Page last updated: 2024-11-13

rimorphin

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

rimorphin: tridecapeptide NH2-Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-COOH from bovine posterior pituitary gland; major leucine enkephalin containing peptide in tissue that contains dynorphin & alpha-neo-endorphin [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID25078261
MeSH IDM0110456
PubMed CID25075991
CHEMBL ID500830
MeSH IDM0110456

Synonyms (25)

Synonym
dynorphin b
83335-41-5
L024014
dynorphin b (1-13)
85006-82-2
Q5319234
gtpl1622
rimorphin
NCGC00163206-01
NCGC00163206-02
CHEMBL500830
dynorphin b (swine)
k41yc3aei8 ,
unii-k41yc3aei8
dynorphin b-oh
bdbm85325
dynorphin b porcine
AKOS024457470
dynorphin b porcine, >=95% (hplc)
rimorphin (ox)
dynorphin b (human)
dynorphin b (ox)
l-threonine, l-tyrosylglycylglycyl-l-phenylalanyl-l-leucyl-l-arginyl-l-arginyl-l-glutaminyl-l-phenylalanyl-l-lysyl-l-valyl-l-valyl-
dynorphin b (rat)
dynorphin b (pig)

Research Excerpts

Effects

ExcerptReferenceRelevance
"Rimorphin (dynorphin B) has been demonstrated to exist together with alpha-neo-endorphin and dynorphin(1-17) (dynorphin A) in the human hypothalamus. "( Rimorphin (dynorphin B) exists together with alpha-neo-endorphin and dynorphin (dynorphin A) in human hypothalamus.
Hayashi, K; Ikeda, Y; Imura, H; Nakao, K; Sakamoto, M; Suda, M; Yoshimasa, T, 1983
)
3.15
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Protein Targets (6)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, TYROSYL-DNA PHOSPHODIESTERASEHomo sapiens (human)Potency44.66840.004023.8416100.0000AID485290
regulator of G-protein signaling 4Homo sapiens (human)Potency0.08440.531815.435837.6858AID504845
thyroid hormone receptor beta isoform aHomo sapiens (human)Potency125.89200.010039.53711,122.0200AID1479
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Mitogen-activated protein kinase 8Homo sapiens (human)EC50 (µMol)0.08700.01000.37381.2400AID381427
Mitogen-activated protein kinase 9Homo sapiens (human)EC50 (µMol)0.08700.01000.37381.2400AID381427
Mitogen-activated protein kinase 10Homo sapiens (human)EC50 (µMol)0.08700.08700.49501.2400AID381427
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (43)

Processvia Protein(s)Taxonomy
JUN phosphorylationMitogen-activated protein kinase 8Homo sapiens (human)
response to UVMitogen-activated protein kinase 8Homo sapiens (human)
negative regulation of apoptotic processMitogen-activated protein kinase 8Homo sapiens (human)
cellular response to lipopolysaccharideMitogen-activated protein kinase 8Homo sapiens (human)
protein phosphorylationMitogen-activated protein kinase 8Homo sapiens (human)
response to oxidative stressMitogen-activated protein kinase 8Homo sapiens (human)
JNK cascadeMitogen-activated protein kinase 8Homo sapiens (human)
JUN phosphorylationMitogen-activated protein kinase 8Homo sapiens (human)
positive regulation of gene expressionMitogen-activated protein kinase 8Homo sapiens (human)
regulation of macroautophagyMitogen-activated protein kinase 8Homo sapiens (human)
peptidyl-serine phosphorylationMitogen-activated protein kinase 8Homo sapiens (human)
peptidyl-threonine phosphorylationMitogen-activated protein kinase 8Homo sapiens (human)
positive regulation of cyclase activityMitogen-activated protein kinase 8Homo sapiens (human)
positive regulation of cell killingMitogen-activated protein kinase 8Homo sapiens (human)
negative regulation of protein bindingMitogen-activated protein kinase 8Homo sapiens (human)
regulation of protein localizationMitogen-activated protein kinase 8Homo sapiens (human)
cellular response to amino acid starvationMitogen-activated protein kinase 8Homo sapiens (human)
cellular response to oxidative stressMitogen-activated protein kinase 8Homo sapiens (human)
cellular response to reactive oxygen speciesMitogen-activated protein kinase 8Homo sapiens (human)
Fc-epsilon receptor signaling pathwayMitogen-activated protein kinase 8Homo sapiens (human)
regulation of circadian rhythmMitogen-activated protein kinase 8Homo sapiens (human)
positive regulation of apoptotic processMitogen-activated protein kinase 8Homo sapiens (human)
negative regulation of apoptotic processMitogen-activated protein kinase 8Homo sapiens (human)
rhythmic processMitogen-activated protein kinase 8Homo sapiens (human)
positive regulation of protein metabolic processMitogen-activated protein kinase 8Homo sapiens (human)
stress-activated MAPK cascadeMitogen-activated protein kinase 8Homo sapiens (human)
cellular response to mechanical stimulusMitogen-activated protein kinase 8Homo sapiens (human)
cellular response to cadmium ionMitogen-activated protein kinase 8Homo sapiens (human)
cellular senescenceMitogen-activated protein kinase 8Homo sapiens (human)
energy homeostasisMitogen-activated protein kinase 8Homo sapiens (human)
positive regulation of NLRP3 inflammasome complex assemblyMitogen-activated protein kinase 8Homo sapiens (human)
response to mechanical stimulusMitogen-activated protein kinase 8Homo sapiens (human)
positive regulation of establishment of protein localization to mitochondrionMitogen-activated protein kinase 8Homo sapiens (human)
protein phosphorylationMitogen-activated protein kinase 9Homo sapiens (human)
JNK cascadeMitogen-activated protein kinase 9Homo sapiens (human)
positive regulation of gene expressionMitogen-activated protein kinase 9Homo sapiens (human)
positive regulation of macrophage derived foam cell differentiationMitogen-activated protein kinase 9Homo sapiens (human)
positive regulation of protein ubiquitinationMitogen-activated protein kinase 9Homo sapiens (human)
positive regulation of proteasomal ubiquitin-dependent protein catabolic processMitogen-activated protein kinase 9Homo sapiens (human)
cellular response to reactive oxygen speciesMitogen-activated protein kinase 9Homo sapiens (human)
Fc-epsilon receptor signaling pathwayMitogen-activated protein kinase 9Homo sapiens (human)
regulation of circadian rhythmMitogen-activated protein kinase 9Homo sapiens (human)
rhythmic processMitogen-activated protein kinase 9Homo sapiens (human)
modulation of chemical synaptic transmissionMitogen-activated protein kinase 9Homo sapiens (human)
protein localization to tricellular tight junctionMitogen-activated protein kinase 9Homo sapiens (human)
cellular response to cadmium ionMitogen-activated protein kinase 9Homo sapiens (human)
positive regulation of podosome assemblyMitogen-activated protein kinase 9Homo sapiens (human)
cellular senescenceMitogen-activated protein kinase 9Homo sapiens (human)
inflammatory response to woundingMitogen-activated protein kinase 9Homo sapiens (human)
apoptotic signaling pathwayMitogen-activated protein kinase 9Homo sapiens (human)
positive regulation of cytokine production involved in inflammatory responseMitogen-activated protein kinase 9Homo sapiens (human)
positive regulation of apoptotic signaling pathwayMitogen-activated protein kinase 9Homo sapiens (human)
protein phosphorylationMitogen-activated protein kinase 10Homo sapiens (human)
signal transductionMitogen-activated protein kinase 10Homo sapiens (human)
JNK cascadeMitogen-activated protein kinase 10Homo sapiens (human)
response to light stimulusMitogen-activated protein kinase 10Homo sapiens (human)
Fc-epsilon receptor signaling pathwayMitogen-activated protein kinase 10Homo sapiens (human)
regulation of circadian rhythmMitogen-activated protein kinase 10Homo sapiens (human)
rhythmic processMitogen-activated protein kinase 10Homo sapiens (human)
cellular senescenceMitogen-activated protein kinase 10Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (12)

Processvia Protein(s)Taxonomy
protein serine/threonine kinase activityMitogen-activated protein kinase 8Homo sapiens (human)
JUN kinase activityMitogen-activated protein kinase 8Homo sapiens (human)
protein bindingMitogen-activated protein kinase 8Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 8Homo sapiens (human)
enzyme bindingMitogen-activated protein kinase 8Homo sapiens (human)
protein phosphatase bindingMitogen-activated protein kinase 8Homo sapiens (human)
histone deacetylase regulator activityMitogen-activated protein kinase 8Homo sapiens (human)
histone deacetylase bindingMitogen-activated protein kinase 8Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 8Homo sapiens (human)
protein serine/threonine kinase bindingMitogen-activated protein kinase 8Homo sapiens (human)
protein serine/threonine kinase activityMitogen-activated protein kinase 9Homo sapiens (human)
JUN kinase activityMitogen-activated protein kinase 9Homo sapiens (human)
protein serine/threonine/tyrosine kinase activityMitogen-activated protein kinase 9Homo sapiens (human)
protein bindingMitogen-activated protein kinase 9Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 9Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 9Homo sapiens (human)
JUN kinase activityMitogen-activated protein kinase 10Homo sapiens (human)
MAP kinase kinase activityMitogen-activated protein kinase 10Homo sapiens (human)
protein bindingMitogen-activated protein kinase 10Homo sapiens (human)
ATP bindingMitogen-activated protein kinase 10Homo sapiens (human)
protein serine kinase activityMitogen-activated protein kinase 10Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (11)

Processvia Protein(s)Taxonomy
cytoplasmMitogen-activated protein kinase 8Homo sapiens (human)
nucleusMitogen-activated protein kinase 8Homo sapiens (human)
nucleoplasmMitogen-activated protein kinase 8Homo sapiens (human)
cytosolMitogen-activated protein kinase 8Homo sapiens (human)
axonMitogen-activated protein kinase 8Homo sapiens (human)
synapseMitogen-activated protein kinase 8Homo sapiens (human)
basal dendriteMitogen-activated protein kinase 8Homo sapiens (human)
nucleusMitogen-activated protein kinase 8Homo sapiens (human)
nucleoplasmMitogen-activated protein kinase 9Homo sapiens (human)
mitochondrionMitogen-activated protein kinase 9Homo sapiens (human)
cytosolMitogen-activated protein kinase 9Homo sapiens (human)
plasma membraneMitogen-activated protein kinase 9Homo sapiens (human)
nuclear speckMitogen-activated protein kinase 9Homo sapiens (human)
Schaffer collateral - CA1 synapseMitogen-activated protein kinase 9Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 9Homo sapiens (human)
nucleusMitogen-activated protein kinase 9Homo sapiens (human)
nucleoplasmMitogen-activated protein kinase 10Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 10Homo sapiens (human)
mitochondrionMitogen-activated protein kinase 10Homo sapiens (human)
cytosolMitogen-activated protein kinase 10Homo sapiens (human)
plasma membraneMitogen-activated protein kinase 10Homo sapiens (human)
nucleusMitogen-activated protein kinase 10Homo sapiens (human)
cytoplasmMitogen-activated protein kinase 10Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (11)

Assay IDTitleYearJournalArticle
AID1508630Primary qHTS for small molecule stabilizers of the endoplasmic reticulum resident proteome: Secreted ER Calcium Modulated Protein (SERCaMP) assay2021Cell reports, 04-27, Volume: 35, Issue:4
A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
AID1347154Primary screen GU AMC qHTS for Zika virus inhibitors2020Proceedings of the National Academy of Sciences of the United States of America, 12-08, Volume: 117, Issue:49
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
AID1346341Mouse kappa receptor (Opioid receptors)1993Proceedings of the National Academy of Sciences of the United States of America, Jul-15, Volume: 90, Issue:14
Cloning and functional comparison of kappa and delta opioid receptors from mouse brain.
AID1346329Human kappa receptor (Opioid receptors)1995Proceedings of the National Academy of Sciences of the United States of America, Jul-18, Volume: 92, Issue:15
kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system.
AID1346364Human mu receptor (Opioid receptors)1998NIDA research monograph, Mar, Volume: 178Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications.
AID1346329Human kappa receptor (Opioid receptors)1998NIDA research monograph, Mar, Volume: 178Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications.
AID1346411Rat kappa receptor (Opioid receptors)1993Proceedings of the National Academy of Sciences of the United States of America, Nov-01, Volume: 90, Issue:21
Cloning and pharmacological characterization of a rat kappa opioid receptor.
AID1346361Human delta receptor (Opioid receptors)1998NIDA research monograph, Mar, Volume: 178Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications.
AID381437Increase of JNK phosphorylation in U50488 treated HEK293 cells expressing GFP tagged kappa opioid receptor relative to U50,4882007The Journal of biological chemistry, Oct-12, Volume: 282, Issue:41
Long-acting kappa opioid antagonists disrupt receptor signaling and produce noncompetitive effects by activating c-Jun N-terminal kinase.
AID761674Displacement of [131I]-[D-Ala2,4'-I-Phe8]alpha-Neoendorphin from opioid receptor in CD-1 mouse brain after 90 mins by competitive binding assay2013Bioorganic & medicinal chemistry letters, Aug-01, Volume: 23, Issue:15
Sandmeyer reaction repurposed for the site-selective, non-oxidizing radioiodination of fully-deprotected peptides: studies on the endogenous opioid peptide α-neoendorphin.
AID381427Increase of JNK phosphorylation in U50488 treated HEK293 cells expressing GFP tagged kappa opioid receptor2007The Journal of biological chemistry, Oct-12, Volume: 282, Issue:41
Long-acting kappa opioid antagonists disrupt receptor signaling and produce noncompetitive effects by activating c-Jun N-terminal kinase.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (190)

TimeframeStudies, This Drug (%)All Drugs %
pre-199059 (31.05)18.7374
1990's72 (37.89)18.2507
2000's40 (21.05)29.6817
2010's16 (8.42)24.3611
2020's3 (1.58)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 9.09

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index9.09 (24.57)
Research Supply Index5.25 (2.92)
Research Growth Index4.34 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (9.09)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Trials2 (1.06%)5.53%
Reviews0 (0.00%)6.00%
Reviews2 (1.06%)6.00%
Case Studies0 (0.00%)4.05%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
Other184 (97.87%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]