salvianolic-acid-a has been researched along with Brain-Ischemia* in 17 studies
1 review(s) available for salvianolic-acid-a and Brain-Ischemia
Article | Year |
---|---|
Salvianolic Acids for Injection Combined with Conventional Treatment for Patients with Acute Cerebral Infarction: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
BACKGROUND This meta-analysis was conducted to evaluate the clinical effectiveness and safety of Salvianolic acids for injection (SAFI) plus conventional treatment (CT) for patients with acute cerebral infarction (ACI) and to assess the evidence to guide clinical practice. MATERIAL AND METHODS PubMed, EMBASE, Cochrane Library, Web of Science, and 4 Chinese electronic databases were searched to identify relevant randomized controlled trials (RCTs). The methodological quality of eligible studies was evaluated using the Cochrane risk of bias tool. The reporting quality of eligible studies was evaluated by Consolidated Standards of Reporting Trials (CONSORT) for traditional Chinese medicine. Meta-analysis and evidence quality were performed using RevMan 5.3 and Grading of Recommendations Assessment, Development, and Evaluation (GRADE). RESULTS A total of 14 RCTs involving 1309 patients were included. Meta-analysis showed that SAFI plus CT was better than CT alone in improving the total effective rate (RR=1.35, 95% CI 1.25 to 1.44, P<0.00001), reducing the National Institutes of Health Stroke Scale (NIHSS) score (130 mg: WMD=-3.31, 95% CI -3.80 to -2.47, P<0.00001; 100 mg: WMD=-1.91, 95% CI -2.28 to -1.54, P<0.00001), improving the activity of daily living and cognitive function of ACI, and improving the hemorheology (HBV: high shear rate blood viscosity, LBV: low shear rate blood viscosity, PV: plasma viscosity) and C-reactive protein (CRP). CONCLUSIONS SAFI plus CT in the treatment of ACI can improve the total effective rate, neurological deficit, and ability to perform activities of daily living, and there is no serious adverse reaction. Based on the GRADE system, the evidence quality is low. More large-scale, well-designed, and high-quality RCTs are required to confirm the positive results. Topics: Activities of Daily Living; Acute Disease; Alkenes; Brain Ischemia; Cerebral Infarction; Drugs, Chinese Herbal; Humans; Injections; Medicine, Chinese Traditional; Polyphenols; Stroke; Treatment Outcome | 2019 |
16 other study(ies) available for salvianolic-acid-a and Brain-Ischemia
Article | Year |
---|---|
Porcine cardiac blood - Salvia miltiorrhiza root alleviates cerebral ischemia reperfusion injury by inhibiting oxidative stress induced apoptosis through PI3K/AKT/Bcl-2/Bax signaling pathway.
Salvia miltiorrhiza Bge. mixed with porcine cardiac blood (PCB-DS) is mainly employed for the treatment of brain ischemia-induced mental disturbances, palpitations and phlegm confusion based on the traditional principle of Menghe medical sect. PCB is the guide to DS and enhances the effect of DS. However, the potential mechanism of PCB-DS preventing cerebral ischemia/reperfusion injury (CIRI) from the perspective of oxidative stress induced cell apoptosis remains unknown.. To investigate the pharmacological activity and molecular mechanism of PCB-DS against CIRI.. DS samples processed with different methods were prepared and UPLC-Q-TOF-MS/MS was employed for qualitative analysis of the respective processing product. The middle cerebral artery occlusion reperfusion model was then established to investigate the pharmacological activities of PCB-DS. Pathological changes in the rat brain were observed by triphenyl tetrazolium chloride (TTC), hematoxylin-eosin, and TUNEL staining. The levels of IL-6, IL-1β, and TNF-α were detected by ELISA to evaluate the inflammatory damage. Metabolomics of cerebrospinal fluid was further used to explore the potential mechanism of PCB-DS in preventing CIRI. Based on this, the levels of oxidative stress-related lactate dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined. The protein levels of PI3K, AKT, Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9 proteins of the cerebral infarct zone were finally measured by western blotting.. Forty-seven components were identified in four processing products. Compared to DS, the content of total aqueous components in PCB-DS was significantly increased including salvianolic acid B isomer, salvianolic acid D, salvianolic acid F, and salvianolic acid H/I/J. Among the DS, DS processed with wine, DS processed with pig blood, and DS processed with porcine cardiac blood, PCB-DS best alleviated the CIRI through the neurological score, brain infarct volume, brain histopathology and the levels of inflammatory factors in the brain. Twenty-five significant metabolites in the cerebrospinal fluid were screened out between the sham and I/R groups. They were mainly involved in the beta-alanine metabolism, histidine metabolism, and lysine degradation, which indicated that PCB-DS may inhibit oxidative stress-induced apoptosis to achieve treating ischemic stroke. The results of biomedical examination showed that PCB-DS could alleviate oxidative damage, significantly downregulate the expression of Bax, cleaved caspase-3 and cleaved caspase-9, and upregulate the expression of p-PI3K, p-AKT, and Bcl-2.. In summary, this study demonstrated that PCB-DS alleviated CIRI and the molecular mechanism may be related to inhibiting the oxidative stress induced apoptosis through PI3K/AKT/Bcl-2/Bax signaling pathway. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Brain Ischemia; Caspase 3; Caspase 9; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Swine; Tandem Mass Spectrometry | 2023 |
Salvianolic acid A relieves cognitive disorder after chronic cerebral ischemia: Involvement of Drd2/Cryab/NF-κB pathway.
Chronic cerebral ischemia (CCI) refers to long-term hypoperfusion of cerebral blood flow with the main clinical manifestations of progressive cognitive impairment. The pathological mechanism of CCI is complex, and there is a lack of effective treatments. Salvianolic acid A (SalA) is a neuroprotective extract of Salvia miltiorrhiza with the effects of anti-inflammation and anti-apoptosis. In this study, the effect of SalA on cognitive function and Drd2/Cryab/NF-κB signaling pathway in rats with CCI was investigated. Morris water maze and open field test were used to observe the effects of SalA on the cognitive function of CCI rats. The pathological changes in the brain were observed by HE, Nissl, and LFB staining. TUNEL staining, enzyme-linked immunosorbent assay, and western blot analysis were used to detect the inflammatory and apoptosis in the cortex and hippocampus. The expression of Drd2/Cryab/NF-κB pathway-related molecules and Drd2 localization were detected by western blotting and dual immunofluorescence, respectively. SH-SY5Y cells were exposed to chronic hypoglycemic and hypoxic injury in vitro, and Drd2 inhibitor haloperidol was used to verify the involved pathway. The results showed that SalA could improve the cognitive function of CCI rats, reduce pathological damage of cortex and hippocampus, inhibit neuroinflammation and apoptosis, and suppress the activation of NF-κB by regulating Drd2/Cryab pathway. And SalA inhibited NF-κB activation and nuclear translocation in SH-SY5Y cells by upregulating Drd2/Cryab pathway, which was reversed by haloperidol interference. In conclusion, SalA could relieve CCI-induced cognitive impairment in rats, at least partly through the Drd2/Cryab/NF-κB pathway. Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Cell Hypoxia; Cell Line, Tumor; Chronic Disease; Cognitive Dysfunction; Crystallins; Glucose; Humans; Lactates; Male; Microtubule-Associated Proteins; Neuroinflammatory Diseases; Neuroprotective Agents; NF-kappa B; Rats, Wistar; Receptors, Dopamine D2 | 2022 |
Salvianolic Acids for Injection alleviates cerebral ischemia/reperfusion injury by switching M1/M2 phenotypes and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia in vivo and in vitro.
After cerebral ischemia/reperfusion injury, pro-inflammatory M1 and anti-inflammatory M2 phenotypes of microglia are involved in neuroinflammation, in which activation of NLRP3 inflammasome and subsequent pyroptosis play essential roles. Salvianolic Acids for Injection (SAFI) is Chinese medicine injection which composed of multiple phenolic acids extracted from Radix Salviae Miltiorrhizae, and has been reported to generate neuroprotective effects after cerebral ischemic insult in clinical and animal studies.. The present study was designed to investigate whether SAFI exerts neuroprotective effects by switching microglial phenotype and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia.. The middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) model in co-cultured primary neurons and primary microglia were utilized. The neuroprotective effect of SAFI was evaluated through measuring neurological deficit scores, neuropathological changes, inflammatory factors, cell phenotype markers, and related proteins of NLRP3 inflammasome/pyroptosis axis.. The results showed that SAFI treatment was able to: (1) produce a significant increase in neurological deficit scores and decrease in infarct volumes, and alleviate histological injury and neuronal apoptosis in cerebral cortex in MCAO/R model; (2) increase neuronal viability and reduce neuronal apoptosis in the OGD model; (3) reshape microglial polarization patterns from M1-like phenotype to M2-like phenotype; (4) inhibit the activation of the NLRP3 inflammasome and the expression of proteins related to NLRP3 inflammasome/pyroptosis axis in vivo and in vitro.. These findings indicate that SAFI exert neuroprotective effect, probably via reducing neuronal apoptosis, switching microglial phenotype from M1 towards M2, and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia. Topics: Alkenes; Amino Acid Transport System ASC; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Brain Ischemia; Calcium-Binding Proteins; Caspase 1; Cell Survival; Cells, Cultured; Disease Models, Animal; Inflammasomes; Injections, Intraperitoneal; Interleukin-1beta; Intracellular Signaling Peptides and Proteins; Male; Microfilament Proteins; Microglia; Neuroprotective Agents; NLR Family, Pyrin Domain-Containing 3 Protein; Phosphate-Binding Proteins; Polyphenols; Pyroptosis; Rats, Sprague-Dawley; Reperfusion Injury | 2021 |
Salvianolic acid A alleviated inflammatory response mediated by microglia through inhibiting the activation of TLR2/4 in acute cerebral ischemia-reperfusion.
Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4) on microglia have been found as important regulators in the inflammatory response during cerebral ischemia/reperfusion (I/R). In China, traditional Chinese medicine Salvia miltiorrhiza (danshen) and its some components are considered to be effective in rescuing cerebral I/R injury through clinical practice.. Here we examined the effect of Salvianolic acid A (SAA), a monomer compound in the water extract of Salvia miltiorrhiza, on TLR2/4 of microglia and its mediated inflammatory injury during cerebral I/R in vivo and in vitro.. For exploring the effect of SAA on cerebral I/R and TLR2/4, classic middle cerebral artery occlusion (MCAO) model and oxygen glucose deprivation / reoxygenation (OGD/R) model of co-culture with primary hippocampal neurons and microglia in vitro were used. Signal pathway research and gene knockout have been applied to further explain its mechanism.. The evaluation indexes of I/R injury included infarct size, edema degree and pathology as well as primary hippocampal neurons and microglia culture, ELISA, western, RT-PCR, HE staining, immunofluorescence, flow cytometry, siRNA gene knockout were also employed.. SAA significantly improved the degree of brain edema and ischemic area in I/R rats accompanied by decreases in levels of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). Pathological staining revealed that SAA could reduce inflammatory cell infiltration and mcirogila activation after reperfusion. Both protein and gene expression of TLR2 and TLR4 in ischemic hemisphere were obviously inhibited by SAA treatment while changes were not found in the non-ischemic hemisphere. In order to further study its mechanism, OGD/R model was used to mimic inflammatory damage of ischemic tissue by co-culturing primary rat hippocampal neurons and microglial cells. It was found that SAA also inhibited the protein and gene expression of TLR2 and TLR4 after OGD/R injury in microglia. After TLR2/4 knockout, the inhibitory effect of SAA on IL-1β and TNF-α levels in cell supernatant and neuron apoptosis were significantly weakened in each dose group. Moreover, expression levels of myeloid differentiation factor 88 (MyD88), NFκB, IL-1β and IL-6 in TLR2/4 mediated inflammatory pathway were reduced with SAA treatment.. SAA could significantly reduce the inflammatory response and injury in cerebral ischemia-reperfusion in vivo and in vitro, and its mechanism may be through the inhibition of TLR2/4 and its related signal pathway. Topics: Animals; Brain Ischemia; Caffeic Acids; Infarction, Middle Cerebral Artery; Inflammation; Lactates; Male; Microglia; Myeloid Differentiation Factor 88; NF-kappa B; Rats; Reperfusion Injury; Signal Transduction; Toll-Like Receptor 2; Toll-Like Receptor 4 | 2021 |
A quality marker study on salvianolic acids for injection.
The quality of Chinese medicine (CM) has being an active and challenging research area for CM. Prof. Chang-Xiao Liu et al first proposed the concept of quality marker (Q-Marker) for the quality evaluation and control on CM. This article describe the exploratory studies of Q-Marker in salvianolic acids for injection (SAI) based on this new concept.. This study was designed to screen Q-Marker of SAI and establish its quality control method based on the concept of CM Q-Marker.. Based on the concept of CM Q-Marker, the SAI was investigated for the identification of chemical components and their sources. The pharmacological effects on cerebral ischemia and reperfusion induced injury in rats were also investigated. Furthermore, the target cell extracts and pharmacokinetic studies were conducted to screen Q-Markers. Finally, the fingerprints and determination based on Q-Markers were established to assess the quality of SAI more effectively.. Overall, 20 constituents in SAI were identified. It was found that salvianolic acid B (SA-B), rosmarinic acid (RA), lithospermic acid (LA), salvianolic acid D (SA-D) and salvianolic acid Y (SA-Y) are major chemical components of SAI. Based on chemical components identifications, analysis of their sources, target cell extracts and pharmacokinetic studies, four phenolic acids, namely SA-B, RA, LA and SA-D, were screened and determined as effective Q-Markers of SAI.. This study demonstrated that the described method is a powerful approach for detecting Q-Markers, which can be used as control index for the quality assessment of CM. Topics: Alkenes; Animals; Benzofurans; Biomarkers; Brain; Brain Ischemia; Cell Line; Cinnamates; Depsides; Drugs, Chinese Herbal; Endothelium, Vascular; Injections; Interleukin-1; Interleukin-6; Male; Polyphenols; Quality Control; Rats, Sprague-Dawley; Rosmarinic Acid; Superoxide Dismutase | 2018 |
Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation.
Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia Miltiorrhiza Bge, a traditional Chinese medicine, which has been used for the treatment of cerebrovascular diseases for centuries. The present study aimed to determine the brain protective effects of SAA against cerebral ischemia reperfusion injury in rats, and to figure out whether SAA could protect the blood brain barrier (BBB) through matrix metallopeptidase 9 (MMP-9) inhibition. A focal cerebral ischemia reperfusion model was induced by middle cerebral artery occlusion (MCAO) for 1.5-h followed by 24-h reperfusion. SAA was administered intravenously at doses of 5, 10, and 20 mg·kg Topics: Animals; Anti-Inflammatory Agents; Blood-Brain Barrier; Brain; Brain Ischemia; Caffeic Acids; Drugs, Chinese Herbal; Humans; Lactates; Male; Matrix Metalloproteinase 9; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Salvia miltiorrhiza; Tissue Inhibitor of Metalloproteinase-1; Transcription Factor RelA | 2018 |
Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice.
Post-stroke angiogenesis facilitates neurovascular remodeling process and promotes neurological recovery. Proangiogenic effects of Salvianolic acids (Sals) have been reported in various ischemic disorders. However, the underlying mechanisms are still poorly understood. Previous studies of our laboratory have demonstrated that activating Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway is involved in the protection against cerebral ischemia/reperfusion injury. In this study, we investigated the impacts of Sals on angiogenesis and long-term neurological recovery after ischemic stroke as well as the potential mechanisms. Male mice subjected to permanent distal middle cerebral artery occlusion were administrated with Sals, 5-bromo-2'-deoxyuridine, and JAK2 inhibitor AG490 once daily from day 1 to day 14 after distal middle cerebral artery occlusion. Compared with the control group, Sals treatment significantly improved neurological recovery at day 14 and 28 after ischemic stroke. Sals enhanced post-stroke angiogenesis, pericytes and astrocytic endfeet covered ratio in the peri-infarct area. The JAK2/STAT3 signaling pathway was activated by Sals in the angiogenesis process, and inhibition of JAK2/STAT3 signaling blocked the effects of Sals on post-stroke angiogenesis and neurological recovery as well as abolished the mediation of proangiogenic factors. In summary, these data suggest that Sals administration enhances cerebral angiogenesis and promotes neurological recovery after ischemic stroke, mediated by the activation of JAK2/STAT3 signaling pathway. Topics: Alkenes; Animals; Brain Ischemia; Cerebral Cortex; Janus Kinase 2; Male; Mice; Mice, Inbred C57BL; Microvessels; Neovascularization, Physiologic; Neurons; Polyphenols; Random Allocation; Recovery of Function; Signal Transduction; STAT3 Transcription Factor; Stroke | 2017 |
Salvianolic Acids for Injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia.
Inflammatory reactions induced by microglia in the brain play crucial roles in ischemia/reperfusion (I/R) cerebral injuries. Microglia activation has been shown to be closely related to TLR4/NF-κB signal pathways. Salvianolic acids for injection (SAFI) have been used in clinical practice to treat ischemic stroke with reported neuroprotective effects; however, the underlying mechanisms are still uncertain.. First, we studied the effect of SAFI on inflammatory responses in LPS-stimulated BV-2 microglia. Then, to discover whether the beneficial in vitro effects of SAFI lead to in vivo therapeutic effects, an MCAO (Middle cerebral artery occlusion) rat model was further employed to elucidate the probable mechanism of SAFI in treating ischemic stroke. Rats in the SAFI group were given SAFI (23 or 46mg/kg) before I/R injury.. The results showed that SAFI treatment significantly decreased neuroinflammation and the infarction volume compared with the vehicle group. Activation of microglia cells was reduced, and TLR4/NF-κB signals, which were markedly inhibited by SAFI treatment in ischemic hemisphere, were accompanied by reduced expression and release of cytokines IL-1β and IL-6.. This study provides evidence that SAFI effectively protects the brain after cerebral ischemia, which may be caused by attenuating inflammation in microglia. Topics: Alkenes; Animals; Brain Ischemia; Disease Models, Animal; Dose-Response Relationship, Drug; Infarction, Middle Cerebral Artery; Inflammation; Interleukin-1beta; Interleukin-6; Male; Microglia; Neuroprotective Agents; NF-kappa B; Polyphenols; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Stroke; Toll-Like Receptor 4 | 2017 |
Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice.
Salvianolic acid A (SAA) is obtained from Chinese herb Salviae Miltiorrhizae Bunge (Labiatae), has been reported to have the protective effects against cardiovascular and neurovascular diseases.. The aim of present study was to investigate the relationship between the effectiveness of SAA against neurovascular injury and its effects on calpain activation and endothelial nitric oxide synthase (eNOS) uncoupling.. SAA or vehicle was given to C57BL/6 male mice for seven days before the occlusion of middle cerebral artery (MCAO) for 60min.. High-resolution positron emission tomography scanner (micro-PET) was used for small animal imaging to examine glucose metabolism. Rota-rod time and neurological deficit scores were calculated after 24h of reperfusion. The volume of infarction was determined by Nissl-staining. The calpain proteolytic activity and eNOS uncoupling were determined by western blot analysis.. SAA administration increased glucose metabolism and ameliorated neuronal damage after brain ischemia, paralleled with decreased neurological deficit and volume of infarction. In addition, SAA pretreatment inhibited eNOS uncoupling and calpain proteolytic activity. Furthermore, SAA inhibited peroxynitrite (ONOO Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Calpain; Drugs, Chinese Herbal; Infarction, Middle Cerebral Artery; Lactates; Male; Mice, Inbred C57BL; Neuroprotective Agents; Nitric Oxide Synthase Type III; Phosphorylation; Phytotherapy; Reperfusion Injury; Salvia miltiorrhiza; Up-Regulation | 2017 |
[Salvianolic acid A alleviate the brain damage in rats after cerebral ischemia-reperfusion through Nrf2/HO-1 pathway].
The aim of present study is to investigate the protective effects and mechanism of salvianolic acid A (SAA) on cerebral ischemia-reperfusion injury in rats. The model was established with middle cerebral artery occlusion and reperfusion (MCAO/R) with ischemia for 1.5 h and reperfusion for 24 h in adult male SD rats. After the behavior assessment, TTC assay was used to calculate the infarct volume of rat brain; the distribution of Nrf2 in nuclear and cytoplasm and expression of HO-1 were detected by Western blot. The PC12 cells injury model was established with oxygen-glucose deprivation for 6 h and reintroduction for 24 h. Cell viability was determined with MTT assay, and the expression of Nrf2 and HO-1 were detected through immunofluorescence staining. The mechanisms were investigated in PC12 cells with Nrf2 knocking down by siRNA. SAA (10 and 20 mg·kg(-1)) significantly reduced the neuronal damage in MCAO/R model, and SAA(0.5 and 5 μmol·L(-1)) increased cell viability in PC12 cells injury model. Meanwhile, the nuclear translocation of Nrf-2 and the expression of HO-1 were increased in PC12 cell and rats brain. SAA exhibited anti-cerebral ischemia- reperfusion effects. The mechanism may be related to activation of Nrf2/HO-1 signaling pathway, which promotes the synthesis and nuclear translocation of Nrf2 to enhance the expression of the antioxidant protein HO-1. Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Heme Oxygenase (Decyclizing); Infarction, Middle Cerebral Artery; Lactates; Male; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; PC12 Cells; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction | 2016 |
Neuroprotective Effect of Salvianolic Acids against Cerebral Ischemia/Reperfusion Injury.
This study investigated the neuroprotective effect of salvianolic acids (SA) against ischemia/reperfusion (I/R) injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43) via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and also evaluated the morphology of astrocyte mitochondria with transmission electron microscopy. In vivo, we determined the cerebral infarction volume and measured superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. Additionally, mtCx43, p-mtCx43, AKT, and p-AKT levels were determined. In vitro, we found that I/R injury induced apoptosis, decreased cell mitochondrial membrane potential (MMP), and damaged mitochondrial morphology in astrocytes. In vivo, we found that I/R injury resulted in a large cerebral infarction, decreased SOD activity, and increased MDA expression. Additionally, I/R injury reduced both the p-mtCx43/mtCx43 and p-AKT/AKT ratios. We reported that both in vivo and in vitro, SA ameliorated the detrimental outcomes of the I/R. Interestingly, co-administering an inhibitor of the PI3K/AKT pathway blunted the effects of SA. SA represents a potential treatment option for cerebral infarction by up-regulating mtCx43 through the PI3K/AKT pathway. Topics: Alkenes; Animals; Apoptosis; Astrocytes; Blotting, Western; Brain Ischemia; Infarction, Middle Cerebral Artery; Male; Membrane Potential, Mitochondrial; Mitochondria; Neuroprotective Agents; Polyphenols; Rats; Rats, Wistar; Reperfusion Injury; Signal Transduction | 2016 |
Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice.
Salvianolic acid A (SalA), a chemical type of caffeic acid trimer, has drawn great attention for its potent bioactivities against ischemia-induced injury both in vitro and in vivo. In this study, we evaluated SalA's protective effects against acute ischemic stroke by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries in mice. Treatment of the mice with SalA (50 and 100μg/kg, i.v.) at 2h after MCAO enhanced their survival rate, improved their moving activity, and ameliorated the severity of brain infarction and apoptosis seen in the mice by diminishing pathological changes such as the extensive breakdown of the blood-brain barrier (BBB), nitrosative stress, and the activation of an inflammatory transcriptional factor p65 nuclear factor-kappa B (NF-κB) and a pro-apoptotic kinase p25/Cdk5. SalA also intensively limited cortical infarction and promoted the expression of neurogenesis protein near the peri-infarct cortex and subgranular zone of the hippocampal dentate gyrus by compromising the activation of GSK3β and p25/Cdk5, which in turn upregulated β-catenin, doublecortin (DCX), and Bcl-2, most possibly through the activation of PI3K/Akt signaling via the upregulation of brain-derived neurotrophic factor. We conclude that SalA blocks inflammatory responses by impairing NF-κB signaling, thereby limiting inflammation/nitrosative stress and preserving the integrity of the BBB; SalA also concomitantly promotes neurogenesis-related protein expression by compromising GSK3β/Cdk5 activity to enhance the expression levels of β-catenin/DCX and Bcl-2 for neuroprotection. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Apoptosis; beta Catenin; Blood-Brain Barrier; Brain Ischemia; Brain-Derived Neurotrophic Factor; Caffeic Acids; Cyclin-Dependent Kinase 5; Disease Models, Animal; Doublecortin Domain Proteins; Doublecortin Protein; Drug Administration Schedule; Gene Expression Regulation; Glycogen Synthase Kinase 3 beta; Injections, Intravenous; Lactates; Male; Mice; Mice, Inbred ICR; Microtubule-Associated Proteins; Neurogenesis; Neuropeptides; Proto-Oncogene Proteins c-bcl-2; Reperfusion Injury; Signal Transduction; Stroke; Survival Analysis; Transcription Factor RelA | 2016 |
Cerebral protection of salvianolic acid A by the inhibition of granulocyte adherence.
Ischemic stroke is one of the most common causes of death and disability that is induced by ischemia reperfusion (IR). Granulocyte adherence has been proven to be a principal cause of IR. Salvianolic acid A (Sal A) is one of the major active components of Danshen, a Chinese herbal medicine used for the treatment of cardiovascular and cerebrovascular diseases, such as ischemic stroke. Some experimental studies have shown the strong cerebral protection effect of Sal A. However, little information is available about the effect of Sal A on granulocyte adherence to brain micro-vascular endothelial cells (BMEC). Therefore, the aim of the present study was to investigate the effect of Sal A on the leukocyte adhesion rate and the intercellular cell adhesion molecule-1 (ICAM-1) expression in BMEC injured by hypoxia/reoxygenation (H/R), using a rheometer, qRT-PCR, and flow cytometry (FCM). The results of the adhesion rate gathered by the rheometer showed that Sal A could remarkably inhibit the adherence of granulocytes on BMEC in the case of H/R injury. Moreover, PCR and FCM results showed that Sal A could decrease the expression of ICAM-1 on BMEC on the gene and protein levels. In conclusion, the study demonstrated that the inhibition of granulocyte adherence is one of the targets of Sal A in the treatment of ischemic stroke. Meanwhile, Sal A inhibits of granulocyte adherence by decreasing the expression of ICAM-1 in BMEC. Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Cell Adhesion; Drugs, Chinese Herbal; Endothelial Cells; Gene Expression; Granulocytes; Intercellular Adhesion Molecule-1; Lactates; Phytotherapy; Rats; Reperfusion Injury; Salvia miltiorrhiza; Stroke | 2011 |
Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats.
Excitatory amino acid toxicity, oxidative stress, intracellular calcium overload, as well as inflammation and apoptosis are involved in the pathological process after cerebral ischemic reperfusion injury. Picrodide 2 could inhibit neuronal apoptosis and play anti-oxidant and anti-inflammation role in cerebral ischemia/reperfusion injuries, but the exact mechanism is not very clear. This study aims to explore the anti-inflammation mechanism of picroside 2 in cerebral ischemic reperfusion injury in rats.. The middle cerebral artery occlusion reperfusion models were established with intraluminal thread methods in 90 adult healthy female Wistar rats. Picroside 2 and salvianic acid A sodium were respectively injected from tail vein at the dosage of 10 mg/kg for treatment. The neurobehavioral function was evaluated with Bederson's test and the cerebral infarction volume was observed with tetrazolium chloride (TTC) staining. The apoptotic cells were counted by in situ terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) assay. The immunohistochemistry stain was used to determine the expressions of toll-like receptor 4 (TLR4), nuclear transcription factor kappaB (NFkappaB) and tumor necrosis factor alpha (TNFalpha). The concentrations of TLR4, NFkappaB and TNFalpha in brain tissue were determined by enzyme linked immunosorbent assay (ELISA).. After cerebral ischemic reperfusion, the rats showed neurobehavioral function deficit and cerebral infarction in the ischemic hemisphere. The number of apoptotic cells, the expressions and the concentrations in brain tissue of TLR4, NFkappaB and TNFalpha in ischemia control group increased significantly than those in the sham operative group (P < 0.01). Compared with the ischemia control group, the neurobehavioral scores, the infarction volumes, the apoptotic cells, the expressions and concentrations in brain tissue of TLR4, NFkappaB and TNFalpha were obviously decreased both in the picroside 2 and salvianic acid A sodium groups (P < 0.01). There was no statistical difference between the two treatment groups in above indexes (P > 0.05).. Picroside 2 could down-regulate the expressions of TLR4, NFkappaB and TNFalpha to inhibit apoptosis and inflammation induced by cerebral ischemic reperfusion injury and improve the neurobehavioral function of rats. Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Brain; Brain Ischemia; Caffeic Acids; Cinnamates; Disease Models, Animal; Encephalitis; Female; Glucosides; Infarction, Middle Cerebral Artery; Iridoid Glucosides; Lactates; Neuropsychological Tests; NF-kappa B; Random Allocation; Rats; Rats, Wistar; Reperfusion Injury; Toll-Like Receptor 4; Treatment Outcome; Tumor Necrosis Factor-alpha | 2010 |
Protective effects of salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice.
To investigate the protective effects of Salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice and the relationship between antioxidant activity of salvianolic acid A and its protective effects on brain injury caused by reperfusion.. Step down and step through tests were used to examine the function of memory in the model of impairment of memory induced by cerebral ischemia-reperfusion in mice.. Salvianolic acid A (Sal A) at the dosage of 3 and 10 mg.kg-1 i.v. could improve the impaired memory function induced by cerebral ischemia-reperfusion as shown in step down and step through tests. In step down tests, the mean number of errors of Sal A 3 and 10 mg.kg-1 treated group were 1.29, 1.15 and that of control group was 3.8 (P < 0.01). The latencies of these tests were longer than those of the control group. Meanwhile, 3 and 10 mg.kg of Sal A i.v. were found to reduce the malondialdehyde contents in the cortex, hippocampus and corpus striatum of cerebral ischemia-reperfusion rat in vivo. Sal A 10-100 nmol.L-1 was also shown to inhibit lipid-peroxidation of the brain and scavenge the free hydroxyl radicals in vitro.. These indicate that the ameliorating effect of Sal A on learning and memory impairment caused by cerebral ischemia reperfusion may be related to its anti-oxidant activity. Topics: Animals; Antioxidants; Avoidance Learning; Brain Ischemia; Caffeic Acids; Drugs, Chinese Herbal; Lactates; Lipid Peroxidation; Male; Memory Disorders; Mice; Plant Extracts; Rats; Rats, Wistar; Reperfusion Injury; Salvia miltiorrhiza | 1997 |
[Protective effects of salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice].
In the present experiments, an impairment of memory model was made by cerebral ischemia-reperefusion in mice. Sal A at the dosage of 3 and 10 mg.kg-1 i.v. was shown to improve the impairment of memory function induced by cerebral ischemia-reperefusion in step down and step through tests. In these tests, the number of errors of Sal A treated group was less and the latency was longer than that of control group. Meanwhile, Sal A 3 and 10 mg.kg-1 i.v. was found to reduce the MDA contents in the cortex, hippocampus and striatum of cerebral ischemia-reperfused rats in vivo. Sal A 10-100 nmol.L-1 was shown to inhibit the brain lipid-peroxidation and scavenge the free hydroxyl radical in vitro. These results indicate that the antagonistic effects of Sal A on impairment of learning and memory caused by cerebral ischemia-reperefusion may be related with its anti-oxidant activity. Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Drugs, Chinese Herbal; Free Radical Scavengers; Lactates; Male; Memory Disorders; Mice; Rats; Reperfusion Injury | 1995 |