salvianolic-acid-a has been researched along with Reperfusion-Injury* in 27 studies
27 other study(ies) available for salvianolic-acid-a and Reperfusion-Injury
Article | Year |
---|---|
Porcine cardiac blood - Salvia miltiorrhiza root alleviates cerebral ischemia reperfusion injury by inhibiting oxidative stress induced apoptosis through PI3K/AKT/Bcl-2/Bax signaling pathway.
Salvia miltiorrhiza Bge. mixed with porcine cardiac blood (PCB-DS) is mainly employed for the treatment of brain ischemia-induced mental disturbances, palpitations and phlegm confusion based on the traditional principle of Menghe medical sect. PCB is the guide to DS and enhances the effect of DS. However, the potential mechanism of PCB-DS preventing cerebral ischemia/reperfusion injury (CIRI) from the perspective of oxidative stress induced cell apoptosis remains unknown.. To investigate the pharmacological activity and molecular mechanism of PCB-DS against CIRI.. DS samples processed with different methods were prepared and UPLC-Q-TOF-MS/MS was employed for qualitative analysis of the respective processing product. The middle cerebral artery occlusion reperfusion model was then established to investigate the pharmacological activities of PCB-DS. Pathological changes in the rat brain were observed by triphenyl tetrazolium chloride (TTC), hematoxylin-eosin, and TUNEL staining. The levels of IL-6, IL-1β, and TNF-α were detected by ELISA to evaluate the inflammatory damage. Metabolomics of cerebrospinal fluid was further used to explore the potential mechanism of PCB-DS in preventing CIRI. Based on this, the levels of oxidative stress-related lactate dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined. The protein levels of PI3K, AKT, Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9 proteins of the cerebral infarct zone were finally measured by western blotting.. Forty-seven components were identified in four processing products. Compared to DS, the content of total aqueous components in PCB-DS was significantly increased including salvianolic acid B isomer, salvianolic acid D, salvianolic acid F, and salvianolic acid H/I/J. Among the DS, DS processed with wine, DS processed with pig blood, and DS processed with porcine cardiac blood, PCB-DS best alleviated the CIRI through the neurological score, brain infarct volume, brain histopathology and the levels of inflammatory factors in the brain. Twenty-five significant metabolites in the cerebrospinal fluid were screened out between the sham and I/R groups. They were mainly involved in the beta-alanine metabolism, histidine metabolism, and lysine degradation, which indicated that PCB-DS may inhibit oxidative stress-induced apoptosis to achieve treating ischemic stroke. The results of biomedical examination showed that PCB-DS could alleviate oxidative damage, significantly downregulate the expression of Bax, cleaved caspase-3 and cleaved caspase-9, and upregulate the expression of p-PI3K, p-AKT, and Bcl-2.. In summary, this study demonstrated that PCB-DS alleviated CIRI and the molecular mechanism may be related to inhibiting the oxidative stress induced apoptosis through PI3K/AKT/Bcl-2/Bax signaling pathway. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Brain Ischemia; Caspase 3; Caspase 9; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Swine; Tandem Mass Spectrometry | 2023 |
Clinical Observation of Salvianolic Acid Combined with Panax Notoginseng Saponins Combined with Basic Nursing Intervention on Cerebral Ischemia-Reperfusion Injury in Rats.
To analyze the clinical observation of salvianolic acid combined with panax notoginseng saponins combined with basic nursing intervention on cerebral ischemia-reperfusion injury in rats and its effects on the expression of apoptosis-related proteins Bcl-2, Bax and caspase-3.. A total of 72 male Wistar rats were randomly divided into sham, ischemia/reperfusion (I/R), edaravone (Eda), salvianolic acid (SA), panax notoginseng saponins (PNS), and SA+PNS group. After administration for 5 days, the neurological function, cerebral infarction volume, brain index, and brain water content of rats were observed. ELISA kit assay was applied to measure the levels of IL-1. SA, PNS and they combined with basic nursing have protective effects on cerebral I/R injury, and the combination with basic nursing has better effects than that used alone. The mechanism may be to regulate the expression of downstream apoptotic proteins by inhibiting the TLR4/NF- Topics: Alkenes; Animals; bcl-2-Associated X Protein; Caspase 3; Female; Humans; Infarction; Interleukin-6; Interleukin-8; Male; NF-kappa B; Panax notoginseng; Polyphenols; Rats; Rats, Wistar; Reperfusion Injury; Saponins; Superoxide Dismutase; Tumor Necrosis Factor-alpha; Water | 2022 |
Salvianolic Acids for Injection alleviates cerebral ischemia/reperfusion injury by switching M1/M2 phenotypes and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia in vivo and in vitro.
After cerebral ischemia/reperfusion injury, pro-inflammatory M1 and anti-inflammatory M2 phenotypes of microglia are involved in neuroinflammation, in which activation of NLRP3 inflammasome and subsequent pyroptosis play essential roles. Salvianolic Acids for Injection (SAFI) is Chinese medicine injection which composed of multiple phenolic acids extracted from Radix Salviae Miltiorrhizae, and has been reported to generate neuroprotective effects after cerebral ischemic insult in clinical and animal studies.. The present study was designed to investigate whether SAFI exerts neuroprotective effects by switching microglial phenotype and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia.. The middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) model in co-cultured primary neurons and primary microglia were utilized. The neuroprotective effect of SAFI was evaluated through measuring neurological deficit scores, neuropathological changes, inflammatory factors, cell phenotype markers, and related proteins of NLRP3 inflammasome/pyroptosis axis.. The results showed that SAFI treatment was able to: (1) produce a significant increase in neurological deficit scores and decrease in infarct volumes, and alleviate histological injury and neuronal apoptosis in cerebral cortex in MCAO/R model; (2) increase neuronal viability and reduce neuronal apoptosis in the OGD model; (3) reshape microglial polarization patterns from M1-like phenotype to M2-like phenotype; (4) inhibit the activation of the NLRP3 inflammasome and the expression of proteins related to NLRP3 inflammasome/pyroptosis axis in vivo and in vitro.. These findings indicate that SAFI exert neuroprotective effect, probably via reducing neuronal apoptosis, switching microglial phenotype from M1 towards M2, and inhibiting NLRP3 inflammasome/pyroptosis axis in microglia. Topics: Alkenes; Amino Acid Transport System ASC; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Brain Ischemia; Calcium-Binding Proteins; Caspase 1; Cell Survival; Cells, Cultured; Disease Models, Animal; Inflammasomes; Injections, Intraperitoneal; Interleukin-1beta; Intracellular Signaling Peptides and Proteins; Male; Microfilament Proteins; Microglia; Neuroprotective Agents; NLR Family, Pyrin Domain-Containing 3 Protein; Phosphate-Binding Proteins; Polyphenols; Pyroptosis; Rats, Sprague-Dawley; Reperfusion Injury | 2021 |
Salvianolic acid A alleviated inflammatory response mediated by microglia through inhibiting the activation of TLR2/4 in acute cerebral ischemia-reperfusion.
Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4) on microglia have been found as important regulators in the inflammatory response during cerebral ischemia/reperfusion (I/R). In China, traditional Chinese medicine Salvia miltiorrhiza (danshen) and its some components are considered to be effective in rescuing cerebral I/R injury through clinical practice.. Here we examined the effect of Salvianolic acid A (SAA), a monomer compound in the water extract of Salvia miltiorrhiza, on TLR2/4 of microglia and its mediated inflammatory injury during cerebral I/R in vivo and in vitro.. For exploring the effect of SAA on cerebral I/R and TLR2/4, classic middle cerebral artery occlusion (MCAO) model and oxygen glucose deprivation / reoxygenation (OGD/R) model of co-culture with primary hippocampal neurons and microglia in vitro were used. Signal pathway research and gene knockout have been applied to further explain its mechanism.. The evaluation indexes of I/R injury included infarct size, edema degree and pathology as well as primary hippocampal neurons and microglia culture, ELISA, western, RT-PCR, HE staining, immunofluorescence, flow cytometry, siRNA gene knockout were also employed.. SAA significantly improved the degree of brain edema and ischemic area in I/R rats accompanied by decreases in levels of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). Pathological staining revealed that SAA could reduce inflammatory cell infiltration and mcirogila activation after reperfusion. Both protein and gene expression of TLR2 and TLR4 in ischemic hemisphere were obviously inhibited by SAA treatment while changes were not found in the non-ischemic hemisphere. In order to further study its mechanism, OGD/R model was used to mimic inflammatory damage of ischemic tissue by co-culturing primary rat hippocampal neurons and microglial cells. It was found that SAA also inhibited the protein and gene expression of TLR2 and TLR4 after OGD/R injury in microglia. After TLR2/4 knockout, the inhibitory effect of SAA on IL-1β and TNF-α levels in cell supernatant and neuron apoptosis were significantly weakened in each dose group. Moreover, expression levels of myeloid differentiation factor 88 (MyD88), NFκB, IL-1β and IL-6 in TLR2/4 mediated inflammatory pathway were reduced with SAA treatment.. SAA could significantly reduce the inflammatory response and injury in cerebral ischemia-reperfusion in vivo and in vitro, and its mechanism may be through the inhibition of TLR2/4 and its related signal pathway. Topics: Animals; Brain Ischemia; Caffeic Acids; Infarction, Middle Cerebral Artery; Inflammation; Lactates; Male; Microglia; Myeloid Differentiation Factor 88; NF-kappa B; Rats; Reperfusion Injury; Signal Transduction; Toll-Like Receptor 2; Toll-Like Receptor 4 | 2021 |
Protective effect of Salvianolic acid A on ischaemia-reperfusion acute kidney injury in rats through protecting against peritubular capillary endothelium damages.
Renal ischaemia-reperfusion (I/R) injury is the most common cause of acute kidney injury (AKI). Peritubular capillary (PTC) endothelium damages are an important pathogenesis during I/R AKI. Salvianolic acid A (SAA) possesses various pharmacological activities. The study investigated whether SAA ameliorated I/R AKI through protecting against PTC endothelium damages. Male Sprague-Dawley rats were divided into 6 groups: control, sham, I/R, and I/R plus SAA (2.5, 5, 10 mg/kg) groups. Rats were subjected to bilateral renal pedicle clamping for 60 min, and killed at 24 hr after reperfusion. Kidney injury, PTC endothelium damages and factors affecting PTC endothelium were evaluated. SAA significantly decreased blood urea nitrogen and serum creatinine levels, and reduced urine kidney injury molecule-1 concentration. Simultaneously, SAA alleviated histological damages, prevented PTC endothelium damages, preserved the density of PTC and improved renal hypoxia. Furthermore, SAA inhibited platelet activation, elevated Klotho protein expression and up-regulated vascular endothelial growth factor A expression. Overall, SAA has protective effects on AKI induced by I/R. Preventing PTC endothelium damages and preserving PTC integrity to improve the renal hypoxia may be the ways for SAA to ameliorate AKI. All these indicate that SAA is likely to be a promising agent for AKI. Topics: Acute Kidney Injury; Animals; Caffeic Acids; Drugs, Chinese Herbal; Endothelium, Vascular; Flow Cytometry; Kidney; Lactates; Male; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2018 |
Salvianolic acid a attenuates limb ischemia/reperfusion injury in skeletal muscle of rats.
Ischemia and reperfusion(I/R) injury can cause complications in applying blood flow treatment for atherosclerosis occlusion syndrome. Platelet activation and inflammatory reaction play a role in the procession of I/R injury. This study was designed to investigate the effects of Salvianolic Acid A(SAA) on limb I/R injury via inhibition of platelet activation and inflammatory reaction. Rats were divided into sham, I/R, I/R+SAA-Low (5mg/kg) and I/R+SAA-high (10mg/kg) groups with a procession of 6h for ischemia and 24h for reperfusion in the femoral artery of the right hind limb, with the exception of the sham group. SAA was injected into the right jugular vein before reperfusion. Reperfusion recovery was monitored by Laser Doppler. HE staining, electron microscopy examination and MDA were used to evaluate the I/R injury. ELISA, Western Blot and RT-PCR were used to measure the levels of P-selectin, IL-8(KC), ICAM-1, TNF-α, IL-1β, CK and NF-κB in plasma or tissues. Pretreatment with SAA attenuated skeletal muscle edema and mitochondria changes, and decreased the levels of MDA and CK. Meanwhile, there was significant reduction of P-selectin, KC, ICAM-1, TNF-α, IL-1β and NF-κB with treatment of SAA. Pretreatment with SAA may attenuate the I/R injury in the skeletal muscle tissues of rats via inhibition of platelet activation and inflammatory reaction. Topics: Animals; Caffeic Acids; Hindlimb; Lactates; Male; Muscle, Skeletal; Proton Pump Inhibitors; Random Allocation; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2018 |
Salvianolic acid A ameliorates renal ischemia/reperfusion injury by activating Akt/mTOR/4EBP1 signaling pathway.
Salvianolic acid A (Sal A) has been shown to prevent and treat ischemic cardiovascular, as well as cerebral vascular diseases. However, little is known about Sal A in renal ischemia/reperfusion (I/R) injury. In this study, a renal I/R injury model in rats and a hypoxia/reoxygenation (H/R) model to damage proximal renal tubular cells (HK-2) were used to assess whether Sal A halts the development and progression of renal I/R injury. As compared with vehicle treatment, Sal A significantly attenuated kidney injury after renal I/R injury, accompanied by decreases in plasma creatinine, blood urea nitrogen levels, the number of apoptosis-positive tubular cells, and kidney oxidative stress. Sal A also activated phosphorylated protein kinase B (p-Akt) and phosphorylated-mammalian target of rapamycin (p-mTOR) compared with vehicle-treated I/R injury rats. In H/R-injured HK-2 cells, Sal A can reduce the levels of reactive oxygen species in a dose-related manner. Similar to the results from in vivo experiments, in vitro Sal A also increased the protein expression of phosphorylated-eukaryotic initiation factor 4E binding protein 1 (p-4EBP1) compared with vehicle. Furthermore, the cytoprotective activity of Sal A was inhibited by LY294002 and rapamycin. These findings indicate that Sal A can ameliorate renal I/R injury and promote tubular cell survival partly via the Akt/mTOR/4EBP1pathway. Sal A could be a candidate compound to prevent ischemic tissue damage. Topics: Acute Kidney Injury; Alkenes; Animals; Apoptosis; Biomarkers; Blood Urea Nitrogen; Carrier Proteins; Cell Line; Creatinine; Cytoprotection; Disease Models, Animal; Humans; Intracellular Signaling Peptides and Proteins; Kidney; Male; Oxidative Stress; Phosphoproteins; Phosphorylation; Polyphenols; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Renal Agents; Reperfusion Injury; Signal Transduction; TOR Serine-Threonine Kinases | 2018 |
Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation.
Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia Miltiorrhiza Bge, a traditional Chinese medicine, which has been used for the treatment of cerebrovascular diseases for centuries. The present study aimed to determine the brain protective effects of SAA against cerebral ischemia reperfusion injury in rats, and to figure out whether SAA could protect the blood brain barrier (BBB) through matrix metallopeptidase 9 (MMP-9) inhibition. A focal cerebral ischemia reperfusion model was induced by middle cerebral artery occlusion (MCAO) for 1.5-h followed by 24-h reperfusion. SAA was administered intravenously at doses of 5, 10, and 20 mg·kg Topics: Animals; Anti-Inflammatory Agents; Blood-Brain Barrier; Brain; Brain Ischemia; Caffeic Acids; Drugs, Chinese Herbal; Humans; Lactates; Male; Matrix Metalloproteinase 9; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Salvia miltiorrhiza; Tissue Inhibitor of Metalloproteinase-1; Transcription Factor RelA | 2018 |
Salvianolic Acid A Protects Against Oxidative Stress and Apoptosis Induced by Intestinal Ischemia-Reperfusion Injury Through Activation of Nrf2/HO-1 Pathways.
Ischemia-reperfusion (I/R) adversely affects the intestinal mucosa. The major mechanisms of I/R are the generation of reactive oxygen species (ROS) and apoptosis. Salvianolic acid A (SalA) is suggested to be an effective antioxidative and antiapoptotic agent in numerous pathological injuries. The present study investigated the protective role of SalA in I/R of the intestine.. Adult male Sprague-Dawley rats were subjected to intestinal I/R injury in vivo. In vitro experiments were performed in IEC-6 cells subjected to hypoxia/ reoxygenation (H/R) stimulation to simulate intestinal I/R. TNF-α, IL-1β, and IL-6 levels were measured using enzyme-linked immunosorbent assay. Malondialdehyde and myeloperoxidase and glutathione peroxidase levels were measured using biochemical analysis. Apoptosis was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining or flow cytometry in vivo and in vitro. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. Western blotting was performed to determine the expression of heme oxygenase-1 (HO-1), Nrf2 and proteins associated with apoptosis. The mRNA expressions of Nrf2 and HO-1 were detected by quantitative real-time polymerase chain reaction in vivo and in vitro.. Malondialdehyde level and myeloperoxidase and glutathione peroxidase, TNF-α, IL-1β, and IL-6 levels group in intestinal tissue decreased significantly in the SalA pretreatment groups compared to the I/R group. SalA markedly abolished intestinal injury compared to the I/R group. SalA significantly attenuated apoptosis and increased Nrf2/HO-1 expression in vivo and in vitro. However, Nrf2 siRNA treatment partially abrogated the above mentioned effects of SalA in H/R-induced ROS and apoptosis in IEC-6 cells.. The present study demonstrated that SalA ameliorated oxidation, inhibited the release of pro-inflammatory cytokines and alleviated apoptosis in I/R-induced injury and that these protective effects may partially occur via regulation of the Nrf2/ HO-1 pathways. Topics: Animals; Apoptosis; Caffeic Acids; Caspase 3; Cytokines; Gene Expression Regulation; Heme Oxygenase-1; Intestinal Mucosa; Intestines; Lactates; Male; Malondialdehyde; NF-E2-Related Factor 2; Oxidative Stress; Peroxidase; Protective Agents; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction | 2018 |
Angioedema and Hemorrhage After 4.5-Hour tPA (Tissue-Type Plasminogen Activator) Thrombolysis Ameliorated by T541 via Restoring Brain Microvascular Integrity.
Topics: Alkenes; Animals; Antigens, CD; Astragalus Plant; Brain; Brain Edema; Cadherins; Carotid Artery Thrombosis; Cell Adhesion Molecules; Cerebrovascular Circulation; Claudin-5; Collagen Type IV; Disease Models, Animal; Drug Combinations; Drugs, Chinese Herbal; Electron Transport Complex I; Electron Transport Complex II; Electron Transport Complex IV; Intracranial Hemorrhages; Laminin; Male; Mice; Occludin; Panax notoginseng; Polyphenols; Receptors, Cell Surface; Reperfusion Injury; Saponins; Tissue Plasminogen Activator; Zonula Occludens-1 Protein | 2018 |
Pharmacokinetic and metabolomic analyses of the neuroprotective effects of salvianolic acid A in a rat ischemic stroke model.
Salvianolic acid A (SAA), a water-soluble phenolic acid isolated from the root of Dan Shen, displays distinct antioxidant activity and effectiveness in protection against cerebral ischemia/reperfusion (I/R) damage. However, whether SAA can enter the central nervous system and exert its protective effects by directly targeting brain tissue remains unclear. In this study, we evaluated the cerebral protection of SAA in rats subjected to transient middle cerebral artery occlusion (tMCAO) followed by reperfusion. The rats were treated with SAA (5, 10 mg/kg, iv) when the reperfusion was performed. SAA administration significantly decreased cerebral infarct area and the brain water content, attenuated the neurological deficit and pathology, and enhanced the anti-inflammatory and antioxidant capacity in tMCAO rats. The concentration of SAA in the plasma and brain was detected using LC-MS/MS. A pharmacokinetic study revealed that the circulatory system exposure to SAA was equivalent in the sham controls and I/R rats, but the brain exposure to SAA was significantly higher in the I/R rats than in the sham controls (fold change of 9.17), suggesting that the enhanced exposure to SAA contributed to its cerebral protective effect. Using a GC/MS-based metabolomic platform, metabolites in the serum and brain tissue were extracted and profiled. According to the metabolomic pattern of the tissue data, SAA administration significantly modulated the I/R-caused perturbation of metabolism in the brain to a greater extent than that in the serum, demonstrating that SAA worked at the brain tissue level rather than the whole circulation system. In conclusion, a larger amount of SAA enters the central nervous system in ischemia/reperfusion rats to facilitate its protective and regulatory effects on the perturbed metabolism. Topics: Animals; Biological Availability; Brain; Caffeic Acids; Chromatography, Liquid; Cytoprotection; Disease Models, Animal; Gas Chromatography-Mass Spectrometry; Infarction, Middle Cerebral Artery; Injections, Intravenous; Lactates; Male; Metabolomics; Neuroprotective Agents; Rats, Sprague-Dawley; Reperfusion Injury; Tandem Mass Spectrometry | 2017 |
Salvianolic Acids for Injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia.
Inflammatory reactions induced by microglia in the brain play crucial roles in ischemia/reperfusion (I/R) cerebral injuries. Microglia activation has been shown to be closely related to TLR4/NF-κB signal pathways. Salvianolic acids for injection (SAFI) have been used in clinical practice to treat ischemic stroke with reported neuroprotective effects; however, the underlying mechanisms are still uncertain.. First, we studied the effect of SAFI on inflammatory responses in LPS-stimulated BV-2 microglia. Then, to discover whether the beneficial in vitro effects of SAFI lead to in vivo therapeutic effects, an MCAO (Middle cerebral artery occlusion) rat model was further employed to elucidate the probable mechanism of SAFI in treating ischemic stroke. Rats in the SAFI group were given SAFI (23 or 46mg/kg) before I/R injury.. The results showed that SAFI treatment significantly decreased neuroinflammation and the infarction volume compared with the vehicle group. Activation of microglia cells was reduced, and TLR4/NF-κB signals, which were markedly inhibited by SAFI treatment in ischemic hemisphere, were accompanied by reduced expression and release of cytokines IL-1β and IL-6.. This study provides evidence that SAFI effectively protects the brain after cerebral ischemia, which may be caused by attenuating inflammation in microglia. Topics: Alkenes; Animals; Brain Ischemia; Disease Models, Animal; Dose-Response Relationship, Drug; Infarction, Middle Cerebral Artery; Inflammation; Interleukin-1beta; Interleukin-6; Male; Microglia; Neuroprotective Agents; NF-kappa B; Polyphenols; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Stroke; Toll-Like Receptor 4 | 2017 |
Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice.
Salvianolic acid A (SAA) is obtained from Chinese herb Salviae Miltiorrhizae Bunge (Labiatae), has been reported to have the protective effects against cardiovascular and neurovascular diseases.. The aim of present study was to investigate the relationship between the effectiveness of SAA against neurovascular injury and its effects on calpain activation and endothelial nitric oxide synthase (eNOS) uncoupling.. SAA or vehicle was given to C57BL/6 male mice for seven days before the occlusion of middle cerebral artery (MCAO) for 60min.. High-resolution positron emission tomography scanner (micro-PET) was used for small animal imaging to examine glucose metabolism. Rota-rod time and neurological deficit scores were calculated after 24h of reperfusion. The volume of infarction was determined by Nissl-staining. The calpain proteolytic activity and eNOS uncoupling were determined by western blot analysis.. SAA administration increased glucose metabolism and ameliorated neuronal damage after brain ischemia, paralleled with decreased neurological deficit and volume of infarction. In addition, SAA pretreatment inhibited eNOS uncoupling and calpain proteolytic activity. Furthermore, SAA inhibited peroxynitrite (ONOO Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Calpain; Drugs, Chinese Herbal; Infarction, Middle Cerebral Artery; Lactates; Male; Mice, Inbred C57BL; Neuroprotective Agents; Nitric Oxide Synthase Type III; Phosphorylation; Phytotherapy; Reperfusion Injury; Salvia miltiorrhiza; Up-Regulation | 2017 |
[Salvianolic acid A alleviate the brain damage in rats after cerebral ischemia-reperfusion through Nrf2/HO-1 pathway].
The aim of present study is to investigate the protective effects and mechanism of salvianolic acid A (SAA) on cerebral ischemia-reperfusion injury in rats. The model was established with middle cerebral artery occlusion and reperfusion (MCAO/R) with ischemia for 1.5 h and reperfusion for 24 h in adult male SD rats. After the behavior assessment, TTC assay was used to calculate the infarct volume of rat brain; the distribution of Nrf2 in nuclear and cytoplasm and expression of HO-1 were detected by Western blot. The PC12 cells injury model was established with oxygen-glucose deprivation for 6 h and reintroduction for 24 h. Cell viability was determined with MTT assay, and the expression of Nrf2 and HO-1 were detected through immunofluorescence staining. The mechanisms were investigated in PC12 cells with Nrf2 knocking down by siRNA. SAA (10 and 20 mg·kg(-1)) significantly reduced the neuronal damage in MCAO/R model, and SAA(0.5 and 5 μmol·L(-1)) increased cell viability in PC12 cells injury model. Meanwhile, the nuclear translocation of Nrf-2 and the expression of HO-1 were increased in PC12 cell and rats brain. SAA exhibited anti-cerebral ischemia- reperfusion effects. The mechanism may be related to activation of Nrf2/HO-1 signaling pathway, which promotes the synthesis and nuclear translocation of Nrf2 to enhance the expression of the antioxidant protein HO-1. Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Heme Oxygenase (Decyclizing); Infarction, Middle Cerebral Artery; Lactates; Male; Neuroprotective Agents; NF-E2-Related Factor 2; Oxidative Stress; PC12 Cells; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction | 2016 |
Neuroprotective Effect of Salvianolic Acids against Cerebral Ischemia/Reperfusion Injury.
This study investigated the neuroprotective effect of salvianolic acids (SA) against ischemia/reperfusion (I/R) injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43) via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and also evaluated the morphology of astrocyte mitochondria with transmission electron microscopy. In vivo, we determined the cerebral infarction volume and measured superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. Additionally, mtCx43, p-mtCx43, AKT, and p-AKT levels were determined. In vitro, we found that I/R injury induced apoptosis, decreased cell mitochondrial membrane potential (MMP), and damaged mitochondrial morphology in astrocytes. In vivo, we found that I/R injury resulted in a large cerebral infarction, decreased SOD activity, and increased MDA expression. Additionally, I/R injury reduced both the p-mtCx43/mtCx43 and p-AKT/AKT ratios. We reported that both in vivo and in vitro, SA ameliorated the detrimental outcomes of the I/R. Interestingly, co-administering an inhibitor of the PI3K/AKT pathway blunted the effects of SA. SA represents a potential treatment option for cerebral infarction by up-regulating mtCx43 through the PI3K/AKT pathway. Topics: Alkenes; Animals; Apoptosis; Astrocytes; Blotting, Western; Brain Ischemia; Infarction, Middle Cerebral Artery; Male; Membrane Potential, Mitochondrial; Mitochondria; Neuroprotective Agents; Polyphenols; Rats; Rats, Wistar; Reperfusion Injury; Signal Transduction | 2016 |
Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice.
Salvianolic acid A (SalA), a chemical type of caffeic acid trimer, has drawn great attention for its potent bioactivities against ischemia-induced injury both in vitro and in vivo. In this study, we evaluated SalA's protective effects against acute ischemic stroke by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries in mice. Treatment of the mice with SalA (50 and 100μg/kg, i.v.) at 2h after MCAO enhanced their survival rate, improved their moving activity, and ameliorated the severity of brain infarction and apoptosis seen in the mice by diminishing pathological changes such as the extensive breakdown of the blood-brain barrier (BBB), nitrosative stress, and the activation of an inflammatory transcriptional factor p65 nuclear factor-kappa B (NF-κB) and a pro-apoptotic kinase p25/Cdk5. SalA also intensively limited cortical infarction and promoted the expression of neurogenesis protein near the peri-infarct cortex and subgranular zone of the hippocampal dentate gyrus by compromising the activation of GSK3β and p25/Cdk5, which in turn upregulated β-catenin, doublecortin (DCX), and Bcl-2, most possibly through the activation of PI3K/Akt signaling via the upregulation of brain-derived neurotrophic factor. We conclude that SalA blocks inflammatory responses by impairing NF-κB signaling, thereby limiting inflammation/nitrosative stress and preserving the integrity of the BBB; SalA also concomitantly promotes neurogenesis-related protein expression by compromising GSK3β/Cdk5 activity to enhance the expression levels of β-catenin/DCX and Bcl-2 for neuroprotection. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Apoptosis; beta Catenin; Blood-Brain Barrier; Brain Ischemia; Brain-Derived Neurotrophic Factor; Caffeic Acids; Cyclin-Dependent Kinase 5; Disease Models, Animal; Doublecortin Domain Proteins; Doublecortin Protein; Drug Administration Schedule; Gene Expression Regulation; Glycogen Synthase Kinase 3 beta; Injections, Intravenous; Lactates; Male; Mice; Mice, Inbred ICR; Microtubule-Associated Proteins; Neurogenesis; Neuropeptides; Proto-Oncogene Proteins c-bcl-2; Reperfusion Injury; Signal Transduction; Stroke; Survival Analysis; Transcription Factor RelA | 2016 |
SalA attenuates ischemia/reperfusion-induced endothelial barrier dysfunction via down-regulation of VLDL receptor expression.
Salvianolic acid A (SalA) has been shown to confer robust protection against endothelial injury. VLDL receptor is expressed at high levels on the endothelial surface, however its biological effect on endothelial cells has not yet been completely elucidated. Here, we investigated molecular effects of SalA on endothelial VLDL expression and barrier dysfunction under conditions of ischemia/reperfusion (IS/RP).. Human umbilical vein endothelial cells (HUVECs) treated with SalA were subjected to IS/RP stimulation. Endothelial permeability, ZO-1 distribution, actin cytoskeleton reorganization, and intracellular reactive oxygen species (ROS) generation were examined. The mRNA levels were tested by real-time RT-PCR and the protein levels were determined by immunoblot analysis.. Pretreatment of HUVECs with SalA markedly attenuated IS/RP-induced endothelial hyperpermeability, discontinuous ZO-1 staining, actin stress fiber formation, and intracellular ROS generation. IS/RP activated p38 MAPK signaling and enhanced VLDL receptor expression, and inactivation of p38 MAPK abolished increase of VLDL receptor expression. Furthermore, siRNA experiments showed that VLDL receptor was a crucial mediator of endothelial barrier dysfunction and intracellular ROS generation induced by IS/RP. Importantly, SalA effectively suppressed IS/RP-induced activation of p38 MAPK signaling and increase of VLDL receptor expression.. These results for the first time demonstrated that SalA protected against IS/RP-induced endothelial barrier dysfunction through suppression of VLDL receptor expression. Topics: Alkenes; Down-Regulation; Endothelium, Vascular; Human Umbilical Vein Endothelial Cells; Humans; MAP Kinase Signaling System; p38 Mitogen-Activated Protein Kinases; Polyphenols; Receptors, LDL; Reperfusion Injury; RNA, Messenger | 2014 |
Role of NADPH oxidase in total salvianolic acid injection attenuating ischemia-reperfusion impaired cerebral microcirculation and neurons: implication of AMPK/Akt/PKC.
TSI is a new drug derived from Chinese medicine for treatment of ischemic stroke in China. The aim of this study was to verify the therapeutic effect of TSI in a rat model of MCAO, and further explore the mechanism for its effect.. Male Sprague-Dawley rats were subjected to right MCAO for 60 minutes followed by reperfusion. TSI (1.67 mg/kg) was administrated before reperfusion via femoral vein injection. Twenty-four hours after reperfusion, the fluorescence intensity of DHR 123 in, leukocyte adhesion to and albumin leakage from the cerebral venules were observed. Neurological scores, TTC staining, brain water content, Nissl staining, TUNEL staining, and MDA content were assessed. Bcl-2/Bax, cleaved caspase-3, NADPH oxidase subunits p47(phox)/p67(phox)/gp91(phox), and AMPK/Akt/PKC were analyzed by Western blot.. TSI attenuated I/R-induced microcirculatory disturbance and neuron damage, activated AMPK, inhibited NADPH oxidase subunits membrane translocation, suppressed Akt phosphorylation, and PKC translocation.. TSI attenuates I/R-induced brain injury in rats, supporting its clinic use for treatment of acute ischemic stroke. The role of TSI may benefit from its antioxidant activity, which is most likely implemented via inactivation of NADPH oxidase through a signaling pathway implicating AMPK/Akt/PKC. Topics: Alkenes; AMP-Activated Protein Kinases; Animals; Apoptosis; Capillary Permeability; Cerebral Infarction; Drugs, Chinese Herbal; Infarction, Middle Cerebral Artery; Leukocytes; Lipid Peroxidation; Male; Microcirculation; Movement Disorders; NADPH Oxidases; Nerve Tissue Proteins; Neurons; Phosphorylation; Polyphenols; Protein Kinase C; Protein Transport; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction | 2014 |
The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.
The purpose of this study was to observe the effects of salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (±dp/dtmax), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I/R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation. Topics: Alkenes; Animals; Apoptosis; Blood Pressure; Blotting, Western; Cardiotonic Agents; Dual-Specificity Phosphatases; Heart Function Tests; Heart Rate; Ischemic Preconditioning, Myocardial; MAP Kinase Signaling System; Molecular Structure; Myocytes, Cardiac; Polyphenols; Rats; Reperfusion Injury | 2014 |
Blocking effect of salvianolic acid A on calcium channels in isolated rat ventricular myocytes.
To study the effect of salvianolic acid A (SAA) on L-type calcium current (I-CaL) in isolated ventricular myocytes of Sprague-Dawley rats.. SAA powder was dissolved in normal Tyrode's solution to reach the concentrations of 1, 10, 100, and 1000 μmol/L. The traditional whole-cell patch-clamp recording technique was employed to evaluate the effects of SAA on I-CaL in single ventricular myocytes which were prepared by Langendorff perfusion apparatus from Sprague-Dawley rats.. SAA (1, 10, 100, and 1000 μmol/L) inhibited I-CaL peak value by 16.23%±1.3% (n=6, P<0.05), 22.9%±3.6% (n=6, P<0.05), 53.4%±3.0% (n=8, P<0.01), and 62.26%±2.9% (n=6, P<0.01), respectively. SAA reversibly inhibited I-CaL in a dose-dependent manner and with a half-blocking concentration (IC(50)) of 38.3 μmol/L. SAA at 100 μmol/L elevated the I-V curve obviously, and shifted the half-active voltage (V(0.5)) from (-15.78±0.86) mV to (-11.24 ±0.77) mV (n=6, P<0.05) and the slope (K) from 5.33±0.74 to 4.35±0.74 (n=6, P>0.05). However, it did not alter the shapes of I-V curve, steady-state inactivation curve, or recovery from inactivation curve.. SAA inhibited I-CaL in a dose-dependent manner. It shifted the steady-state activation curve to a more positive voltage, which indicated that the drug affected the activated state of calcium channels, and suggested that the Ca(2+) antagonistic effect of SAA be beneficial in the treatment of myocardial ischemia reperfusion injury. Topics: Animals; Caffeic Acids; Calcium Channel Blockers; Calcium Channels, L-Type; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Lactates; Myocardial Ischemia; Myocytes, Cardiac; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2012 |
Ischemia/reperfusion-induced MKP-3 impairs endothelial NO formation via inactivation of ERK1/2 pathway.
Mitogen-activated protein kinase phosphatases (MKPs) are a family of dual-specificity phosphatases. Endothelial cells express multiple MKP family members, such as MKP-3. However, the effects of MKP-3 on endothelial biological processes have not yet been fully elucidated. Here, we address the association between MKP-3 and endothelial Nitric oxide (NO) formation under ischemia/reperfusion (IS/RP) condition. Human umbilical vein endothelial cells (HUVECs) were subjected to IS/RP treatment. The MKP-3 expression and NO formation were examined. IS/RP induced endothelial MKP-3 expression and inhibited eNOS expression and NO formation, accompanied by an increase of endothelial apoptosis. The siRNA experiments showed that MKP-3 was an important mediator in impairing eNOS expression and NO production in endothelial cells. Transfection of HUVECs with constitutively active ERK plasmids suggested that the above mentioned effect of MKP-3 was via inactivation of ERK1/2 pathway. Furthermore, impairment of eNOS expression was restored by treatment of histone deacetylase (HDAC) inhibitor and related to histone deacetylation and recruitment of HDAC1 to the eNOS promoter. Finally, Salvianolic acid A (SalA) markedly attenuated induction of MKP-3 and inhibition of eNOS expression and NO formation under endothelial IS/RP condition. Overall, these results for the first time demonstrated that IS/RP inhibited eNOS expression by inactivation of ERK1/2 and recruitment of HDAC1 to the gene promoter, leading to decreased NO formation through a MKP-3-dependent mechanism in endothelial cells, and SalA has therapeutic significance in protecting endothelial cells from impaired NO formation in response to IS/RP. Topics: Caffeic Acids; Dual Specificity Phosphatase 6; Enzyme Induction; Histone Deacetylase 1; Human Umbilical Vein Endothelial Cells; Humans; Lactates; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Nitric Oxide; Nitric Oxide Synthase Type III; Phosphorylation; Promoter Regions, Genetic; Reperfusion Injury; Signal Transduction; Up-Regulation | 2012 |
Cerebral protection of salvianolic acid A by the inhibition of granulocyte adherence.
Ischemic stroke is one of the most common causes of death and disability that is induced by ischemia reperfusion (IR). Granulocyte adherence has been proven to be a principal cause of IR. Salvianolic acid A (Sal A) is one of the major active components of Danshen, a Chinese herbal medicine used for the treatment of cardiovascular and cerebrovascular diseases, such as ischemic stroke. Some experimental studies have shown the strong cerebral protection effect of Sal A. However, little information is available about the effect of Sal A on granulocyte adherence to brain micro-vascular endothelial cells (BMEC). Therefore, the aim of the present study was to investigate the effect of Sal A on the leukocyte adhesion rate and the intercellular cell adhesion molecule-1 (ICAM-1) expression in BMEC injured by hypoxia/reoxygenation (H/R), using a rheometer, qRT-PCR, and flow cytometry (FCM). The results of the adhesion rate gathered by the rheometer showed that Sal A could remarkably inhibit the adherence of granulocytes on BMEC in the case of H/R injury. Moreover, PCR and FCM results showed that Sal A could decrease the expression of ICAM-1 on BMEC on the gene and protein levels. In conclusion, the study demonstrated that the inhibition of granulocyte adherence is one of the targets of Sal A in the treatment of ischemic stroke. Meanwhile, Sal A inhibits of granulocyte adherence by decreasing the expression of ICAM-1 in BMEC. Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Cell Adhesion; Drugs, Chinese Herbal; Endothelial Cells; Gene Expression; Granulocytes; Intercellular Adhesion Molecule-1; Lactates; Phytotherapy; Rats; Reperfusion Injury; Salvia miltiorrhiza; Stroke | 2011 |
Salvianolic acid A demonstrates cardioprotective effects in rat hearts and cardiomyocytes after ischemia/reperfusion injury.
Salvianolic acid A (Sal A), the water-soluble component from the root of the Salvia miltiorrhiza plant, possesses antioxidant, antiproliferative, and antiplatelet properties. However, whether it plays a role in the protection against ischemia-reperfusion (I/R) injury in rat hearts has yet to be elucidated. In the present study, we tested cell viability, shortening amplitude, necrosis, apoptosis, and the expression levels of Akt, phosphorylated Akt, Bcl-2, Bax, and caspase-3 after 3-hour simulated ischemia and 2- or 6-hour simulated reperfusion in cardiomyocytes. We further observed the contractile function and infarct size in isolated hearts after they were subjected to global 30-minute ischemia and 120-minute reperfusion. Pretreatment with Sal A markedly increased cell viability and shortening amplitude while reducing evidence of necrosis and apoptosis in the cells. In addition, the expression of Bcl-2 was upregulated and Bax was downregulated, thereby increasing the Bcl-2/Bax ratio. Sal A inhibited the activation of caspase-3 as well. The results also showed that Sal A significantly increased phosphorylation of Akt and that this phosphorylation can be partially inhibited by phosphoinositide 3-kinase/Akt inhibitor. Furthermore, Sal A improved I/R-induced myocardial contractile function and reduced infarct size. In summary, our results showed that Sal A prevents I/R-induced myocardial damage by reducing necrosis and apoptosis in isolated rat hearts and cardiomyocytes. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Caffeic Acids; Cardiotonic Agents; Caspase 3; Cell Shape; Cell Survival; Heart; Heart Rate; In Vitro Techniques; L-Lactate Dehydrogenase; Lactates; Male; Myocardial Contraction; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Necrosis; Perfusion; Phosphorylation; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Ventricular Dysfunction, Left | 2011 |
Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats.
Excitatory amino acid toxicity, oxidative stress, intracellular calcium overload, as well as inflammation and apoptosis are involved in the pathological process after cerebral ischemic reperfusion injury. Picrodide 2 could inhibit neuronal apoptosis and play anti-oxidant and anti-inflammation role in cerebral ischemia/reperfusion injuries, but the exact mechanism is not very clear. This study aims to explore the anti-inflammation mechanism of picroside 2 in cerebral ischemic reperfusion injury in rats.. The middle cerebral artery occlusion reperfusion models were established with intraluminal thread methods in 90 adult healthy female Wistar rats. Picroside 2 and salvianic acid A sodium were respectively injected from tail vein at the dosage of 10 mg/kg for treatment. The neurobehavioral function was evaluated with Bederson's test and the cerebral infarction volume was observed with tetrazolium chloride (TTC) staining. The apoptotic cells were counted by in situ terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) assay. The immunohistochemistry stain was used to determine the expressions of toll-like receptor 4 (TLR4), nuclear transcription factor kappaB (NFkappaB) and tumor necrosis factor alpha (TNFalpha). The concentrations of TLR4, NFkappaB and TNFalpha in brain tissue were determined by enzyme linked immunosorbent assay (ELISA).. After cerebral ischemic reperfusion, the rats showed neurobehavioral function deficit and cerebral infarction in the ischemic hemisphere. The number of apoptotic cells, the expressions and the concentrations in brain tissue of TLR4, NFkappaB and TNFalpha in ischemia control group increased significantly than those in the sham operative group (P < 0.01). Compared with the ischemia control group, the neurobehavioral scores, the infarction volumes, the apoptotic cells, the expressions and concentrations in brain tissue of TLR4, NFkappaB and TNFalpha were obviously decreased both in the picroside 2 and salvianic acid A sodium groups (P < 0.01). There was no statistical difference between the two treatment groups in above indexes (P > 0.05).. Picroside 2 could down-regulate the expressions of TLR4, NFkappaB and TNFalpha to inhibit apoptosis and inflammation induced by cerebral ischemic reperfusion injury and improve the neurobehavioral function of rats. Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Brain; Brain Ischemia; Caffeic Acids; Cinnamates; Disease Models, Animal; Encephalitis; Female; Glucosides; Infarction, Middle Cerebral Artery; Iridoid Glucosides; Lactates; Neuropsychological Tests; NF-kappa B; Random Allocation; Rats; Rats, Wistar; Reperfusion Injury; Toll-Like Receptor 4; Treatment Outcome; Tumor Necrosis Factor-alpha | 2010 |
Total salvianolic acid improves ischemia-reperfusion-induced microcirculatory disturbance in rat mesentery.
To investigate the effect of total salvianolic acid (TSA) on ischemia-reperfusion (I/R)-induced rat mesenteric microcirculatory dysfunctions.. Male Wistar rats were randomly distributed into 5 groups (n = 6 each): Sham group and I/R group (infused with saline), TSA group, TSA + I/R group and I/R + TSA group (infused with TSA, 5 mg/kg per hour). Mesenteric I/R were conducted by a ligation of the mesenteric artery and vein (10 min) and subsequent release of the occlusion. TSA was continuously infused either starting from 10 min before the ischemia or 10 min after reperfusion. Changes in mesenteric microcirculatory variables, including diameter of venule, velocity of red blood cells in venule, leukocyte adhesion, free radicals released from venule, albumin leakage and mast cell degranulation, were observed through an inverted intravital microscope. Meanwhile, the expression of adhesion molecules CD11b/CD18 on neutrophils was evaluated by flow cytometry. Ultrastructural evidence of mesenteric venules damage was assessed after microcirculation observation.. I/R led to multiple responses in mesenteric post-capillary venules, including a significant increase in the adhesion of leukocytes, production of oxygen radicals in the venular wall, albumin efflux and enhanced mast cell degranulation in vivo. All the I/R-induced manifestations were significantly reduced by pre- or post-treatment with TSA, with the exception that the I/R-induced increase in mast cell degranulation was inhibited only by pre-treatment with TSA. Moreover, pre- or post-treatment with TSA significantly attenuated the expression of CD11b/CD18 on neutrophils, reducing the increase in the number of caveolae in the endothelial cells of mesentery post-capillary venules induced by I/R.. The results demonstrated that TSA protects from and ameliorates the microcirculation disturbance induced by I/R, which was associated with TSA inhibiting the production of oxygen-free radicals in the venular wall and the expression of CD11b/CD18 on neutrophils. Topics: Animals; Benzofurans; Blood Flow Velocity; Caffeic Acids; CD11b Antigen; CD18 Antigens; Cell Degranulation; Cinnamates; Lactates; Leukocytes; Male; Mast Cells; Mesentery; Microcirculation; Neutrophils; Phenylpropionates; Plant Extracts; Random Allocation; Rats; Rats, Wistar; Reperfusion Injury; Venules | 2010 |
Protective effects of salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice.
To investigate the protective effects of Salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice and the relationship between antioxidant activity of salvianolic acid A and its protective effects on brain injury caused by reperfusion.. Step down and step through tests were used to examine the function of memory in the model of impairment of memory induced by cerebral ischemia-reperfusion in mice.. Salvianolic acid A (Sal A) at the dosage of 3 and 10 mg.kg-1 i.v. could improve the impaired memory function induced by cerebral ischemia-reperfusion as shown in step down and step through tests. In step down tests, the mean number of errors of Sal A 3 and 10 mg.kg-1 treated group were 1.29, 1.15 and that of control group was 3.8 (P < 0.01). The latencies of these tests were longer than those of the control group. Meanwhile, 3 and 10 mg.kg of Sal A i.v. were found to reduce the malondialdehyde contents in the cortex, hippocampus and corpus striatum of cerebral ischemia-reperfusion rat in vivo. Sal A 10-100 nmol.L-1 was also shown to inhibit lipid-peroxidation of the brain and scavenge the free hydroxyl radicals in vitro.. These indicate that the ameliorating effect of Sal A on learning and memory impairment caused by cerebral ischemia reperfusion may be related to its anti-oxidant activity. Topics: Animals; Antioxidants; Avoidance Learning; Brain Ischemia; Caffeic Acids; Drugs, Chinese Herbal; Lactates; Lipid Peroxidation; Male; Memory Disorders; Mice; Plant Extracts; Rats; Rats, Wistar; Reperfusion Injury; Salvia miltiorrhiza | 1997 |
[Protective effects of salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice].
In the present experiments, an impairment of memory model was made by cerebral ischemia-reperefusion in mice. Sal A at the dosage of 3 and 10 mg.kg-1 i.v. was shown to improve the impairment of memory function induced by cerebral ischemia-reperefusion in step down and step through tests. In these tests, the number of errors of Sal A treated group was less and the latency was longer than that of control group. Meanwhile, Sal A 3 and 10 mg.kg-1 i.v. was found to reduce the MDA contents in the cortex, hippocampus and striatum of cerebral ischemia-reperfused rats in vivo. Sal A 10-100 nmol.L-1 was shown to inhibit the brain lipid-peroxidation and scavenge the free hydroxyl radical in vitro. These results indicate that the antagonistic effects of Sal A on impairment of learning and memory caused by cerebral ischemia-reperefusion may be related with its anti-oxidant activity. Topics: Animals; Brain; Brain Ischemia; Caffeic Acids; Drugs, Chinese Herbal; Free Radical Scavengers; Lactates; Male; Memory Disorders; Mice; Rats; Reperfusion Injury | 1995 |