Page last updated: 2024-12-06

metsulfuron methyl

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

Metsulfuron methyl is a sulfonylurea herbicide used to control a wide range of broadleaf weeds in various crops. It is synthesized through a multi-step process involving the coupling of a sulfonyl chloride with a substituted aniline. Metsulfuron methyl acts as an inhibitor of acetolactate synthase (ALS), an enzyme essential for the biosynthesis of branched-chain amino acids in plants. This inhibition leads to the disruption of plant growth and development, eventually resulting in weed control. The compound is highly effective in controlling a wide range of weeds, including annual and perennial species. It is absorbed by plant roots and leaves and translocated throughout the plant, making it effective against both emerged and pre-emerged weeds. The compound is also known for its long-lasting residual activity, providing control of weeds for several weeks after application. The selective action of metsulfuron methyl allows it to be used in a variety of crops, including wheat, barley, rice, and cotton. Its efficacy and selectivity have made it a valuable tool for weed management in agriculture. Research on metsulfuron methyl focuses on optimizing its application techniques, understanding its environmental fate, and developing alternative formulations to enhance its performance. Studies are also conducted to assess its potential impacts on non-target organisms and to explore ways to mitigate any potential risks.'

tribenuron methyl : The methyl ester of tribenuron. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

metsulfuron methyl : A N-sulfonylurea in which the sulfonyl group is attached to a 2-(methoxycarbonyl)phenyl group while a (4-methoxy-6-methyl-1,3,5-triazin-2-yl group replaces one of the amino hydrogens of the remaining urea group. [Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Cross-References

ID SourceID
PubMed CID153909
CHEMBL ID1229780
CHEBI ID9678
SCHEMBL ID54532
MeSH IDM0143678
PubMed CID52999
CHEMBL ID1229749
CHEBI ID39678
SCHEMBL ID21583
MeSH IDM0143678

Synonyms (140)

Synonym
HMS1786D20
benzoic acid, 2-(((((4-methoxy-6-methyl-1,3,5-triazin-2- yl)methylamino)carbonyl)amino)sulfonyl)-, methyl ester
chebi:9678 ,
CHEMBL1229780 ,
camer (pesticide)
express (pesticide)
l 5300
benzoic acid, 2-(((((4-methoxy-6-methyl-1,3,5-triazin-2-yl)methylamino)carbonyl)amino)sulfonyl)-, methyl ester
express 75 df
dpx-l 5300
methyl 2-((((n-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)methylamino)carbonyl)amino)sulfonyl)benzoate
hcha 92 he
cameo
tribenuron-methyl [iso]
cameo (pesticide)
epa pesticide chemical code 128887
hsdb 6851
methyl 2-[4-methoxy-6-methyl-1,3,5-trazin-2-yl(methyl)carbamoylsulfamoyl]benzoate
1tb ,
tribenuron methyl
tribenuron-methyl
101200-48-0
DB03656
tribenuron methyl ester
sulfmethmeton-methyl
NCGC00163779-01
express
methyl 2-[({[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)(methyl)amino]carbonyl}amino)sulfonyl]benzoate
NCGC00163779-02
methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-methylcarbamoyl]sulfamoyl]benzoate
AKOS002529017
2-[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-methylamino]-oxomethyl]sulfamoyl]benzoic acid methyl ester
A800350
methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-methyl-carbamoyl]sulfamoyl]benzoate
ec 401-190-1
methyl 2-(n-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-n-methylcarbamoylsulfamoyl)benzoate
d0493a985p ,
unii-d0493a985p
dtxsid8024101 ,
tox21_202549
dtxcid004101
NCGC00260098-01
cas-101200-48-0
benzoic acid, 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)methylamino]carbonyl]amino]sulfonyl]-, methyl ester
FT-0631010
methyl 2-{[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)(methyl)carbamoyl]sulfamoyl}benzoate
tribenuron-methyl [hsdb]
quantum
hcha 92he
agrostar
pointer
helm-tribi 75wg
bdbm50424586
SCHEMBL54532
2-[[-n-[4-methoxy-6-methyl-1,3,5-triazin-2-yl]n-methylaminocarbonyl]aminosulfonyl]benzoic acid, methyl ester
J-000336
tribenuron-methyl, pestanal(r), analytical standard
tribenuron methylester
mfcd03955329
Q2394026
AS-12372
H10007
HY-111912
CS-0093920
AC-18012
CHEMBL1229749
chebi:39678 ,
hcha 92ha
epa pesticide chemical code 122010
granstar
brn 0587472
2-(((((4-methoxy-6-methyl-1,3,5-triazin-2yl)amino)carbonyl)amino)sulfonyl)benzoic acid methyl ester
n-((2-methylcarbonyl)phenyl)sulfonyl-n'-(6-methoxy-4-methyl-2-triazinyl)urea
n-((4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl)-2-methoxycarbonylbenzenesulfonamide
methyl 2-(3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)ureidosulphonyl)benzoate
metsulfuron methyl ester [ansi]
escort
gropper
dpx 6376
methyl 2-(3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)ureidosulfonyl)benzoate
brush-off
dpx-t 6376
dpd 63760h
caswell no. 419h
benzoic acid, 2-(((((4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino)carbonyl)amino)sulfonyl)-, methyl ester
ally 20df
hsdb 6849
methyl 2-(((((4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino)carbonyl)amino)sulfonyl)benzoate
allie
escort (pesticide)
1mm ,
methyl 2-[({[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl}amino)sulfonyl]benzoate
CBDIVE_002527
OPREA1_737469
metsulfuron methyl
metsulfuron-methyl
74223-64-6
methyl 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl]benzoate
methyl-2[[[[(4-methoxy-6-methyl-1.3.5triazin-2-yl)-amino]carbonyl]amino]sulfonyl]benzoate
metsulphuron methyl
ally
NCGC00168323-01
methyl 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl]benzoate;metsulfuron methyl
A838067
AKOS003625225
NCGC00168323-02
metsulfuron-methyl [iso:bsi]
5-26-09-00406 (beilstein handbook reference)
metsulfuron methyl ester
unii-2589et7417
2589et7417 ,
NCGC00258410-01
dtxsid6023864 ,
dtxcid303864
tox21_200856
cas-74223-64-6
FT-0630833
SCHEMBL21583
2-(((((4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino)carbonyl)amino)sulfonyl)benzoic acid methyl ester
dpx-t6376
metsulfuron-methyl [mi]
metsulfuron-methyl [hsdb]
metsulfuron-methyl [iso]
n-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]-2- methoxycarbonylbenzenesulfonamide
n-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]-2-methoxycarbonylbenzenesulfonamide
2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]benzoic acid, methyl ester
methyl 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonylbenzoate
methyl 2-{[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoyl]sulfamoyl}benzoate
STL454095
2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]amino]sulfonyl]benzoic acid methyl ester
metsulfuron-methyl, pestanal(r), analytical standard
metsulfuron-methyl, analytical standard
methyl 2-(n-(4-methoxy-6-methyl-1,3,5-triazin-2-ylcarbamoyl)sulfamoyl)benzoate
ae f075736
Q4803950
mfcd00128061
AS-12802
metsulfuronmethyl
CS-0013936
HY-B1869

Research Excerpts

Toxicity

ExcerptReferenceRelevance
"The safe use of grasspea (Lathyrus sativus) and allied species (L."( The nutritive value of grasspea (Lathyrus sativus) and allied species, their toxicity to animals and the role of malnutrition in neurolathyrism.
Enneking, D, 2011
)
0.37
" However, with some remediation processes, the breakdown products are more toxic than the original contaminant."( Use of duckweed (Lemna disperma) to assess the phytotoxicity of the products of Fenton oxidation of metsulfuron methyl.
Abdul, JM; Colville, A; Kandasamy, J; Lim, R; Vigneswaran, S, 2012
)
0.6

Compound-Compound Interactions

ExcerptReferenceRelevance
"This paper presents the results of laboratory tests on a selection of weeds (Viola arvensis, Polygonum persicaria, Chamomilla recutita, Chenopodium album, Veronica persicaria, Alopecurus myosusroides) to investigate the efficiency of flupyrsulfuron-methyl plus metsutfuronmethyl (Lexus XPE) in combination with different adjuvants."( The efficiency of adjuvants combined with flupyrsulfuron-methyl plus metsulfuron-methyl (Lexus XPE) on weed control.
Haesaert, G; Heremans, B; Isebaert, S; Verhoeven, R, 2007
)
0.34

Dosage Studied

ExcerptRelevanceReference
" The method has been applied to a field dissipation study in which metsulfuron-methyl was applied to spring barley at three dosage rates: 4, 8, and 16 g of active ingredient ha(-)(1)."( Analysis of metsulfuron-methyl in soil by liquid chromatography/tandem mass spectrometry. Application to a field dissipation study.
Andersen, SM; Bossi, R; Jacobsen, CS; Seiden, P; Streibig, JC, 1999
)
0.3
" Here, we present an improved statistical model to describe hormetic dose-response curves and test for the presence of hormesis."( Improved empirical models describing hormesis.
Cedergreen, N; Ritz, C; Streibig, JC, 2005
)
0.33
" For mixtures with malathion on algae, dose-response surfaces were made and the results tested against the model of concentration addition (CA) and independent action (IA)."( Organophosphorous insecticides as herbicide synergists on the green algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor.
Abbaspoor, M; Cedergreen, N; Munkegaard, M, 2008
)
0.35
" Cross resistance of HB08 and HB16 to AHAS herbicides of SU, imidazolinone (IMI), triazolopyrimidine (TP) and pyrimidinyl-thiobenozoate (PTB) families was investigated by dose-response experiments."( Different cross-resistance patterns to AHAS herbicides of two tribenuron-methyl resistant flixweed (Descurainiasophia L.) biotypes in China.
Cao, Y; Deng, W; Liu, MJ; Mei, Y; Yang, Q; Zheng, MQ, 2014
)
0.4
" These results will contribute to establishing the scientific basis of the dosage of florasulam and tribenuron-methyl for use in wheat field ecosystems."( Dissipation kinetics and residues of florasulam and tribenuron-methyl in wheat ecosystem.
Dong, B; Hu, J; Qian, W, 2015
)
0.42
"2% in Zhangzagu 10 with a herbicide dosage of 45 g ai ha(-1) and by 45."( Grain Yield and Quality of Foxtail Millet (Setaria italica L.) in Response to Tribenuron-Methyl.
Dong, S; Gao, Z; Guo, M; Guo, P; Ning, N; Wen, Y; Yuan, X, 2015
)
0.42
" Dose-response for six near-isolines carrying different combinations of Ahasl1-1 and Ahasl1-4 alleles and two herbicides (imazapyr and metsulfuron-methyl) were evaluated at whole-plant and enzymatic levels."( Effect of Ahasl1-1 and Ahasl1-4 alleles on herbicide resistance and its associated dominance in sunflower.
Altieri, E; Breccia, G; Bulos, M; Gianotto, L; Nestares, G, 2019
)
0.51
"Ten putative resistant and two susceptible Rapistrum rugosum populations originating from Greece were studied for resistance to acetolactate synthase (ALS)-inhibiting herbicides, using dose-response assays, sequencing of als gene and in vitro ALS activity assays."( Resistance of Rapistrum rugosum to tribenuron and imazamox due to Trp574 or Pro197 substitution in the acetolactate synthase.
Eleftherohorinos, I; Madesis, P; Ntoanidou, S, 2019
)
0.51
" The resistance level and pattern of the population were determined through a greenhouse dose-response experiment by applying the above-mentioned herbicides."( PCR-based identification of point mutation mediating acetolactate synthase-inhibiting herbicide resistance in weed wild mustard (Sinapis arvensis).
Fayaz, F; Kahrizi, D; Khaledi, R; Talebi, R, 2019
)
0.51
" Dose-response trials, also with malathion (a cytochrome P450 inhibitor), cross-resistance patterns for ALS inhibitors and auxin mimics, alternative herbicides tests, 2,4-D and tribenuron-methyl absorption, translocation and metabolism experiments, together with ALS activity, gene sequencing and enzyme modelling and ligand docking were carried out."( Tribenuron-methyl metabolism and the rare Pro197Phe double mutation together with 2,4-D metabolism and reduced absorption can evolve in Papaver rhoeas with multiple and cross herbicide resistance to ALS inhibitors and auxin mimics.
De Prado, R; Gherekhloo, J; Lozano-Juste, J; Osuna, MD; Palma-Bautista, C; Portugal, J; Torra, J; Vázquez-García, JG, 2022
)
0.72
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Roles (3)

RoleDescription
herbicideA substance used to destroy plant pests.
herbicideA substance used to destroy plant pests.
environmental contaminantAny minor or unwanted substance introduced into the environment that can have undesired effects.
xenobioticA xenobiotic (Greek, xenos "foreign"; bios "life") is a compound that is foreign to a living organism. Principal xenobiotics include: drugs, carcinogens and various compounds that have been introduced into the environment by artificial means.
[role information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Drug Classes (5)

ClassDescription
methoxy-1,3,5-triazineAny member of the class of 1,3,5-triazines substituted by at least one methoxy group.
N-sulfonylureaA urea in which one of the hydrogens attached to a nitrogen of the urea group is replaced by a sulfonyl group. The N-sulfonylurea moiety is a key group in various herbicides, as well as in a number of antidiabetic drugs used in the management of type 2 diabetis mellitus.
methyl esterAny carboxylic ester resulting from the formal condensation of a carboxy group with methanol.
1,3,5-triazinesAny compound with a 1,3,5-triazine skeleton, in which nitrogen atoms replace carbon at positions 1, 3 and 5 of the core benzene ring structure.
benzoate esterEsters of benzoic acid or substituted benzoic acids.
N-sulfonylureaA urea in which one of the hydrogens attached to a nitrogen of the urea group is replaced by a sulfonyl group. The N-sulfonylurea moiety is a key group in various herbicides, as well as in a number of antidiabetic drugs used in the management of type 2 diabetis mellitus.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (12)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
GLI family zinc finger 3Homo sapiens (human)Potency14.83440.000714.592883.7951AID1259369
glucocorticoid receptor [Homo sapiens]Homo sapiens (human)Potency0.00350.000214.376460.0339AID588532
estrogen-related nuclear receptor alphaHomo sapiens (human)Potency17.00650.001530.607315,848.9004AID1224841; AID1259401
Cellular tumor antigen p53Homo sapiens (human)Potency29.59860.002319.595674.0614AID651631
AR proteinHomo sapiens (human)Potency0.00710.000221.22318,912.5098AID588516
retinoic acid nuclear receptor alpha variant 1Homo sapiens (human)Potency27.11180.003041.611522,387.1992AID1159552; AID1159555
pregnane X nuclear receptorHomo sapiens (human)Potency10.00000.005428.02631,258.9301AID720659
estrogen nuclear receptor alphaHomo sapiens (human)Potency0.48650.000229.305416,493.5996AID743075
vitamin D (1,25- dihydroxyvitamin D3) receptorHomo sapiens (human)Potency0.03440.023723.228263.5986AID743223
thyroid hormone receptor beta isoform aHomo sapiens (human)Potency39.81070.010039.53711,122.0200AID588547
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Inhibition Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Acetolactate synthase catalytic subunit, mitochondrialSaccharomyces cerevisiae S288CKi0.40000.00330.12840.4000AID721536
Acetolactate synthase, chloroplasticArabidopsis thaliana (thale cress)Ki0.25300.00800.72643.0000AID1090271
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (124)

Processvia Protein(s)Taxonomy
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (34)

Processvia Protein(s)Taxonomy
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (19)

Processvia Protein(s)Taxonomy
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (14)

Assay IDTitleYearJournalArticle
AID1080500Herbicidal activity against Amaranthus tricolor assessed as plant dead at 25 to 32 degC measured after 7 days2009Journal of agricultural and food chemistry, Jan-28, Volume: 57, Issue:2
Synthesis and herbicidal activity of 12-(aryloxyacyloxyimino)-1,15-pentadecanlactone derivatives.
AID721538Antifungal activity against Candida albicans after 72 hrs by broth microdilution method2013Journal of medicinal chemistry, Jan-10, Volume: 56, Issue:1
Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase.
AID1111993Herbicidal activity against ALS-inhibiting herbicide-resistant two to four-leaf stage Bifora radians infested wheat field at ED50 applied by spraying relative to ALS-inhibiting herbicide-sensitive Bifora radians2012Pest management science, Jan, Volume: 68, Issue:1
Tolerance of two Bifora radians Bieb populations to ALS inhibitors in winter wheat.
AID1111992Herbicidal activity against ALS-inhibiting herbicide-resistant four to six-leaf stage Bifora radians infested wheat field at ED50 applied by spraying relative to ALS-inhibiting herbicide-sensitive Bifora radians2012Pest management science, Jan, Volume: 68, Issue:1
Tolerance of two Bifora radians Bieb populations to ALS inhibitors in winter wheat.
AID1111991Herbicidal activity against ALS-inhibiting herbicide-resistant two to four-leaf stage Bifora radians infested wheat field at ED90 applied by spraying relative to ALS-inhibiting herbicide-sensitive Bifora radians2012Pest management science, Jan, Volume: 68, Issue:1
Tolerance of two Bifora radians Bieb populations to ALS inhibitors in winter wheat.
AID1111990Herbicidal activity against ALS-inhibiting herbicide-resistant six to eight-leaf stage Bifora radians infested wheat field at ED50 applied by spraying relative to ALS-inhibiting herbicide-sensitive Bifora radians2012Pest management science, Jan, Volume: 68, Issue:1
Tolerance of two Bifora radians Bieb populations to ALS inhibitors in winter wheat.
AID1090271Inhibition of Arabidopsis thaliana AHAS expressed in Escherichia coli strain BL21 (DE3) by colorimetric assay2006Proceedings of the National Academy of Sciences of the United States of America, Jan-17, Volume: 103, Issue:3
Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase.
AID1111988Herbicidal activity against ALS-inhibiting herbicide-resistant six to eight-leaf stage Bifora radians infested wheat field at ED90 applied by spraying relative to ALS-inhibiting herbicide-sensitive Bifora radians2012Pest management science, Jan, Volume: 68, Issue:1
Tolerance of two Bifora radians Bieb populations to ALS inhibitors in winter wheat.
AID721535Inhibition of Candida albicans acetohydroxyacid synthase catalytic domain expressed in Escherichia coli by colorimetric method2013Journal of medicinal chemistry, Jan-10, Volume: 56, Issue:1
Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase.
AID721539Antifungal activity against Saccharomyces cerevisiae after 72 hrs by broth microdilution assay2013Journal of medicinal chemistry, Jan-10, Volume: 56, Issue:1
Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase.
AID721536Inhibition of Saccharomyces cerevisiae acetohydroxyacid synthase by colorimetric assay2013Journal of medicinal chemistry, Jan-10, Volume: 56, Issue:1
Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase.
AID1111989Herbicidal activity against ALS-inhibiting herbicide-resistant four to six-leaf stage Bifora radians infested wheat field at ED90 applied by spraying relative to ALS-inhibiting herbicide-sensitive Bifora radians2012Pest management science, Jan, Volume: 68, Issue:1
Tolerance of two Bifora radians Bieb populations to ALS inhibitors in winter wheat.
AID540299A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis2010Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21
Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis.
AID588519A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities2011Antiviral research, Sep, Volume: 91, Issue:3
High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (356)

TimeframeStudies, This Drug (%)All Drugs %
pre-1990191 (53.65)18.7374
1990's3 (0.84)18.2507
2000's65 (18.26)29.6817
2010's76 (21.35)24.3611
2020's21 (5.90)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 42.81

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be strong demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index42.81 (24.57)
Research Supply Index5.92 (2.92)
Research Growth Index5.80 (4.65)
Search Engine Demand Index118.61 (26.88)
Search Engine Supply Index3.68 (0.95)

This Compound (42.81)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Reviews3 (0.81%)6.00%
Case Studies0 (0.00%)4.05%
Case Studies2 (0.54%)4.05%
Observational0 (0.00%)0.25%
Observational0 (0.00%)0.25%
Other6 (100.00%)84.16%
Other365 (98.65%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]