salvianolic-acid-a and Cognitive-Dysfunction

salvianolic-acid-a has been researched along with Cognitive-Dysfunction* in 2 studies

Other Studies

2 other study(ies) available for salvianolic-acid-a and Cognitive-Dysfunction

ArticleYear
Salvianolic acid A relieves cognitive disorder after chronic cerebral ischemia: Involvement of Drd2/Cryab/NF-κB pathway.
    Pharmacological research, 2022, Volume: 175

    Chronic cerebral ischemia (CCI) refers to long-term hypoperfusion of cerebral blood flow with the main clinical manifestations of progressive cognitive impairment. The pathological mechanism of CCI is complex, and there is a lack of effective treatments. Salvianolic acid A (SalA) is a neuroprotective extract of Salvia miltiorrhiza with the effects of anti-inflammation and anti-apoptosis. In this study, the effect of SalA on cognitive function and Drd2/Cryab/NF-κB signaling pathway in rats with CCI was investigated. Morris water maze and open field test were used to observe the effects of SalA on the cognitive function of CCI rats. The pathological changes in the brain were observed by HE, Nissl, and LFB staining. TUNEL staining, enzyme-linked immunosorbent assay, and western blot analysis were used to detect the inflammatory and apoptosis in the cortex and hippocampus. The expression of Drd2/Cryab/NF-κB pathway-related molecules and Drd2 localization were detected by western blotting and dual immunofluorescence, respectively. SH-SY5Y cells were exposed to chronic hypoglycemic and hypoxic injury in vitro, and Drd2 inhibitor haloperidol was used to verify the involved pathway. The results showed that SalA could improve the cognitive function of CCI rats, reduce pathological damage of cortex and hippocampus, inhibit neuroinflammation and apoptosis, and suppress the activation of NF-κB by regulating Drd2/Cryab pathway. And SalA inhibited NF-κB activation and nuclear translocation in SH-SY5Y cells by upregulating Drd2/Cryab pathway, which was reversed by haloperidol interference. In conclusion, SalA could relieve CCI-induced cognitive impairment in rats, at least partly through the Drd2/Cryab/NF-κB pathway.

    Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Cell Hypoxia; Cell Line, Tumor; Chronic Disease; Cognitive Dysfunction; Crystallins; Glucose; Humans; Lactates; Male; Microtubule-Associated Proteins; Neuroinflammatory Diseases; Neuroprotective Agents; NF-kappa B; Rats, Wistar; Receptors, Dopamine D2

2022
Amelioration of cognitive impairments in APPswe/PS1dE9 mice is associated with metabolites alteration induced by total salvianolic acid.
    PloS one, 2017, Volume: 12, Issue:3

    Total salvianolic acid (TSA) is extracted from salvia miltiorrhiza; however, to date, there has been limited characterization of its effects on metabolites in Alzheimer's disease model-APPswe/PS1dE9 mice. The main objective of this study was to investigate the metabolic changes in 7-month-old APPswe/PS1dE9 mice treated with TSA, which protects against learning and memory impairment.. APPswe/PS1dE9 mice were treated with TSA (30 mg/kg·d and 60 mg/kg·d, i.p.) and saline (i.p.) daily from 3.5 months old for 14 weeks; saline-treated (i.p.) WT mice were included as the controls. The effects of TSA on learning and memory were assessed by a series of behavioral tests, including the NOR, MWM and step-through tasks. The FBG and plasma lipid levels were subsequently assessed using the GOPOD and enzymatic color methods, respectively. Finally, the concentrations of Aβ42, Aβ40 and metabolites in the hippocampus of the mice were detected via ELISA and GC-TOF-MS, respectively.. At 7 months of age, the APPswe/PS1dE9 mice treated with TSA exhibited an improvement in the preference index (PI) one hour after the acquisition phase in the NOR and the preservation of spatial learning and memory in the MWM. Treatment with TSA substantially decreased the LDL-C level, and 60 mg/kg TSA decreased the CHOL level compared with the plasma level of the APPswe/PS1dE9 group. The Aβ42 and Aβ40 levels in the hippocampus were decreased in the TSA-treated group compared with the saline-treated APPswe/PS1dE9 group. The regulation of metabolic pathways relevant to TSA predominantly included carbohydrate metabolism, such as sorbitol, glucose-6-phosphate, sucrose-6-phosphate and galactose, vitamin metabolism involved in cholecalciferol and ascorbate in the hippocampus.. TSA induced a remarkable amelioration of learning and memory impairments in APPswe/PS1dE9 mice through the regulation of Aβ42, Aβ40, carbohydrate and vitamin metabolites in the hippocampus and LDL-C and CHOL in the plasma.

    Topics: Alkenes; Amyloid beta-Protein Precursor; Animals; Blood Glucose; Cholesterol, HDL; Cholesterol, LDL; Cognition Disorders; Cognitive Dysfunction; Enzyme-Linked Immunosorbent Assay; Gas Chromatography-Mass Spectrometry; Hippocampus; Male; Mice; Mice, Inbred C57BL; Polyphenols; Triglycerides

2017