS1 cells after 10 mins by TopCount scintillation counting method2017Bioorganic & medicinal chemistry letters, 02-01, Volume: 27, Issue:3
X-ray structure based evaluation of analogs of citalopram: Compounds with increased affinity and selectivity compared with R-citalopram for the allosteric site (S2) on hSERT.
AID1434655Inhibition of [3H]-S-citalopram dissociation from SERT allosteric modulator site (S2) (unknown origin) expressed in African green monkey COS1 cell membranes by scintillation counting method2017Bioorganic & medicinal chemistry letters, 02-01, Volume: 27, Issue:3
X-ray structure based evaluation of analogs of citalopram: Compounds with increased affinity and selectivity compared with R-citalopram for the allosteric site (S2) on hSERT.
AID1434650Selectivity ratio of EC50 for inhibition of [3H]-S-citalopram dissociation from SERT allosteric modulator site (S2) (unknown origin) expressed in African green monkey COS1 cell membranes to IC50 for [3H]5-HT uptake by SERT primary site (S1) (unknown origi2017Bioorganic & medicinal chemistry letters, 02-01, Volume: 27, Issue:3
X-ray structure based evaluation of analogs of citalopram: Compounds with increased affinity and selectivity compared with R-citalopram for the allosteric site (S2) on hSERT.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (10)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (20.00)29.6817
2010's5 (50.00)24.3611
2020's3 (30.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 31.19

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index31.19 (24.57)
Research Supply Index2.40 (2.92)
Research Growth Index4.46 (4.65)
Search Engine Demand Index35.06 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (31.19)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other10 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]