Page last updated: 2024-11-04

naloxonazine

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth

Description

naloxonazine: binds irreversibly to opiate receptor sites; structure given in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID9576413
CHEMBL ID1618305
SCHEMBL ID264672
MeSH IDM0106647

Synonyms (20)

Synonym
AB01275526-01
(1s,5r,13r,14z,17s)-14-{2-[(1s,5r,13r,14z,17s)-10,17-dihydroxy-4-(prop-2-en-1-yl)-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7,9,11(18)-trien-14-ylidene]hydrazin-1-ylidene}-4-(prop-2-en-1-yl)-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{
gtpl1677
nsc-612113
naloxonazine
nih-10894
morphinan-6-one, 4,5-epoxy-3,14-dihydroxy-17-(2-propenyl)-, ((5alpha)-4,5-epoxy-3,14-dihydroxy-17-(2-propenyl)morphinan-6-ylidene)hydrazone, (5alpha)-
nsc 612113
HMS2090F22
CHEMBL1618305
unii-bw5w4k4s7z
bw5w4k4s7z ,
SCHEMBL264672
bdbm50135225
1-(1-(3-isothiocyanato)phenyl)cyclohexylpiperidine
HY-137180
CS-0136962
morphinan-6-one, 4,5-epoxy-3,14-dihydroxy-17-(2-propen-1-yl)-, 2-[(5alpha)-4,5-epoxy-3,14-dihydroxy-17-(2-propen-1-yl)morphinan-6-ylidene]hydrazone
morphinan-6-one, 4,5-epoxy-3,14-dihydroxy-17-(2-propenyl)-, [(5alpha)-4,5-epoxy-3,14-dihydroxy-17-(2-propenyl)morphinan-6-ylidene]hydrazone, (5alpha)-
(4as,7e,7as,12bs)-7-[(e)-[(4as,7as,12bs)-4a,9-dihydroxy-3-prop-2-enyl-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ylidene]hydrazinylidene]-3-prop-2-enyl-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-4a,9-dio

Research Excerpts

Dosage Studied

Naloxonazine, a relatively selective mu 1 blocker, at certain dosage (50 micrograms per rabbit, icv) could abolish the analgesia but not the respiratory inhibition produced by MET. Also shifted full morphine dose-response curves to the right.

ExcerptRelevanceReference
") of a 15 mg naltrexone pellet there was a significant shift to the right of the fentanyl dose-response curves for analgesia and lethality."( Evaluation of receptor mechanism mediating fentanyl analgesia and toxicity.
Jang, Y; Yoburn, BC, 1991
)
0.28
" In dose-response studies, beta-FNA antagonized all the actions with similar potencies (ID50 values of 12."( Comparison of naloxonazine and beta-funaltrexamine antagonism of mu 1 and mu 2 opioid actions.
Pasternak, GW; Paul, D; Pick, CG, 1991
)
0.28
" Naloxonazine shifted the supraspinal DAGO dose-response curve 4-fold to the right without changing the curve for spinal DAGO."( Different mu receptor subtypes mediate spinal and supraspinal analgesia in mice.
Bodnar, RJ; Gistrak, MA; Pasternak, GW; Paul, D, 1989
)
0.28
" Naloxonazine (10 mg/kg) shifted the morphine hyperphagia dose-response curve to the right."( Differential sensitivity of opioid-induced feeding to naloxone and naloxonazine.
Arjune, D; Bodnar, RJ; Hahn, EF; Mann, PE; Pasternak, GW; Romero, MT, 1988
)
0.27
" Full dose-response curves show a 4-fold shift to the right (P less than ."( Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms.
Ling, GS; Lockhart, SH; Pasternak, GW; Spiegel, K, 1985
)
0.27
" Naloxonazine also shifted full morphine dose-response curves to the right."( Antagonism of morphine analgesia by intracerebroventricular naloxonazine.
Bodnar, RJ; Pasternak, GW; Portzline, T; Simone, DA, 1986
)
0.27
" Naloxonazine, a relatively selective mu 1 blocker, at certain dosage (50 micrograms per rabbit, icv), could abolish the analgesia but not the respiratory inhibition produced by MET."( The analgesic and respiratory depressant actions of metorphamide in mice and rabbits.
Chang, JK; He, XP; Lu, WX; Niu, SF; Weber, E; Xu, SF; Xu, WM; Zhang, AZ; Zhou, KR, 1985
)
0.27
" TAPA dose-response curve for antinociception."( Selective antagonism by naloxonazine of antinociception by Tyr-D-Arg-Phe-beta-Ala, a novel dermorphin analogue with high affinity at mu-opioid receptors.
Hayashi, T; Kisara, K; Kutsuwa, M; Sakurada, C; Sakurada, S; Sakurada, T; Sato, T; Takeda, S; Tan-No, K; Yuki, M, 2000
)
0.31
") that was inactive against DAMGO, did not affect endomorphin-1-induced antinociception but shifted the dose-response curve of endomorphin-2 3-fold to the right."( Differential antagonism of endomorphin-1 and endomorphin-2 spinal antinociception by naloxonazine and 3-methoxynaltrexone.
Fujimura, T; Hayashi, T; Kastin, AJ; Murayama, K; Sakurada, C; Sakurada, S; Sakurada, T; Takeshita, M; Yonezawa, A; Yuhki, M; Zadina, JE, 2000
)
0.31
" and co-administration of 3-methylnaltrexone shifted the dose-response curves for endomorphin-2 induced antinociception to the right by 4-fold."( Differential antagonism of endomorphin-1 and endomorphin-2 supraspinal antinociception by naloxonazine and 3-methylnaltrexone.
Fujimura, T; Hayashi, T; Kastin, AJ; Murayama, K; Sakurada, C; Sakurada, S; Sakurada, T; Sato, T; Takeshita, M; Yonezawa, A; Yuhki, M; Zadina, JE, 2002
)
0.31
") from saline on a fixed-ratio schedule (FR 10), and ethanol dose-response tests were conducted once rats had acquired ethanol-saline discrimination."( Micro1-opioid antagonist naloxonazine alters ethanol discrimination and consumption.
Holloway, F; Mhatre, M, 2003
)
0.32
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (3)

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Mu-type opioid receptorHomo sapiens (human)IC50 (µMol)0.00720.00010.813310.0000AID625163
Mu-type opioid receptorHomo sapiens (human)Ki0.00250.00000.419710.0000AID1268024; AID1268040; AID625163
Delta-type opioid receptorHomo sapiens (human)IC50 (µMol)0.13600.00020.75218.0140AID625161
Delta-type opioid receptorHomo sapiens (human)Ki0.04800.00000.59789.9300AID625161
Kappa-type opioid receptorHomo sapiens (human)IC50 (µMol)0.08500.00001.201110.0000AID625162
Kappa-type opioid receptorHomo sapiens (human)Ki0.03400.00000.362410.0000AID625162
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (52)

Processvia Protein(s)Taxonomy
G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second messengerMu-type opioid receptorHomo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled acetylcholine receptor signaling pathwayMu-type opioid receptorHomo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwayMu-type opioid receptorHomo sapiens (human)
sensory perceptionMu-type opioid receptorHomo sapiens (human)
negative regulation of cell population proliferationMu-type opioid receptorHomo sapiens (human)
sensory perception of painMu-type opioid receptorHomo sapiens (human)
G protein-coupled opioid receptor signaling pathwayMu-type opioid receptorHomo sapiens (human)
behavioral response to ethanolMu-type opioid receptorHomo sapiens (human)
positive regulation of neurogenesisMu-type opioid receptorHomo sapiens (human)
negative regulation of Wnt protein secretionMu-type opioid receptorHomo sapiens (human)
positive regulation of ERK1 and ERK2 cascadeMu-type opioid receptorHomo sapiens (human)
calcium ion transmembrane transportMu-type opioid receptorHomo sapiens (human)
cellular response to morphineMu-type opioid receptorHomo sapiens (human)
regulation of cellular response to stressMu-type opioid receptorHomo sapiens (human)
regulation of NMDA receptor activityMu-type opioid receptorHomo sapiens (human)
neuropeptide signaling pathwayMu-type opioid receptorHomo sapiens (human)
immune responseDelta-type opioid receptorHomo sapiens (human)
G protein-coupled receptor signaling pathwayDelta-type opioid receptorHomo sapiens (human)
G protein-coupled receptor signaling pathway, coupled to cyclic nucleotide second messengerDelta-type opioid receptorHomo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled receptor signaling pathwayDelta-type opioid receptorHomo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwayDelta-type opioid receptorHomo sapiens (human)
adult locomotory behaviorDelta-type opioid receptorHomo sapiens (human)
negative regulation of gene expressionDelta-type opioid receptorHomo sapiens (human)
negative regulation of protein-containing complex assemblyDelta-type opioid receptorHomo sapiens (human)
positive regulation of CREB transcription factor activityDelta-type opioid receptorHomo sapiens (human)
positive regulation of peptidyl-serine phosphorylationDelta-type opioid receptorHomo sapiens (human)
response to nicotineDelta-type opioid receptorHomo sapiens (human)
G protein-coupled opioid receptor signaling pathwayDelta-type opioid receptorHomo sapiens (human)
eating behaviorDelta-type opioid receptorHomo sapiens (human)
regulation of mitochondrial membrane potentialDelta-type opioid receptorHomo sapiens (human)
regulation of calcium ion transportDelta-type opioid receptorHomo sapiens (human)
cellular response to growth factor stimulusDelta-type opioid receptorHomo sapiens (human)
cellular response to hypoxiaDelta-type opioid receptorHomo sapiens (human)
cellular response to toxic substanceDelta-type opioid receptorHomo sapiens (human)
neuropeptide signaling pathwayDelta-type opioid receptorHomo sapiens (human)
immune responseKappa-type opioid receptorHomo sapiens (human)
adenylate cyclase-inhibiting G protein-coupled receptor signaling pathwayKappa-type opioid receptorHomo sapiens (human)
phospholipase C-activating G protein-coupled receptor signaling pathwayKappa-type opioid receptorHomo sapiens (human)
chemical synaptic transmissionKappa-type opioid receptorHomo sapiens (human)
sensory perceptionKappa-type opioid receptorHomo sapiens (human)
locomotory behaviorKappa-type opioid receptorHomo sapiens (human)
sensory perception of painKappa-type opioid receptorHomo sapiens (human)
adenylate cyclase-inhibiting opioid receptor signaling pathwayKappa-type opioid receptorHomo sapiens (human)
response to insulinKappa-type opioid receptorHomo sapiens (human)
positive regulation of dopamine secretionKappa-type opioid receptorHomo sapiens (human)
negative regulation of luteinizing hormone secretionKappa-type opioid receptorHomo sapiens (human)
response to nicotineKappa-type opioid receptorHomo sapiens (human)
G protein-coupled opioid receptor signaling pathwayKappa-type opioid receptorHomo sapiens (human)
maternal behaviorKappa-type opioid receptorHomo sapiens (human)
eating behaviorKappa-type opioid receptorHomo sapiens (human)
response to estrogenKappa-type opioid receptorHomo sapiens (human)
estrous cycleKappa-type opioid receptorHomo sapiens (human)
response to ethanolKappa-type opioid receptorHomo sapiens (human)
regulation of saliva secretionKappa-type opioid receptorHomo sapiens (human)
behavioral response to cocaineKappa-type opioid receptorHomo sapiens (human)
sensory perception of temperature stimulusKappa-type opioid receptorHomo sapiens (human)
defense response to virusKappa-type opioid receptorHomo sapiens (human)
cellular response to lipopolysaccharideKappa-type opioid receptorHomo sapiens (human)
cellular response to glucose stimulusKappa-type opioid receptorHomo sapiens (human)
positive regulation of p38MAPK cascadeKappa-type opioid receptorHomo sapiens (human)
positive regulation of potassium ion transmembrane transportKappa-type opioid receptorHomo sapiens (human)
response to acrylamideKappa-type opioid receptorHomo sapiens (human)
positive regulation of eating behaviorKappa-type opioid receptorHomo sapiens (human)
conditioned place preferenceKappa-type opioid receptorHomo sapiens (human)
neuropeptide signaling pathwayKappa-type opioid receptorHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (12)

Processvia Protein(s)Taxonomy
G-protein alpha-subunit bindingMu-type opioid receptorHomo sapiens (human)
G protein-coupled receptor activityMu-type opioid receptorHomo sapiens (human)
beta-endorphin receptor activityMu-type opioid receptorHomo sapiens (human)
voltage-gated calcium channel activityMu-type opioid receptorHomo sapiens (human)
protein bindingMu-type opioid receptorHomo sapiens (human)
morphine receptor activityMu-type opioid receptorHomo sapiens (human)
G-protein beta-subunit bindingMu-type opioid receptorHomo sapiens (human)
neuropeptide bindingMu-type opioid receptorHomo sapiens (human)
G protein-coupled opioid receptor activityDelta-type opioid receptorHomo sapiens (human)
protein bindingDelta-type opioid receptorHomo sapiens (human)
receptor serine/threonine kinase bindingDelta-type opioid receptorHomo sapiens (human)
G protein-coupled enkephalin receptor activityDelta-type opioid receptorHomo sapiens (human)
neuropeptide bindingDelta-type opioid receptorHomo sapiens (human)
G protein-coupled opioid receptor activityKappa-type opioid receptorHomo sapiens (human)
protein bindingKappa-type opioid receptorHomo sapiens (human)
receptor serine/threonine kinase bindingKappa-type opioid receptorHomo sapiens (human)
dynorphin receptor activityKappa-type opioid receptorHomo sapiens (human)
neuropeptide bindingKappa-type opioid receptorHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (23)

Processvia Protein(s)Taxonomy
endosomeMu-type opioid receptorHomo sapiens (human)
endoplasmic reticulumMu-type opioid receptorHomo sapiens (human)
Golgi apparatusMu-type opioid receptorHomo sapiens (human)
plasma membraneMu-type opioid receptorHomo sapiens (human)
axonMu-type opioid receptorHomo sapiens (human)
dendriteMu-type opioid receptorHomo sapiens (human)
perikaryonMu-type opioid receptorHomo sapiens (human)
synapseMu-type opioid receptorHomo sapiens (human)
plasma membraneMu-type opioid receptorHomo sapiens (human)
neuron projectionMu-type opioid receptorHomo sapiens (human)
plasma membraneDelta-type opioid receptorHomo sapiens (human)
synaptic vesicle membraneDelta-type opioid receptorHomo sapiens (human)
dendrite membraneDelta-type opioid receptorHomo sapiens (human)
presynaptic membraneDelta-type opioid receptorHomo sapiens (human)
axon terminusDelta-type opioid receptorHomo sapiens (human)
spine apparatusDelta-type opioid receptorHomo sapiens (human)
postsynaptic density membraneDelta-type opioid receptorHomo sapiens (human)
neuronal dense core vesicleDelta-type opioid receptorHomo sapiens (human)
plasma membraneDelta-type opioid receptorHomo sapiens (human)
neuron projectionDelta-type opioid receptorHomo sapiens (human)
nucleoplasmKappa-type opioid receptorHomo sapiens (human)
mitochondrionKappa-type opioid receptorHomo sapiens (human)
cytosolKappa-type opioid receptorHomo sapiens (human)
plasma membraneKappa-type opioid receptorHomo sapiens (human)
membraneKappa-type opioid receptorHomo sapiens (human)
sarcoplasmic reticulumKappa-type opioid receptorHomo sapiens (human)
T-tubuleKappa-type opioid receptorHomo sapiens (human)
dendriteKappa-type opioid receptorHomo sapiens (human)
synaptic vesicle membraneKappa-type opioid receptorHomo sapiens (human)
presynaptic membraneKappa-type opioid receptorHomo sapiens (human)
perikaryonKappa-type opioid receptorHomo sapiens (human)
axon terminusKappa-type opioid receptorHomo sapiens (human)
postsynaptic membraneKappa-type opioid receptorHomo sapiens (human)
plasma membraneKappa-type opioid receptorHomo sapiens (human)
neuron projectionKappa-type opioid receptorHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (6)

Assay IDTitleYearJournalArticle
AID1268040Displacement of [3H]DAMGO from human MOR expressed in HEK293 cells preincubated for 1 hr followed by radioligand addition measured after 1 hr by liquid scintillation counting analysis2015Journal of medicinal chemistry, Dec-24, Volume: 58, Issue:24
Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor.
AID547804Selectivity window, ratio of EC50 for BESM cells to EC50 for Trypanosoma cruzi amastigotes infected in BESM cells2010Antimicrobial agents and chemotherapy, Aug, Volume: 54, Issue:8
Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas' disease.
AID1268024Displacement of 2-((1E,3E,5E)-5-(1-Ethyl-3,3-dimethyl-5-sulfoindolin-2-ylidene)-penta-1,3-dien-1-yl)-1-(6-((6-((6S,7R,7aR,12bS)-9-hydroxy-7-methoxy-3-methyl-1,2,3,4,5,6,7,7a-octahydro-4a,7-ethano-4,12-methanobenzofuro[3,2-e]isoquinoline-6-carboxamido)hexy2015Journal of medicinal chemistry, Dec-24, Volume: 58, Issue:24
Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor.
AID547621Cytotoxicity against BESM cells after 88 hrs by HTS assay2010Antimicrobial agents and chemotherapy, Aug, Volume: 54, Issue:8
Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas' disease.
AID547622Antitrypanosomal activity against Trypanosoma cruzi amastigotes infected in BESM cells measured after 88 hrs postinfection by HTS assay2010Antimicrobial agents and chemotherapy, Aug, Volume: 54, Issue:8
Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas' disease.
AID1346330Mouse mu receptor (Opioid receptors)1994Molecular pharmacology, Feb, Volume: 45, Issue:2
Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (197)

TimeframeStudies, This Drug (%)All Drugs %
pre-199033 (16.75)18.7374
1990's71 (36.04)18.2507
2000's59 (29.95)29.6817
2010's32 (16.24)24.3611
2020's2 (1.02)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews4 (2.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other196 (98.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]