Page last updated: 2024-12-10

salvianolic acid a

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

salvianolic acid A: a nootropic depside from Salvia miltiorrhizia [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

FloraRankFlora DefinitionFamilyFamily Definition
SalviagenusA genus in the mint family (LAMIACEAE).[MeSH]LamiaceaeThe mint plant family. They are characteristically aromatic, and many of them are cultivated for their oils. Most have square stems, opposite leaves, and two-lipped, open-mouthed, tubular corollas (united petals), with five-lobed, bell-like calyxes (united sepals).[MeSH]

Cross-References

ID SourceID
PubMed CID5281793
CHEMBL ID457077
CHEBI ID9017
SCHEMBL ID19235589
MeSH IDM0181735

Synonyms (39)

Synonym
salvianolic acid
96574-01-5
salvianolic acid a
(+)-salvianolic acid a
dan phenolic acid a
CHEMBL457077 ,
chebi:9017 ,
AC1NQZ3H ,
(2r)-3-(3,4-dihydroxyphenyl)-2-[(e)-3-[2-[(e)-2-(3,4-dihydroxyphenyl)ethenyl]-3,4-dihydroxyphenyl]prop-2-enoyl]oxypropanoic acid
S9055
AKOS016009674
bdbm50414250
51622542xo ,
benzenepropanoic acid, alpha-((3-(2-(2-(3,4-dihydroxyphenyl)ethenyl)-3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-3,4-dihydroxy-, (r-(e,e))-
unii-51622542xo
(2r)-3-(3,4-dihydroxyphenyl)-2-[(e)-3-[2-[(e)-2-(3,4-dihydroxyphenyl)vinyl]-3,4-dihydroxy-phenyl]prop-2-enoyl]oxy-propanoic acid
(r)-3-(3,4-dihydroxyphenyl)-2-(((e)-3-(2-((e)-3,4-dihydroxystyryl)-3,4-dihydroxyphenyl)acryloyl)oxy)propanoic acid
Q-100906
salvianolic-acid-a
benzenepropanoic acid, .alpha.-(((2e)-3-(2-((1e)-2-(3,4-dihydroxyphenyl)ethenyl)-3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-3,4-dihydroxy-, (.alpha.r)-
benzenepropanoic acid, .alpha.-((3-(2-(2-(3,4-dihydroxyphenyl)ethenyl)-3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-3,4-dihydroxy-, (r-(e,e))-
salvianolic acid a, analytical standard
YMGFTDKNIWPMGF-UCPJVGPRSA-N
(2r)-3-(3,4-dihydroxyphenyl)-2-{[(2e)-3-{2-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-3,4-dihydroxyphenyl}prop-2-enoyl]oxy}propanoic acid
AS-75007
mfcd08458447
SCHEMBL19235589
BCP15440
HY-N0318
CS-0008816
DB15246
Q27108214
CCG-269648
(r)-3-(3,4-dihydroxyphenyl)-2-(((e)-3-(2-((e)-3,4-dihydroxystyryl)-3,4-dihydroxyphenyl)acryloyl)oxy)propanoicacid
(alphar)-alpha-[[(2e)-3-[2-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]-3,4-dihydroxyphenyl]-1-oxo-2-propen-1-yl]oxy]-3,4-dihydroxybenzenepropanoic acid
(2r)-3-(3,4-dihydroxyphenyl)-2-[(e)-3-[2-[(e)-2-(3,4-dihydroxyphenyl)ethenyl]-3,4-dihydroxyphenyl]prop-2-enoyl]oxypropanoic acid;salvianolic acid a
A858684
DTXSID701316580
EX-A8013D

Research Excerpts

Overview

Salvianolic acid A (SalA) is a polyphenolic compound isolated from the root of Salvia miltiorrhiza Bunge, which is a traditional Chinese medicine widely used to treat cardiovascular diseases. It is a water-soluble phenolic acid that benefits atherosclerosis.

ExcerptReferenceRelevance
"Salvianolic acid A (SalA) is a polyphenolic compound isolated from the root of Salvia miltiorrhiza Bunge, which is a traditional Chinese medicine widely used to treat cardiovascular diseases."( Antidiabetic Effect of Salvianolic Acid A on Diabetic Animal Models via AMPK Activation and Mitochondrial Regulation.
Chen, B; Du, G; Guo, J; Qiang, G; Shi, L; Yang, H; Yang, X; Zhang, H; Zhang, L; Zhao, Y; Zhou, D; Zu, M, 2015
)
1.45
"Salvianolic acid A (SalA) is a neuroprotective extract of Salvia miltiorrhiza with the effects of anti-inflammation and anti-apoptosis."( Salvianolic acid A relieves cognitive disorder after chronic cerebral ischemia: Involvement of Drd2/Cryab/NF-κB pathway.
Du, G; Jiang, N; Liu, N; Liu, S; Song, J; Wei, G; Yang, H; Yang, Y; Zhang, S, 2022
)
2.89
"Salvianolic acid A (SAA) is a major active compound isolated from Danshen, a popular herbal drug and medicinal food plant in China."( Non-clinical safety evaluation of salvianolic acid A: acute, 4-week intravenous toxicities and genotoxicity evaluations.
Fan, HY; Gan, HL; Li, ZY; Liu, K; Liu, Q; Meng, XT; Pan, T; Peng, RX; Song, ZY; Yang, MY; Zheng, MH, 2022
)
1.72
"Salvianolic acid A (SAA) is a traditional Chinese medicine that has a good therapeutic effect on cardiovascular disease. "( Salvianolic acid A improve mitochondrial respiration and cardiac function via inhibiting apoptosis pathway through CRYAB in diabetic cardiomyopathy.
Dawuti, A; Du, GH; Du, LD; Fang, LH; Gong, DF; Kong, DW; Liu, RQ; Lu, Y; Sun, SC; Wang, RR; Wang, SB; Yuan, TY, 2023
)
3.8
"Salvianolic acid A (SalA) is a water-soluble phenolic acid that benefits atherosclerosis."( Salvianolic acid A alleviates atherosclerosis by inhibiting inflammation through Trc8-mediated 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation.
Gao, X; Song, L; Xiang, D; Xie, D; Zhao, W, 2023
)
3.07
"Salvianolic acid A (SAA) is a phenolic component derived from Salvia miltiorrhiza with antifibrotic potency."( Salvianolic acid A diminishes LDHA-driven aerobic glycolysis to restrain myofibroblasts activation and cardiac fibrosis via blocking Akt/GSK-3β/HIF-1α axis.
Hailiwu, R; Li, P; Pan, T; Yang, H; Zeng, H; Zhan, M, 2023
)
3.07
"Salvianolic acid A (SAA) is a type of phenolic acid, derived from a traditional chinese herbal medicine Danshen that is extensively used clinically."( Salvianolic Acid A Exhibits Anti-Inflammatory and Antiarthritic Effects via Inhibiting NF-κB and p38/MAPK Pathways.
Cong, H; Feng, S; Ji, L, 2020
)
2.72
"Salvianolic acid A (SAA) is a water-soluble phenolic acid extracted from Salvia miltiorrhiza (Danshen) with anti-tumor properties."( Salvianolic acid A inhibits the growth of diffuse large B-cell lymphoma through MAPK pathways.
Fang, J; Jiang, L; Li, S; Lu, Y; Si, T, 2021
)
2.79
"Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia Miltiorrhiza Bge, a traditional Chinese medicine, which has been used for the treatment of cerebrovascular diseases for centuries. "( Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation.
DU, GH; He, GR; Rong, Y; Song, JK; Xu, XN; Zhang, W; Zhang, X; Zhou, QM; Zhou, WX, 2018
)
3.37
"Salvianolic acid A (SalA) is a water-soluble component from the root extract of Salvia miltiorrhiza Bunge, and its effect on ALD has not yet been investigated."( Salvianolic acid A alleviates chronic ethanol-induced liver injury via promotion of β-catenin nuclear accumulation by restoring SIRT1 in rats.
Ding, C; Feng, D; Gao, D; Ji, A; Li, Y; Li, Z; Shi, X; Tian, X; Wang, Z; Yao, J; Zhao, Y; Zhou, J, 2018
)
2.64
"Salvianolic acid A (SAA) is a minor phenolic carboxylic acid extracted from Salviae miltiorrhizae Bunge (Danshen). "( Salvianolic acid A attenuates kidney injury and inflammation by inhibiting NF-κB and p38 MAPK signaling pathways in 5/6 nephrectomized rats.
Gao, C; Gu, YT; Huang, J; Wang, JH; Wang, YL; Zhang, HF; Zhang, Z, 2018
)
3.37
"Salvianolic acid A (Sal A) is a major effective component in treating ATO-induced cardiotoxicity."( The Cardiotoxicity Induced by Arsenic Trioxide is Alleviated by Salvianolic Acid A via Maintaining Calcium Homeostasis and Inhibiting Endoplasmic Reticulum Stress.
Du, Y; Sun, G; Sun, X; Wang, M; Wang, R; Wang, S; Xie, X; Ye, J; Ye, T; Zhang, J, 2019
)
1.47
"Salvianolic acid A (SalA) is a phenolic carboxylic acid derivative extracted from Salvia miltiorrhiza. "( Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice.
Chen, Z; Gao, D; Hu, Y; Lin, M; Lv, L; Ma, X; Tian, X; Xu, X; Yao, J; Zhai, X; Zhang, F, 2013
)
3.28
"Salvianolic acid A (Sal A) is a hydrophilic polyphenolic derivative isolated from Salvia miltiorrhiza Bunge (Danshen), which has been reported as an anti-cancer and cardio-protective herbal medicine."( Salvianolic Acid A, as a Novel ETA Receptor Antagonist, Shows Inhibitory Effects on Tumor in Vitro.
Li, S; Qiao, Y; Sun, S; Wang, S; Yang, W; Yu, Y; Zhang, Q; Zhang, Y, 2016
)
2.6
"Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia miltiorrhiza Bunge, a herb that is widely used for atherothrombotic disease treatment in Asian medicine. "( Salvianolic acid A inhibits platelet activation and arterial thrombosis via inhibition of phosphoinositide 3-kinase.
Hu, H; Huang, ZS; Jiang, L; Li, N; Zeng, CL; Zhu, LJ, 2010
)
3.25
"Salvianolic acid A is a water-soluble component from Danshen, which is frequently used in traditional Chinese medicine. "( [Research progress of salvianolic acid A].
Du, G; Fang, L; Shi, L; Sun, J; Tian, S; Wang, S; Yang, H; Yang, X; Yu, X; Zhang, L; Zhang, W; Zhao, Y, 2011
)
2.13
"Salvianolic acid A (Sal A) is a polyphenol extracted from the root of the Salvia miltiorrhiza bunge. "( Salvianolic acid A protects human SH-SY5Y neuroblastoma cells against H₂O₂-induced injury by increasing stress tolerance ability.
Chen, BN; Du, GH; Gao, M; Shi, LL; Wang, SB; Wang, YH; Zhang, HA; Zhang, L; Zhao, Y, 2012
)
3.26

Effects

Salvianolic acid A (SalA) has been reported to be a strong polyphenolic anti-oxidant and free radical scavenger. The drug has no effects on CYP1A2 and CYP2E1 activities, indicating that there is no internation between salvianolic Acid A and the drugs metabolized by CYP 1A2 or CYP 2E1.

ExcerptReferenceRelevance
"Salvianolic acid A (Sal A) has a wide range of pharmacological activities. "( Elaboration of the Comprehensive Metabolic Profile of Salvianolic Acid A in Vivo and in Vitro Using UFLC-Q/TOF-MS.
Bi, L; Chen, W; Liu, Y; Ma, Y; Teng, L; Zhou, F, 2019
)
2.21
"Salvianolic acid A (Sal A) has been shown to prevent and treat ischemic cardiovascular, as well as cerebral vascular diseases. "( Salvianolic acid A ameliorates renal ischemia/reperfusion injury by activating Akt/mTOR/4EBP1 signaling pathway.
Bai, J; Cheng, L; Ding, Y; Gao, K; He, L; Jia, Y; Li, L; Liu, M; Liu, W; Song, Y; Wang, F; Wen, A; Yao, M; Zhang, Y; Zhao, J, 2018
)
3.37
"Salvianolic acid A (SalA) has been shown to confer robust protection against endothelial injury. "( SalA attenuates ischemia/reperfusion-induced endothelial barrier dysfunction via down-regulation of VLDL receptor expression.
Gao, L; Liang, Y; Qiao, Z; Wang, T; Yang, D; Yu, B; Zhang, P, 2014
)
1.85
"Salvianolic acid A (SalA) has been reported to be a strong polyphenolic anti-oxidant and free radical scavenger."( Salvianolic Acid a prevents the pathological progression of hepatic fibrosis in high-fat diet-fed and streptozotocin-induced diabetic rats.
Chen, B; Du, G; Guo, J; Li, X; Qiang, G; Shi, L; Xuan, Q; Yang, H; Yang, X; Zhang, H; Zhang, L; Zhou, D; Zu, M, 2014
)
2.57
"Salvianolic acid A (SAA) has shown neuroprotective effects against ischemic diseases."( Long-term administration of salvianolic acid A promotes endogenous neurogenesis in ischemic stroke rats through activating Wnt3a/GSK3β/β-catenin signaling pathway.
Du, GH; Jiang, N; Kong, DW; Kong, LL; Liu, CD; Liu, S; Ma, GD; Pan, ZR; Yang, YJ; Zhang, S; Zhang, W, 2022
)
1.74
"Salvianolic acid A (SAA) has been found to exert anti-diabetic and lipid disorder-improving effects."( Salvianolic acid A promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes through regulation of the AMPK-PGC1α signalling pathway.
Guo, Q; Leng, P; Li, J; Li, X; Liang, Y; Sun, J; Yang, X; Zhang, X; Zhao, J, 2022
)
2.89
"Salvianolic acid A (Sal A) has a wide range of pharmacological activities. "( Elaboration of the Comprehensive Metabolic Profile of Salvianolic Acid A in Vivo and in Vitro Using UFLC-Q/TOF-MS.
Bi, L; Chen, W; Liu, Y; Ma, Y; Teng, L; Zhou, F, 2019
)
2.21
"Salvianolic acid A (SalA) has been shown to display robust protection against endothelial injury. "( SalA attenuates hypoxia-induced endothelial endoplasmic reticulum stress and apoptosis via down-regulation of VLDL receptor expression.
Duan, Y; Guo, X; Hu, L; Xie, P; Yu, M, 2015
)
1.86
"Salvianolic acid A has no effects on CYP1A2 and CYP2E1 activities, indicating that there is no internation between salvianolic acid A and the drugs metabolized by CYP1A2 or CYP2E1."( [Effects of salvianolic A on rat liver microsomal cytochrome P450 system].
Guo, H; Liu, K; Xu, H; Zou, X, 2010
)
1.8
"Salvianolic acid A has been demonstrated to have efficient antioxidative and free radical scavenging effects. "( [Prevention of galactose-induced cataractogenesis in rats by salvianolic acid A].
Du, GH; Qiu, Y; Tian, YE; Zhang, JT, 1995
)
1.98
"Salvianolic acid A (Sai A) has demonstrated potent antioxidant activity in previous studies. "( Effects of salvianolic acid A on oxygen radicals released by rat neutrophils and on neutrophil function.
Lin, TJ; Liu, GT; Zhang, KJ, 1996
)
2.13

Treatment

Pretreatment with salvianolic acid A (10, 30 μM) decreased LPS-induced expression of iNOS and COX-2, thereby inhibiting production of nitric oxide and prostaglandin E(2), respectively. Co-treatment with salviansol A (20 mg/kg, intraperitoneally) significantly decreased CCl(4)-induced hepatotoxicity.

ExcerptReferenceRelevance
"Pretreatment with salvianolic acid A (10, 30 μM) decreased LPS-induced expression of iNOS and COX-2, thereby inhibiting production of nitric oxide and prostaglandin E(2), respectively."( Salvianolic acid A suppress lipopolysaccharide-induced NF-κB signaling pathway by targeting IKKβ.
Lee, BH; Mun, J; Oh, BK; Oh, KS; Seo, HW, 2011
)
2.14
"Co-treatment with salvianolic acid A (20 mg/kg, intraperitoneally), a water-soluble extract from a Chinese traditional drug, Radix Salvia miltiorrhiza, significantly decreased CCl(4)-induced hepatotoxicity."( Effects of salvianolic acid a on oxidative stress and liver injury induced by carbon tetrachloride in rats.
Liu, Y; Ren, F; Tan, YF; Wen, T; Wu, H; Wu, ZM, 2007
)
1.05

Toxicity

ExcerptReferenceRelevance
" Salvianic acid A (SA), isolated from the Chinese herbal medicine Salvia miltiorrhiza, is capable of protecting diverse kinds of cells from damage caused by a variety of toxic stimuli."( Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.
Wang, XJ; Xu, JX, 2005
)
0.33
"Arsenic trioxide (ATO) has been verified as a breakthrough with respect to the management of acute promyelocytic leukemia (APL) in recent decades but associated with some serious adverse phenomena, particularly cardiac functional abnormalities."( The Cardiotoxicity Induced by Arsenic Trioxide is Alleviated by Salvianolic Acid A via Maintaining Calcium Homeostasis and Inhibiting Endoplasmic Reticulum Stress.
Du, Y; Sun, G; Sun, X; Wang, M; Wang, R; Wang, S; Xie, X; Ye, J; Ye, T; Zhang, J, 2019
)
0.75
" However, the use of SA increased the risk of adverse events occurrence (P = ."( The efficacy and safety of salvianolic acids on acute cerebral infarction treatment: A protocol for systematic review and meta analysis.
Feng, J; Hao, Y; Huang, G; Liang, Z; Ma, D; Miao, J; Wang, X; Xin, M, 2020
)
0.56
" Although SA increased the risk of adverse events occurrence, these adverse events were easily controlled or disappeared spontaneously."( The efficacy and safety of salvianolic acids on acute cerebral infarction treatment: A protocol for systematic review and meta analysis.
Feng, J; Hao, Y; Huang, G; Liang, Z; Ma, D; Miao, J; Wang, X; Xin, M, 2020
)
0.56
"In acute toxicities, the LD50 of SAA is 1161."( Non-clinical safety evaluation of salvianolic acid A: acute, 4-week intravenous toxicities and genotoxicity evaluations.
Fan, HY; Gan, HL; Li, ZY; Liu, K; Liu, Q; Meng, XT; Pan, T; Peng, RX; Song, ZY; Yang, MY; Zheng, MH, 2022
)
1

Pharmacokinetics

ExcerptReferenceRelevance
" This method was validated for specificity, accuracy and precision and was successfully applied to the pharmacokinetic study of SalA in rat plasma after intravenous administration of Danshen injection."( Pharmacokinetic study of salvianolic acid A in rat after intravenous administration of Danshen injection.
Chao, RB; Hou, YY; Peng, JM, 2007
)
0.64
"To investigate the synergistic effect of salvianolic acids (Sals) and tanshinones (Tans), to compare the pharmacodynamic effect of Danshen co-microemulsion, salvianolic acids microemulsion, tanshinones microemulsion, tanshinones suspension and blank microemulsion on hemorheology in rats with hyperlipidemia."( [Comparative research on pharmacodynamics of Danshen co-microemulsion on hemorheology in rats with hyperlipidemia].
Ji, HS; Yang, J; Yu, F, 2008
)
0.35
" However, no significant differences in the terminal elimination half-life (t(1/2)) of TSIIA and Sal B in the mixed extracts-loaded emulsion groups were found compared with that of the corresponding extract groups except for the high dose groups of TSIIA (p<0."( Pharmacokinetic interaction between tanshinones and polyphenolic extracts of salvia miltinorrhiza BUNGE after intravenous administration in rats.
Guo, ZJ; Li, H; Sun, QS; Tang, X; Zhang, Y, 2008
)
0.35
"To investigate the pharmacokinetic interactions induced by content variation of the main water-soluble components of Danshen injection in rats."( Pharmacokinetic interactions induced by content variation of major water-soluble components of Danshen preparation in rats.
Cao, WW; Cao, Y; Chang, BB; Chen, YC; Liu, XQ; Wang, Y; Yang, WL; Zhang, L, 2010
)
0.36
" Non-compartmental pharmacokinetic parameters were calculated and compared for identifying the pharmacokinetic interactions among these components."( Pharmacokinetic interactions induced by content variation of major water-soluble components of Danshen preparation in rats.
Cao, WW; Cao, Y; Chang, BB; Chen, YC; Liu, XQ; Wang, Y; Yang, WL; Zhang, L, 2010
)
0.36
"Complex, extensive pharmacokinetic interactions were observed among the major water-soluble constituents in the Danshen injection."( Pharmacokinetic interactions induced by content variation of major water-soluble components of Danshen preparation in rats.
Cao, WW; Cao, Y; Chang, BB; Chen, YC; Liu, XQ; Wang, Y; Yang, WL; Zhang, L, 2010
)
0.36
" The method was successfully applied to a pharmacokinetic study in rats after an intravenous administration of Danshen injection."( Simultaneous determination of six phenolic constituents of Danshen injection in rat plasma by LC-ESI-MS and its application to a pharmacokinetic study.
Chen, XJ; Han, DE; He, JK; Li, N; Li, TT; Lu, Y; Yang, SY; Zhao, D, 2011
)
0.37
"The pharmacokinetic properties of SAA in beagle dogs after oral administration were characterized as rapid oral absorption, quick clearance, and poor absolute bioavailability."( Pharmacokinetic study of salvianolic acid A in beagle dog after oral administration by a liquid chromatography-mass spectrometry method: a study on bioavailability and dose proportionality.
Du, G; Feng, Z; Huang, C; Lv, Y; Song, J; Sun, J; Tian, S; Zhang, L, 2013
)
0.69
" Up to now, several studies regarding the pharmacokinetic profiles of Sal A have been reported, however there is no such study reported in monkeys, the species which is more similar to human."( [Pharmacokinetics of salvianolic acid A after single intravenous administration in Rhesus monkey].
Du, GH; Feng, ZY; Song, JK; Xie, T; Zhang, W; Zhang, WK, 2015
)
0.74
" However, no reports have been described the pharmacokinetic study of them."( Development and validation of a UFLC-MS/MS method for determination of 7'(Z)-(8″S, 8‴S)-epi-salvianolic acid E, (7'R, 8'R, 8″S, 8‴S)-epi-salvianolic acid B and salvianolic acid B in rat plasma and its application to pharmacokinetic studies.
Huang, J; Liu, X; Miao, J; Sun, G; Sun, H; Sun, W; Tong, L; Xie, X; Xu, J, 2016
)
0.43
" The effects of SAI on the pharmacokinetic and pharmacodynamic behaviors of clopidogrel were investigated in rats."( Interaction study of salvianolic acids for injection on pharmacokinetics of clopidogrel in rats using LC-MS/MS.
Chu, Y; Ju, A; Li, D; Li, W; Li, X; Li, Y; Wu, Y; Xie, Y; Zheng, D, 2022
)
0.72

Compound-Compound Interactions

ExcerptReferenceRelevance
"In this study, capillary electrophoresis (CE) combined with HPLC-MS/MS were used as a powerful platform for screening of inhibitors of mammalian target of rapamycin (mTOR) in natural product extracts."( Screening of mammalian target of rapamycin inhibitors in natural product extracts by capillary electrophoresis in combination with high performance liquid chromatography-tandem mass spectrometry.
Kang, J; Li, F; Li, M; Zhang, Y, 2015
)
0.42
" Given that lowering glucose is the first objective of diabetic patients, we also examined the effects of SAA combined with metformin (MET) on both complications."( Effects of the Nrf2 Protein Modulator Salvianolic Acid A Alone or Combined with Metformin on Diabetes-associated Macrovascular and Renal Injury.
Du, GH; He, YY; Hou, BY; Ma, LL; Niu, ZR; Pang, XC; Song, JK; Wu, P; Yan, Y; Yang, XY; Zhang, L, 2016
)
0.71
" Here, we explore the therapeutic potential and possible mechanisms of SAA in combination with low-dose prednisone in adriamycin (ADR)-induced minimal change disease (MCD) rat model and mouse podocyte injury cell model."( Therapeutic and antiproteinuric effects of salvianolic acid A in combined with low-dose prednisone in minimal change disease rats: Involvement of PPARγ/Angptl4 and Nrf2/HO-1 pathways.
Fan, H; Fu, F; Gao, Z; Ji, K; Kong, L; Li, X; Liu, K; Liu, Y; Qi, D; Wang, X; Xie, H; Yu, C; Yue, G; Zhu, H, 2019
)
0.78
"To analyze the clinical observation of salvianolic acid combined with panax notoginseng saponins combined with basic nursing intervention on cerebral ischemia-reperfusion injury in rats and its effects on the expression of apoptosis-related proteins Bcl-2, Bax and caspase-3."( Clinical Observation of Salvianolic Acid Combined with Panax Notoginseng Saponins Combined with Basic Nursing Intervention on Cerebral Ischemia-Reperfusion Injury in Rats.
Liang, S; Liu, P; Sun, S; Yu, L; Zheng, Z, 2022
)
0.72
"SA, PNS and they combined with basic nursing have protective effects on cerebral I/R injury, and the combination with basic nursing has better effects than that used alone."( Clinical Observation of Salvianolic Acid Combined with Panax Notoginseng Saponins Combined with Basic Nursing Intervention on Cerebral Ischemia-Reperfusion Injury in Rats.
Liang, S; Liu, P; Sun, S; Yu, L; Zheng, Z, 2022
)
0.72

Bioavailability

ExcerptReferenceRelevance
"To study the pharmacokinetics of different doses of SAA in beagle dogs and figure out the absolute bioavailability and dose proportionality of SAA after oral administration."( Pharmacokinetic study of salvianolic acid A in beagle dog after oral administration by a liquid chromatography-mass spectrometry method: a study on bioavailability and dose proportionality.
Du, G; Feng, Z; Huang, C; Lv, Y; Song, J; Sun, J; Tian, S; Zhang, L, 2013
)
0.69
" Both the water and lipid danshen fractions have been shown to have low oral bioavailability and at physiological pH, the polyphenolic carboxylate anions are not brain permeable."( Danshen diversity defeating dementia.
Hügel, HM; Jackson, N, 2014
)
0.4

Dosage Studied

ExcerptRelevanceReference
" Sal A at the dosage of 3 and 10 mg."( [Protective effects of salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice].
Du, GH; Zhang, JT, 1995
)
0.6
"Salvianolic acid A (Sal A) at the dosage of 3 and 10 mg."( Protective effects of salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice.
Du, G; Zhang, J, 1997
)
2.05
" This quantitation method was successfully applied to a pharmacokinetic study of salvianolate administrated by intravenous infusion with dosage of 6 mg/kg in beagle dogs."( Simultaneous determination of magnesium lithospermate B, rosmarinic acid, and lithospermic acid in beagle dog serum by liquid chromatography/tandem mass spectrometry.
Jia, J; Li, X; Liu, G; Sun, W; Wang, Y; Yu, C, 2004
)
0.32
" The dosage given to the low dose groups was half that of the medium dose groups, while the high dose groups received twice the dosage of the medium dose groups."( Pharmacokinetic interaction between tanshinones and polyphenolic extracts of salvia miltinorrhiza BUNGE after intravenous administration in rats.
Guo, ZJ; Li, H; Sun, QS; Tang, X; Zhang, Y, 2008
)
0.35
" One is control group, another is dosage group."( [Effects of salvianolic A on rat liver microsomal cytochrome P450 system].
Guo, H; Liu, K; Xu, H; Zou, X, 2010
)
0.36
" Picroside 2 and salvianic acid A sodium were respectively injected from tail vein at the dosage of 10 mg/kg for treatment."( Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats.
Du, F; Guo, Y; Li, Q; Li, Z; Xu, X, 2010
)
0.36
" Exposure levels of both compound 1 and Sal B were higher than compound 2 in the same dosage range."( Development and validation of a UFLC-MS/MS method for determination of 7'(Z)-(8″S, 8‴S)-epi-salvianolic acid E, (7'R, 8'R, 8″S, 8‴S)-epi-salvianolic acid B and salvianolic acid B in rat plasma and its application to pharmacokinetic studies.
Huang, J; Liu, X; Miao, J; Sun, G; Sun, H; Sun, W; Tong, L; Xie, X; Xu, J, 2016
)
0.43
" In post-AMI rats, XO activity and UA concentrations were increased, while SalA dosing palliated this increase."( Mechanism-based pharmacokinetic-pharmacodynamic modeling of salvianolic acid A effects on plasma xanthine oxidase activity and uric acid levels in acute myocardial infarction rats.
He, H; Li, X; Liu, X; Liu, Y; Wang, H; Wang, S; Zhang, W, 2017
)
0.7
" Experimental results showed that the dosage of MDR1 expression level significantly lowered compared with control group."( [Identification of multidrug resistance gene MDR1 associated microRNA of salvianolic acid A reversal in lung cancer].
Bi, L; Chen, FY; Chen, WP; Gao, J; Jiang, YC; Qian, L, 2016
)
0.67
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
stilbenoidAny olefinic compound characterised by a 1,2-diphenylethylene backbone.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (8)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Carbonic anhydrase 12Homo sapiens (human)Ki0.03980.00021.10439.9000AID1254159
Carbonic anhydrase 1Homo sapiens (human)Ki10.00000.00001.372610.0000AID1254155
Carbonic anhydrase 2Homo sapiens (human)Ki9.59440.00000.72369.9200AID1254156
Tyrosine-protein kinase LckHomo sapiens (human)IC50 (µMol)23.50000.00021.317310.0000AID419924
Proto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)IC50 (µMol)36.20000.00020.533510.0000AID419925
Carbonic anhydrase 4Homo sapiens (human)Ki0.06660.00021.97209.9200AID1254157
Carbonic anhydrase 7Homo sapiens (human)Ki0.07140.00021.37379.9000AID1254158
P2Y purinoceptor 1Homo sapiens (human)Ki20.30000.00080.00080.0008AID1871461
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (175)

Processvia Protein(s)Taxonomy
estrous cycleCarbonic anhydrase 12Homo sapiens (human)
chloride ion homeostasisCarbonic anhydrase 12Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 12Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 1Homo sapiens (human)
morphogenesis of an epitheliumCarbonic anhydrase 2Homo sapiens (human)
positive regulation of synaptic transmission, GABAergicCarbonic anhydrase 2Homo sapiens (human)
positive regulation of cellular pH reductionCarbonic anhydrase 2Homo sapiens (human)
angiotensin-activated signaling pathwayCarbonic anhydrase 2Homo sapiens (human)
regulation of monoatomic anion transportCarbonic anhydrase 2Homo sapiens (human)
secretionCarbonic anhydrase 2Homo sapiens (human)
regulation of intracellular pHCarbonic anhydrase 2Homo sapiens (human)
neuron cellular homeostasisCarbonic anhydrase 2Homo sapiens (human)
positive regulation of dipeptide transmembrane transportCarbonic anhydrase 2Homo sapiens (human)
regulation of chloride transportCarbonic anhydrase 2Homo sapiens (human)
carbon dioxide transportCarbonic anhydrase 2Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 2Homo sapiens (human)
protein phosphorylationTyrosine-protein kinase LckHomo sapiens (human)
intracellular zinc ion homeostasisTyrosine-protein kinase LckHomo sapiens (human)
activation of cysteine-type endopeptidase activity involved in apoptotic processTyrosine-protein kinase LckHomo sapiens (human)
response to xenobiotic stimulusTyrosine-protein kinase LckHomo sapiens (human)
peptidyl-tyrosine phosphorylationTyrosine-protein kinase LckHomo sapiens (human)
hemopoiesisTyrosine-protein kinase LckHomo sapiens (human)
platelet activationTyrosine-protein kinase LckHomo sapiens (human)
T cell differentiationTyrosine-protein kinase LckHomo sapiens (human)
T cell costimulationTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of heterotypic cell-cell adhesionTyrosine-protein kinase LckHomo sapiens (human)
intracellular signal transductionTyrosine-protein kinase LckHomo sapiens (human)
peptidyl-tyrosine autophosphorylationTyrosine-protein kinase LckHomo sapiens (human)
Fc-gamma receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
T cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of T cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of T cell activationTyrosine-protein kinase LckHomo sapiens (human)
leukocyte migrationTyrosine-protein kinase LckHomo sapiens (human)
release of sequestered calcium ion into cytosolTyrosine-protein kinase LckHomo sapiens (human)
regulation of lymphocyte activationTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of leukocyte cell-cell adhesionTyrosine-protein kinase LckHomo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
innate immune responseTyrosine-protein kinase LckHomo sapiens (human)
cell surface receptor protein tyrosine kinase signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
B cell receptor signaling pathwayTyrosine-protein kinase LckHomo sapiens (human)
peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
primary ovarian follicle growthProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of cytokine productionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
stimulatory C-type lectin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signal complex assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
epidermal growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transforming growth factor beta receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
integrin-mediated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
spermatogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
learning or memoryProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to xenobiotic stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to mechanical stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to acidic pHProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of gene expressionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of epithelial cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of epithelial cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of glucose metabolic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein processingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
skeletal muscle cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of smooth muscle cell migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
macroautophagyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of cell-cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
platelet activationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
forebrain developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
T cell costimulationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of protein-containing complex assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein destabilizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to nutrient levelsProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of telomere maintenance via telomeraseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to insulin stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of intracellular estrogen receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of integrin activationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of toll-like receptor 3 signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
adherens junction organizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
substrate adhesion-dependent cell spreadingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of dephosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of hippo signalingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
intracellular signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
entry of bacterium into host cellProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
osteoclast developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to platelet-derived growth factor stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
Fc-gamma receptor signaling pathway involved in phagocytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ERBB2 signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
angiotensin-activated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
odontogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of vascular permeabilityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
stress fiber assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of cysteine-type endopeptidase activity involved in apoptotic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transcytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of Notch signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of bone resorptionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of Ras protein signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of insulin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein autophosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
platelet-derived growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
vascular endothelial growth factor receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
neurotrophin TRK receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ephrin receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
focal adhesion assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
oogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
progesterone receptor signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
leukocyte migrationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of small GTPase mediated signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein transportProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to mineralocorticoidProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
myoblast proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to electrical stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of focal adhesion assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of phosphatidylinositol 3-kinase/protein kinase B signal transductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of mitochondrial depolarizationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of telomerase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
uterus developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
branching involved in mammary gland duct morphogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of cell projection assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
intestinal epithelial cell developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
interleukin-6-mediated signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to hydrogen peroxideProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
response to interleukin-1Proto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to lipopolysaccharideProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to peptide hormone stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to progesterone stimulusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to fatty acidProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to hypoxiaProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to fluid shear stressProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of podosome assemblyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
DNA biosynthetic processProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein serine/threonine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of heart rate by cardiac conductionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of canonical Wnt signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell-cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of protein localization to nucleusProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of non-membrane spanning protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of TORC1 signalingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of vascular associated smooth muscle cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cellular response to prolactinProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of male germ cell proliferationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of ovarian follicle developmentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of lamellipodium morphogenesisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
positive regulation of platelet-derived growth factor receptor-beta signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of early endosome to late endosome transportProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of anoikisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of extrinsic apoptotic signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
negative regulation of intrinsic apoptotic signaling pathwayProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
regulation of caveolin-mediated endocytosisProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell differentiationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
innate immune responseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein phosphorylationProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
symbiont entry into host cellProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
bicarbonate transportCarbonic anhydrase 4Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 4Homo sapiens (human)
positive regulation of synaptic transmission, GABAergicCarbonic anhydrase 7Homo sapiens (human)
positive regulation of cellular pH reductionCarbonic anhydrase 7Homo sapiens (human)
neuron cellular homeostasisCarbonic anhydrase 7Homo sapiens (human)
regulation of chloride transportCarbonic anhydrase 7Homo sapiens (human)
regulation of intracellular pHCarbonic anhydrase 7Homo sapiens (human)
one-carbon metabolic processCarbonic anhydrase 7Homo sapiens (human)
positive regulation of protein phosphorylationP2Y purinoceptor 1Homo sapiens (human)
G protein-coupled adenosine receptor signaling pathwayP2Y purinoceptor 1Homo sapiens (human)
monoatomic ion transportP2Y purinoceptor 1Homo sapiens (human)
cell surface receptor signaling pathwayP2Y purinoceptor 1Homo sapiens (human)
G protein-coupled receptor signaling pathwayP2Y purinoceptor 1Homo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled receptor signaling pathwayP2Y purinoceptor 1Homo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwayP2Y purinoceptor 1Homo sapiens (human)
positive regulation of cytosolic calcium ion concentrationP2Y purinoceptor 1Homo sapiens (human)
glial cell migrationP2Y purinoceptor 1Homo sapiens (human)
regulation of cell shapeP2Y purinoceptor 1Homo sapiens (human)
response to mechanical stimulusP2Y purinoceptor 1Homo sapiens (human)
negative regulation of norepinephrine secretionP2Y purinoceptor 1Homo sapiens (human)
signal transduction involved in regulation of gene expressionP2Y purinoceptor 1Homo sapiens (human)
platelet activationP2Y purinoceptor 1Homo sapiens (human)
positive regulation of inositol trisphosphate biosynthetic processP2Y purinoceptor 1Homo sapiens (human)
G protein-coupled purinergic nucleotide receptor signaling pathwayP2Y purinoceptor 1Homo sapiens (human)
eating behaviorP2Y purinoceptor 1Homo sapiens (human)
positive regulation of monoatomic ion transportP2Y purinoceptor 1Homo sapiens (human)
positive regulation of transcription by RNA polymerase IIP2Y purinoceptor 1Homo sapiens (human)
positive regulation of hormone secretionP2Y purinoceptor 1Homo sapiens (human)
establishment of localization in cellP2Y purinoceptor 1Homo sapiens (human)
positive regulation of penile erectionP2Y purinoceptor 1Homo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeP2Y purinoceptor 1Homo sapiens (human)
response to growth factorP2Y purinoceptor 1Homo sapiens (human)
cellular response to ATPP2Y purinoceptor 1Homo sapiens (human)
cellular response to purine-containing compoundP2Y purinoceptor 1Homo sapiens (human)
protein localization to plasma membraneP2Y purinoceptor 1Homo sapiens (human)
relaxation of muscleP2Y purinoceptor 1Homo sapiens (human)
blood vessel diameter maintenanceP2Y purinoceptor 1Homo sapiens (human)
regulation of presynaptic cytosolic calcium ion concentrationP2Y purinoceptor 1Homo sapiens (human)
regulation of synaptic vesicle exocytosisP2Y purinoceptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (44)

Processvia Protein(s)Taxonomy
zinc ion bindingCarbonic anhydrase 12Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 12Homo sapiens (human)
arylesterase activityCarbonic anhydrase 1Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 1Homo sapiens (human)
protein bindingCarbonic anhydrase 1Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 1Homo sapiens (human)
hydro-lyase activityCarbonic anhydrase 1Homo sapiens (human)
cyanamide hydratase activityCarbonic anhydrase 1Homo sapiens (human)
arylesterase activityCarbonic anhydrase 2Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 2Homo sapiens (human)
protein bindingCarbonic anhydrase 2Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 2Homo sapiens (human)
cyanamide hydratase activityCarbonic anhydrase 2Homo sapiens (human)
phosphotyrosine residue bindingTyrosine-protein kinase LckHomo sapiens (human)
protein tyrosine kinase activityTyrosine-protein kinase LckHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityTyrosine-protein kinase LckHomo sapiens (human)
protein serine/threonine phosphatase activityTyrosine-protein kinase LckHomo sapiens (human)
protein bindingTyrosine-protein kinase LckHomo sapiens (human)
ATP bindingTyrosine-protein kinase LckHomo sapiens (human)
phospholipase activator activityTyrosine-protein kinase LckHomo sapiens (human)
protein kinase bindingTyrosine-protein kinase LckHomo sapiens (human)
protein phosphatase bindingTyrosine-protein kinase LckHomo sapiens (human)
SH2 domain bindingTyrosine-protein kinase LckHomo sapiens (human)
T cell receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
CD4 receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
CD8 receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
identical protein bindingTyrosine-protein kinase LckHomo sapiens (human)
phospholipase bindingTyrosine-protein kinase LckHomo sapiens (human)
phosphatidylinositol 3-kinase bindingTyrosine-protein kinase LckHomo sapiens (human)
ATPase bindingTyrosine-protein kinase LckHomo sapiens (human)
signaling receptor bindingTyrosine-protein kinase LckHomo sapiens (human)
protein kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
non-membrane spanning protein tyrosine kinase activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein kinase C bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
signaling receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
insulin receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
integrin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ATP bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phospholipase activator activityProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
enzyme bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
heme bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
nuclear estrogen receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
SH2 domain bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phospholipase bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
transmembrane transporter bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cadherin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ephrin receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ATPase bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
phosphoprotein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
BMP receptor bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
connexin bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
scaffold protein bindingProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
protein bindingCarbonic anhydrase 4Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 4Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 4Homo sapiens (human)
zinc ion bindingCarbonic anhydrase 7Homo sapiens (human)
carbonate dehydratase activityCarbonic anhydrase 7Homo sapiens (human)
G protein-coupled ADP receptor activityP2Y purinoceptor 1Homo sapiens (human)
protein bindingP2Y purinoceptor 1Homo sapiens (human)
ATP bindingP2Y purinoceptor 1Homo sapiens (human)
signaling receptor activityP2Y purinoceptor 1Homo sapiens (human)
ADP bindingP2Y purinoceptor 1Homo sapiens (human)
G protein-coupled purinergic nucleotide receptor activityP2Y purinoceptor 1Homo sapiens (human)
G protein-coupled ATP receptor activityP2Y purinoceptor 1Homo sapiens (human)
protein heterodimerization activityP2Y purinoceptor 1Homo sapiens (human)
scaffold protein bindingP2Y purinoceptor 1Homo sapiens (human)
A1 adenosine receptor bindingP2Y purinoceptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (45)

Processvia Protein(s)Taxonomy
plasma membraneCarbonic anhydrase 12Homo sapiens (human)
membraneCarbonic anhydrase 12Homo sapiens (human)
basolateral plasma membraneCarbonic anhydrase 12Homo sapiens (human)
apical plasma membraneCarbonic anhydrase 12Homo sapiens (human)
plasma membraneCarbonic anhydrase 12Homo sapiens (human)
cytosolCarbonic anhydrase 1Homo sapiens (human)
extracellular exosomeCarbonic anhydrase 1Homo sapiens (human)
cytoplasmCarbonic anhydrase 2Homo sapiens (human)
cytosolCarbonic anhydrase 2Homo sapiens (human)
plasma membraneCarbonic anhydrase 2Homo sapiens (human)
myelin sheathCarbonic anhydrase 2Homo sapiens (human)
apical part of cellCarbonic anhydrase 2Homo sapiens (human)
extracellular exosomeCarbonic anhydrase 2Homo sapiens (human)
cytoplasmCarbonic anhydrase 2Homo sapiens (human)
plasma membraneCarbonic anhydrase 2Homo sapiens (human)
apical part of cellCarbonic anhydrase 2Homo sapiens (human)
pericentriolar materialTyrosine-protein kinase LckHomo sapiens (human)
immunological synapseTyrosine-protein kinase LckHomo sapiens (human)
cytosolTyrosine-protein kinase LckHomo sapiens (human)
plasma membraneTyrosine-protein kinase LckHomo sapiens (human)
membrane raftTyrosine-protein kinase LckHomo sapiens (human)
extracellular exosomeTyrosine-protein kinase LckHomo sapiens (human)
plasma membraneTyrosine-protein kinase LckHomo sapiens (human)
podosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
nucleoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cytoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
mitochondrionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
mitochondrial inner membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
lysosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
late endosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cytosolProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
actin filamentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
plasma membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
caveolaProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
focal adhesionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
cell junctionProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
ruffle membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
neuronal cell bodyProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
dendritic growth coneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
membrane raftProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
perinuclear region of cytoplasmProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
extracellular exosomeProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
synaptic membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
glutamatergic synapseProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
postsynaptic specialization, intracellular componentProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
dendritic filopodiumProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
plasma membraneProto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)
basolateral plasma membraneCarbonic anhydrase 4Homo sapiens (human)
rough endoplasmic reticulumCarbonic anhydrase 4Homo sapiens (human)
endoplasmic reticulum-Golgi intermediate compartmentCarbonic anhydrase 4Homo sapiens (human)
Golgi apparatusCarbonic anhydrase 4Homo sapiens (human)
trans-Golgi networkCarbonic anhydrase 4Homo sapiens (human)
plasma membraneCarbonic anhydrase 4Homo sapiens (human)
external side of plasma membraneCarbonic anhydrase 4Homo sapiens (human)
cell surfaceCarbonic anhydrase 4Homo sapiens (human)
membraneCarbonic anhydrase 4Homo sapiens (human)
apical plasma membraneCarbonic anhydrase 4Homo sapiens (human)
transport vesicle membraneCarbonic anhydrase 4Homo sapiens (human)
secretory granule membraneCarbonic anhydrase 4Homo sapiens (human)
brush border membraneCarbonic anhydrase 4Homo sapiens (human)
perinuclear region of cytoplasmCarbonic anhydrase 4Homo sapiens (human)
extracellular exosomeCarbonic anhydrase 4Homo sapiens (human)
plasma membraneCarbonic anhydrase 4Homo sapiens (human)
cytosolCarbonic anhydrase 7Homo sapiens (human)
cytoplasmCarbonic anhydrase 7Homo sapiens (human)
plasma membraneP2Y purinoceptor 1Homo sapiens (human)
ciliumP2Y purinoceptor 1Homo sapiens (human)
cell surfaceP2Y purinoceptor 1Homo sapiens (human)
postsynaptic densityP2Y purinoceptor 1Homo sapiens (human)
basolateral plasma membraneP2Y purinoceptor 1Homo sapiens (human)
apical plasma membraneP2Y purinoceptor 1Homo sapiens (human)
dendriteP2Y purinoceptor 1Homo sapiens (human)
cell bodyP2Y purinoceptor 1Homo sapiens (human)
postsynaptic membraneP2Y purinoceptor 1Homo sapiens (human)
presynaptic active zone membraneP2Y purinoceptor 1Homo sapiens (human)
glutamatergic synapseP2Y purinoceptor 1Homo sapiens (human)
plasma membraneP2Y purinoceptor 1Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (28)

Assay IDTitleYearJournalArticle
AID1254158Inhibition of human recombinant carbonic anhydrase 7 preincubated for 15 mins at room temperature/6 hrs at 4 deg C by stopped-flow CO2 hydration assay2015Bioorganic & medicinal chemistry, Nov-15, Volume: 23, Issue:22
New natural product carbonic anhydrase inhibitors incorporating phenol moieties.
AID419928Inhibition of STAT1 SH2 domain at 200 uM2009Bioorganic & medicinal chemistry letters, Jun-15, Volume: 19, Issue:12
Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains.
AID1374876Potentiation of meropenem-induced antimicrobial activity against Escherichia coli BL21(DE3) assessed as meropenem MIC at 100 uM measured after 16 to 20 hrs by microdilution broth method (Rvb = <0.125 mg/L)2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID1374872Inhibition of bacterial N-terminal His6-tagged NDM1 expressed in Escherichia coli BL21 DE3 pLysS cells using FC-5 as substrate pretreated for 10 mins followed by substrate addition measured every 60 secs by fluorescence assay2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID420055Inhibition of STAT5b SH2 domain at 200 uM2009Bioorganic & medicinal chemistry letters, Jun-15, Volume: 19, Issue:12
Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains.
AID1374873Inhibition of bacterial N-terminal His6-tagged TEM1 expressed in Escherichia coli BL21 DE3 pLysS cells using FC-5 as substrate pretreated for 10 mins followed by substrate addition measured every 60 secs by fluorescence assay2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID1374874Potentiation of meropenem-induced antimicrobial activity against Escherichia coli BL21(DE3) harboring VIM-2 assessed as meropenem MIC at 50 uM measured after 16 to 20 hrs by microdilution broth method (Rvb = 16 mg/L)2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID1374879Potentiation of meropenem-induced antimicrobial activity against Escherichia coli BL21(DE3) assessed as meropenem MIC at 25 uM measured after 16 to 20 hrs by microdilution broth method (Rvb = <0.125 mg/L)2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID1068728Bioavailability in beagle dog2014Bioorganic & medicinal chemistry letters, Feb-01, Volume: 24, Issue:3
Danshen diversity defeating dementia.
AID1374878Potentiation of meropenem-induced antimicrobial activity against Escherichia coli BL21(DE3) harboring VIM-2 assessed as meropenem MIC at 25 uM measured after 16 to 20 hrs by microdilution broth method (Rvb = 16 mg/L)2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID419925Inhibition of c-SRC SH2 domain2009Bioorganic & medicinal chemistry letters, Jun-15, Volume: 19, Issue:12
Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains.
AID1374875Potentiation of meropenem-induced antimicrobial activity against Escherichia coli BL21(DE3) harboring VIM-2 assessed as meropenem MIC at 100 uM measured after 16 to 20 hrs by microdilution broth method (Rvb = 16 mg/L)2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID334590Antioxidant activity against Cu2+-induced lipid peroxidation in human plasma LDL preincubated for 1 hr before Cu2+ challenge relative to probucol2002Journal of natural products, May, Volume: 65, Issue:5
Anti-lipid-peroxidative principles from Tournefortia sarmentosa.
AID1374877Potentiation of meropenem-induced antimicrobial activity against Escherichia coli BL21(DE3) assessed as meropenem MIC at 50 uM measured after 16 to 20 hrs by microdilution broth method (Rvb = <0.125 mg/L)2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID1374860Inhibition of bacterial N-terminal His6-tagged VIM2 (27 to 266 residues) expressed in Escherichia coli BL21 DE3 pLysS cells using FC-5 as substrate pretreated for 10 mins followed by substrate addition measured every 60 secs by fluorescence assay2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID1254157Inhibition of human recombinant carbonic anhydrase 4 preincubated for 15 mins at room temperature/6 hrs at 4 deg C by stopped-flow CO2 hydration assay2015Bioorganic & medicinal chemistry, Nov-15, Volume: 23, Issue:22
New natural product carbonic anhydrase inhibitors incorporating phenol moieties.
AID1254156Inhibition of human recombinant carbonic anhydrase 2 preincubated for 15 mins at room temperature/6 hrs at 4 deg C by stopped-flow CO2 hydration assay2015Bioorganic & medicinal chemistry, Nov-15, Volume: 23, Issue:22
New natural product carbonic anhydrase inhibitors incorporating phenol moieties.
AID1254159Inhibition of human recombinant carbonic anhydrase 12 preincubated for 15 mins at room temperature/6 hrs at 4 deg C by stopped-flow CO2 hydration assay2015Bioorganic & medicinal chemistry, Nov-15, Volume: 23, Issue:22
New natural product carbonic anhydrase inhibitors incorporating phenol moieties.
AID1374881Potentiation of meropenem-induced antimicrobial activity against Escherichia coli BL21(DE3) assessed as meropenem MIC at 10 uM measured after 16 to 20 hrs by microdilution broth method (Rvb = <0.125 mg/L)2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID1254155Inhibition of human recombinant carbonic anhydrase 1 preincubated for 15 mins at room temperature/6 hrs at 4 deg C by stopped-flow CO2 hydration assay2015Bioorganic & medicinal chemistry, Nov-15, Volume: 23, Issue:22
New natural product carbonic anhydrase inhibitors incorporating phenol moieties.
AID1374880Potentiation of meropenem-induced antimicrobial activity against Escherichia coli BL21(DE3) harboring VIM-2 assessed as meropenem MIC at 10 uM measured after 16 to 20 hrs by microdilution broth method (Rvb = 16 mg/L)2018Bioorganic & medicinal chemistry letters, 04-01, Volume: 28, Issue:6
Virtual target screening reveals rosmarinic acid and salvianolic acid A inhibiting metallo- and serine-β-lactamases.
AID1871461Displacement of [3H]2MeSADP from human P2Y1 expressed in U2OS cell membranes incubated for 60 mins by scintillation counting method
AID1423273Antiproliferative activity against human MV4-11 cells by Cell-Titer Glo assay2018Journal of natural products, 11-26, Volume: 81, Issue:11
Salviachinensines A-F, Antiproliferative Phenolic Derivatives from the Chinese Medicinal Plant Salvia chinensis.
AID1423271Antiproliferative activity against human MOLM13 cells by Cell-Titer Glo assay2018Journal of natural products, 11-26, Volume: 81, Issue:11
Salviachinensines A-F, Antiproliferative Phenolic Derivatives from the Chinese Medicinal Plant Salvia chinensis.
AID420054Inhibition of STAT3 SH2 domain at 200 uM2009Bioorganic & medicinal chemistry letters, Jun-15, Volume: 19, Issue:12
Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains.
AID419924Inhibition of LCK SH2 domain2009Bioorganic & medicinal chemistry letters, Jun-15, Volume: 19, Issue:12
Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains.
AID334589Antioxidant activity against Cu2+-induced lipid peroxidation in human plasma LDL preincubated for 1 hr before Cu2+ challenge2002Journal of natural products, May, Volume: 65, Issue:5
Anti-lipid-peroxidative principles from Tournefortia sarmentosa.
AID1423272Antiproliferative activity against human MOLM14 cells by Cell-Titer Glo assay2018Journal of natural products, 11-26, Volume: 81, Issue:11
Salviachinensines A-F, Antiproliferative Phenolic Derivatives from the Chinese Medicinal Plant Salvia chinensis.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (327)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's13 (3.98)18.2507
2000's38 (11.62)29.6817
2010's196 (59.94)24.3611
2020's80 (24.46)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 27.90

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index27.90 (24.57)
Research Supply Index5.80 (2.92)
Research Growth Index5.34 (4.65)
Search Engine Demand Index36.71 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (27.90)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews15 (4.57%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other313 (95.43%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Clinical Trials (3)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
A Phase I, Single Centre, Randomized, Open-Label, Three-Period Crossover Study to Investigate the Effect of Food on Pharmacokinetics of Salvianolic Acid A in Healthy Subjects [NCT03791463]Phase 114 participants (Anticipated)Interventional2018-12-20Recruiting
Randomized, Double-blind, Placebo-controlled, Continuous Dosing, Single-center, Evaluation of Safety, Tolerability, and Pharmacokinetic Properties of Salvianolic Acid A Tablets in Healthy Volunteers [NCT03908242]Phase 124 participants (Anticipated)Interventional2019-04-08Not yet recruiting
Randomized, Double-blind, Placebo-controlled, Single-dose Escalation, Evaluation of Safety, Tolerability, and Pharmacokinetic Properties of Salvianolic Acid A Tablets in Healthy Volunteers [NCT03791125]Phase 140 participants (Anticipated)Interventional2018-11-20Recruiting
[information is prepared from clinicaltrials.gov, extracted Sep-2024]