Page last updated: 2024-12-06

2,2-bis(bromomethyl)-1,3-propanediol

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Description

2,2-bis(bromomethyl)-1,3-propanediol: structure given in first source [Medical Subject Headings (MeSH), National Library of Medicine, extracted Dec-2023]

Cross-References

ID SourceID
PubMed CID18692
CHEMBL ID1407005
CHEBI ID82294
SCHEMBL ID399680
MeSH IDM0167010

Synonyms (74)

Synonym
1,3-propanediol, 2,2-bis(bromomethyl)-
2,2-bis(bromomethyl)-1,3-propanediol, technical grade
2,2-bis(bromomethyl)propane-1,3-diol
pentaerythritol, dibromohydrin
nci-c55516
nsc-9001
1,2-dimethylolpropane
fr 1138
dibromopentaerythritol
wln: q1x2e2e1q
1, 2,2-bis(2-bromomethyl)-
dibromoneopentyl glycol
1, 2,2-bis(bromomethyl)-
nsc9001
pentaerythritol dibromide
pentaerythritol dibromohydrin
3296-90-0
NCGC00090690-01
2,2-bis(bromomethyl)-1,3-propanediol
nsc 9001
1,3-dibromo-2,2-dimethylolpropane
2,2-dibromomethyl-1,3-propanediol
ccris 5972
2,2-bis(2-bromomethyl)-1,3-propanediol
hsdb 4184
einecs 221-967-7
brn 1304582
1,3-propanediol, 2,2-bis(2-bromomethyl)-
2,2-bis(bromomethyl)-1,3-propanediol, 98%
NCGC00090690-02
AKOS005765877
chugkeqjslolhl-uhfffaoysa-
inchi=1/c5h10br2o2/c6-1-5(2-7,3-8)4-9/h8-9h,1-4h2
D1808
EN300-78451
NCGC00090690-03
NCGC00090690-04
C19199
ec 221-967-7
4zhg182s25 ,
unii-4zhg182s25
4-01-00-02554 (beilstein handbook reference)
cas-3296-90-0
dtxsid9020164 ,
NCGC00254196-01
dtxcid50164
NCGC00259405-01
tox21_201856
tox21_300296
beta-fructofuranosidase
FT-0609181
chebi:82294 ,
CHEMBL1407005
1,3-dibromo-2,2-dihydroxymethylpropane
pentaerythritol dibromide [hsdb]
fr 522
1,3-dibromo-2,2-bis(hydroxymethyl)propane
BR1298
dbnpg
2,2-bisbromomethylpropane-1,3-diol
2,2-bis(bromomethyl) 1,3-propane diol
2,2-bis-(bromomethyl)propane-1,3-diol
SCHEMBL399680
1,3-propanediol, 2,2-bis(bromomethyl)
dibromoneopentylglycol
J-506778
F0001-0977
mfcd00004688
CS-0204802
Q26841193
AS-12581
AMY3940
?2,2-bis(bromomethyl)propane-1,3-diol
pentaerythritol-d8dibromide

Research Excerpts

Toxicity

ExcerptReferenceRelevance
" The results have demonstrated some notable toxic effects due to long-term exposure to either or both contaminants."( Toxic effects of the joint exposure of decabromodiphenyl ether (BDE209) and tetrabromobisphenol A (TBBPA) on soil microorganism and enzyme activity.
An, S; Chen, L; Lin, K; Liu, K; Zhang, W; Zhao, L, 2014
)
0.4
" coli mutant screening approach, which indicated that BMP has a distinct mode of toxic action."( Functional genomic assessment of 2, 2-bis (bromomethyl)-1, 3-propanediol induced cytotoxicity in a single-gene knockout library of E. coli.
Guan, M; Zhang, X, 2017
)
0.46

Compound-Compound Interactions

ExcerptReferenceRelevance
"The activity, structure and morphology of mango soluble acid invertase (SAI) were investigated after high pressure processing (HPP) combined with mild temperature at 50-600MPa and 40-50°C."( Inactivation kinetics, structural, and morphological modification of mango soluble acid invertase by high pressure processing combined with mild temperatures.
Hou, Z; Li, R; Liao, X; Wang, Y; Zou, H, 2018
)
0.48
" The sepiolite application in combination with continuous flooding provided an efficient and safe remediation technology for Cd-polluted rice field."( Effects of clay combined with moisture management on Cd immobilization and fertility index of polluted rice field.
Li, J; Xu, Y, 2018
)
0.48

Bioavailability

ExcerptReferenceRelevance
" These data indicate that the extensive extraction and rapid glucuronidation by the liver limits exposure of internal tissues to BMP by greatly reducing its systemic bioavailability after oral exposure."( Absorption, distribution, metabolism, and excretion of 2,2-bis(bromomethyl)-1,3-propanediol in male fischer-344 rats.
Hoehle, SI; Knudsen, GA; Sanders, JM; Sipes, IG, 2009
)
0.6
" The results revealed that the exchangeable (EXC) and reducible (RED) fractions of Ni were higher in Ni/BX mixture than Ni alone, probably because BX reacts with Ni to form complexes that lead an increase in bioavailability of Ni."( Effects of typical flotation reagent on microbial toxicity and nickel bioavailability in soil.
Duran, R; Fan, Z; Gu, J; Jordan, G; Karapınar, N; Li, H; Lu, C; Min, N; Minkina, T; Roha, B; Yao, J, 2020
)
0.56

Dosage Studied

ExcerptRelevanceReference
" Increased dosage of these genes partially compensates for defects in nutrient utilization and sporulation in snf1 and snf4 null mutants, but does not restore invertase expression."( Relationship of the cAMP-dependent protein kinase pathway to the SNF1 protein kinase and invertase expression in Saccharomyces cerevisiae.
Carlson, M; Hubbard, EJ; Yang, XL, 1992
)
0.28
" Increased dosage of the MSN1 gene restores high-level, regulated invertase expression in snf1-ts mutants, and disruption of MSN1 in the wild type reduces invertase expression a fewfold."( Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase.
Carlson, M; Estruch, F, 1990
)
0.28
" Increased SNF1 gene dosage partially compensates for a mutation in SNF4, and the SNF4 function is required for maximal SNF1 protein kinase activity in vitro."( Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase.
Carlson, M; Celenza, JL; Eng, FJ, 1989
)
0.28
" Increased SNF1 gene dosage partially alleviated the requirement for SNF4."( Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein.
Carlson, M; Celenza, JL, 1989
)
0.28
" In male mice renal papillary necrosis occurred at 400 mg/kg after dosing by the gavage route and at 2500, 5000, and 10,000 ppm in the dosed-feed study."( Kidney and urinary bladder lesions in F344/N rats and B6C3F1 mice after 13 weeks of 2,2-bis(bromomethyl)-1,3-propanediol administration.
Brown, HR; Dunnick, JK; Elwell, MR; Montgomery, CA, 1989
)
0.5
" Both male and female F0 mice (20 pairs per treatment group, 40 pairs of control animals) were dosed 7 days prior to and during a 98-day cohabitation period."( Reproductive toxicity of 2,2-bis(bromomethyl)-1,3-propanediol in a continuous breeding protocol in Swiss (CD-1) mice.
Chapin, RE; Gulati, DK; Lamb, JC; Morris, LZ; Mounce, R; Treinen, KA, 1989
)
0.58
" Increased or decreased gene dosage of SSN20 also suppressed defects that are suppressed by ssn20 missense mutations."( SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae.
Carlson, M; Celenza, JL; Neigeborn, L, 1987
)
0.27
" Mutations at the PEP4 locus exhibit a dosage effect on the levels of some, but not all, of the enzymes whose expression requires the function of the gene."( PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae.
Jones, EW; Parker, RR; Zubenko, GS, 1982
)
0.26
" We show here that the defect in repression of SUC2 caused by mutation of SRB8, SRB9, SRB11, SIN4 or ROX3 is suppressed by increased dosage of the SFL1 gene, and the genetic behavior of the sfl1Delta mutation provides further evidence for a functional relationship."( Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1.
Carlson, M; Song, W, 1998
)
0.3
" Finally, the optimal glucose concentration for glucoamylase production in the chromosome-integrated recombinant yeast culture was lower than that in the plasmid-harboring recombinant yeast culture owing to gene dosage effect."( Production and secretion patterns of cloned glucoamylase in plasmid-harboring and chromosome-integrated recombinant yeasts employing an SUC2 promoter.
Cha, HJ; Chae, HJ; Choi, SS; Yoo, YJ, 2000
)
0.31
" Increasing the gene dosage of YPT31/32 also suppressed lethality resulting from deletion of TRS130 or TRS120 but not three other essential TRAPP subunit-encoding genes."( Genetic interactions link ARF1, YPT31/32 and TRS130.
Anido, A; Bowzard, JB; Greene, M; Kahn, RA; Stearns, K; Zhang, CJ, 2002
)
0.31
" The frequencies of the K-ras mutations were 57% (29/51) in BMP-induced lung neoplasms compared to 15% (3/20) in lung neoplasms from dosed feed control mice, and 54% (14/26) in TNM-induced lung neoplasms compared to 60% (3/5) in lung neoplasms from inhalation control mice."( Predominant K-ras codon 12 G --> A transition in chemically induced lung neoplasms in B6C3F1 mice.
Anna, CH; Devereux, TR; Dunnick, JK; Hong, HH; Kim, Y; Sills, RC; Ton, TV,
)
0.13
" The total amount of radioactivity remaining in tissues at 72 h after a single oral administration of BMP (100 mg/kg) was less than 1% of the dose, and repeated daily dosing did not lead to retention in tissues."( Absorption, distribution, metabolism, and excretion of 2,2-bis(bromomethyl)-1,3-propanediol in male fischer-344 rats.
Hoehle, SI; Knudsen, GA; Sanders, JM; Sipes, IG, 2009
)
0.6
" The gradual increase of the transgene dosage from one to four copies under the control of the constitutive glyceraldehyde 3-phosphate dehydrogenase promoter had an additive effect on BfrA yield without causing cell toxicity."( Constitutive high-level expression of a codon-optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris.
González, E; Hernández, L; Martínez, D; Mazola, Y; Menéndez, C; Pérez, ER; Trujillo, LE, 2013
)
0.39
" RNAi-mediated suppression of GhVIN1, a major VIN gene that is highly expressed in wild-type fiber initials, resulted in significant reduction of VIN activity and consequently a fiberless seed phenotype in a dosage dependent manner."( Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling.
Chen, XY; Cook, A; Patrick, JW; Ruan, YL; Wang, L, 2014
)
0.4
" The inhibition ratios of microbial populations increased with incubation time and increasing concentrations of BDE209 or TBBPA following certain dose-response relationships and time-effect trends."( Toxic effects of the joint exposure of decabromodiphenyl ether (BDE209) and tetrabromobisphenol A (TBBPA) on soil microorganism and enzyme activity.
An, S; Chen, L; Lin, K; Liu, K; Zhang, W; Zhao, L, 2014
)
0.4
" The effects of substrate concentration, temperature, pH, time, and enzyme dosage on the concentration of TF produced are studied using the design of experiments methodology."( Screening of Commercial Enzymes for Transfructosylation of Tyrosol: Effect of Process Conditions and Reaction Network.
Antošová, M; Hollá, V; Karkeszová, K; Mastihuba, V; Polakovič, M, 2019
)
0.51
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
primary alcoholA primary alcohol is a compound in which a hydroxy group, -OH, is attached to a saturated carbon atom which has either three hydrogen atoms attached to it or only one other carbon atom and two hydrogen atoms attached to it.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (10)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
RAR-related orphan receptor gammaMus musculus (house mouse)Potency2.43370.006038.004119,952.5996AID1159521
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency37.65050.011212.4002100.0000AID1030
thyroid stimulating hormone receptorHomo sapiens (human)Potency1.58490.001318.074339.8107AID926; AID938
glucocorticoid receptor [Homo sapiens]Homo sapiens (human)Potency0.03980.000214.376460.0339AID588532
retinoic acid nuclear receptor alpha variant 1Homo sapiens (human)Potency61.87730.003041.611522,387.1992AID1159555
retinoid X nuclear receptor alphaHomo sapiens (human)Potency24.70410.000817.505159.3239AID1159527; AID1159531
farnesoid X nuclear receptorHomo sapiens (human)Potency70.79460.375827.485161.6524AID588527
peroxisome proliferator-activated receptor deltaHomo sapiens (human)Potency0.78600.001024.504861.6448AID743215
cytochrome P450, family 19, subfamily A, polypeptide 1, isoform CRA_aHomo sapiens (human)Potency68.58960.001723.839378.1014AID743083
Cellular tumor antigen p53Homo sapiens (human)Potency14.40130.002319.595674.0614AID651631; AID651743
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (124)

Processvia Protein(s)Taxonomy
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycle G2/M phase transitionCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
ER overload responseCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
mitophagyCellular tumor antigen p53Homo sapiens (human)
in utero embryonic developmentCellular tumor antigen p53Homo sapiens (human)
somitogenesisCellular tumor antigen p53Homo sapiens (human)
release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
hematopoietic progenitor cell differentiationCellular tumor antigen p53Homo sapiens (human)
T cell proliferation involved in immune responseCellular tumor antigen p53Homo sapiens (human)
B cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
T cell lineage commitmentCellular tumor antigen p53Homo sapiens (human)
response to ischemiaCellular tumor antigen p53Homo sapiens (human)
nucleotide-excision repairCellular tumor antigen p53Homo sapiens (human)
double-strand break repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
protein import into nucleusCellular tumor antigen p53Homo sapiens (human)
autophagyCellular tumor antigen p53Homo sapiens (human)
DNA damage responseCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrestCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediatorCellular tumor antigen p53Homo sapiens (human)
transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
Ras protein signal transductionCellular tumor antigen p53Homo sapiens (human)
gastrulationCellular tumor antigen p53Homo sapiens (human)
neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of neuroblast proliferationCellular tumor antigen p53Homo sapiens (human)
protein localizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA replicationCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell population proliferationCellular tumor antigen p53Homo sapiens (human)
determination of adult lifespanCellular tumor antigen p53Homo sapiens (human)
mRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
rRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
response to salt stressCellular tumor antigen p53Homo sapiens (human)
response to inorganic substanceCellular tumor antigen p53Homo sapiens (human)
response to X-rayCellular tumor antigen p53Homo sapiens (human)
response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
positive regulation of gene expressionCellular tumor antigen p53Homo sapiens (human)
cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of cardiac muscle cell apoptotic processCellular tumor antigen p53Homo sapiens (human)
glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
viral processCellular tumor antigen p53Homo sapiens (human)
glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
cerebellum developmentCellular tumor antigen p53Homo sapiens (human)
negative regulation of cell growthCellular tumor antigen p53Homo sapiens (human)
DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
negative regulation of transforming growth factor beta receptor signaling pathwayCellular tumor antigen p53Homo sapiens (human)
mitotic G1 DNA damage checkpoint signalingCellular tumor antigen p53Homo sapiens (human)
negative regulation of telomere maintenance via telomeraseCellular tumor antigen p53Homo sapiens (human)
T cell differentiation in thymusCellular tumor antigen p53Homo sapiens (human)
tumor necrosis factor-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
regulation of tissue remodelingCellular tumor antigen p53Homo sapiens (human)
cellular response to UVCellular tumor antigen p53Homo sapiens (human)
multicellular organism growthCellular tumor antigen p53Homo sapiens (human)
positive regulation of mitochondrial membrane permeabilityCellular tumor antigen p53Homo sapiens (human)
cellular response to glucose starvationCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of apoptotic processCellular tumor antigen p53Homo sapiens (human)
entrainment of circadian clock by photoperiodCellular tumor antigen p53Homo sapiens (human)
mitochondrial DNA repairCellular tumor antigen p53Homo sapiens (human)
regulation of DNA damage response, signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
transcription initiation-coupled chromatin remodelingCellular tumor antigen p53Homo sapiens (human)
negative regulation of proteolysisCellular tumor antigen p53Homo sapiens (human)
negative regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of DNA-templated transcriptionCellular tumor antigen p53Homo sapiens (human)
positive regulation of RNA polymerase II transcription preinitiation complex assemblyCellular tumor antigen p53Homo sapiens (human)
positive regulation of transcription by RNA polymerase IICellular tumor antigen p53Homo sapiens (human)
response to antibioticCellular tumor antigen p53Homo sapiens (human)
fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
negative regulation of fibroblast proliferationCellular tumor antigen p53Homo sapiens (human)
circadian behaviorCellular tumor antigen p53Homo sapiens (human)
bone marrow developmentCellular tumor antigen p53Homo sapiens (human)
embryonic organ developmentCellular tumor antigen p53Homo sapiens (human)
positive regulation of peptidyl-tyrosine phosphorylationCellular tumor antigen p53Homo sapiens (human)
protein stabilizationCellular tumor antigen p53Homo sapiens (human)
negative regulation of helicase activityCellular tumor antigen p53Homo sapiens (human)
protein tetramerizationCellular tumor antigen p53Homo sapiens (human)
chromosome organizationCellular tumor antigen p53Homo sapiens (human)
neuron apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of cell cycleCellular tumor antigen p53Homo sapiens (human)
hematopoietic stem cell differentiationCellular tumor antigen p53Homo sapiens (human)
negative regulation of glial cell proliferationCellular tumor antigen p53Homo sapiens (human)
type II interferon-mediated signaling pathwayCellular tumor antigen p53Homo sapiens (human)
cardiac septum morphogenesisCellular tumor antigen p53Homo sapiens (human)
positive regulation of programmed necrotic cell deathCellular tumor antigen p53Homo sapiens (human)
protein-containing complex assemblyCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stressCellular tumor antigen p53Homo sapiens (human)
thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of thymocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
necroptotic processCellular tumor antigen p53Homo sapiens (human)
cellular response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
cellular response to xenobiotic stimulusCellular tumor antigen p53Homo sapiens (human)
cellular response to ionizing radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to gamma radiationCellular tumor antigen p53Homo sapiens (human)
cellular response to UV-CCellular tumor antigen p53Homo sapiens (human)
stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
signal transduction by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
cellular response to actinomycin DCellular tumor antigen p53Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaCellular tumor antigen p53Homo sapiens (human)
cellular senescenceCellular tumor antigen p53Homo sapiens (human)
replicative senescenceCellular tumor antigen p53Homo sapiens (human)
oxidative stress-induced premature senescenceCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
oligodendrocyte apoptotic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of execution phase of apoptosisCellular tumor antigen p53Homo sapiens (human)
negative regulation of mitophagyCellular tumor antigen p53Homo sapiens (human)
regulation of mitochondrial membrane permeability involved in apoptotic processCellular tumor antigen p53Homo sapiens (human)
regulation of intrinsic apoptotic signaling pathway by p53 class mediatorCellular tumor antigen p53Homo sapiens (human)
positive regulation of miRNA transcriptionCellular tumor antigen p53Homo sapiens (human)
negative regulation of G1 to G0 transitionCellular tumor antigen p53Homo sapiens (human)
negative regulation of miRNA processingCellular tumor antigen p53Homo sapiens (human)
negative regulation of glucose catabolic process to lactate via pyruvateCellular tumor antigen p53Homo sapiens (human)
negative regulation of pentose-phosphate shuntCellular tumor antigen p53Homo sapiens (human)
intrinsic apoptotic signaling pathway in response to hypoxiaCellular tumor antigen p53Homo sapiens (human)
regulation of fibroblast apoptotic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
positive regulation of reactive oxygen species metabolic processCellular tumor antigen p53Homo sapiens (human)
negative regulation of stem cell proliferationCellular tumor antigen p53Homo sapiens (human)
positive regulation of cellular senescenceCellular tumor antigen p53Homo sapiens (human)
positive regulation of intrinsic apoptotic signaling pathwayCellular tumor antigen p53Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (34)

Processvia Protein(s)Taxonomy
transcription cis-regulatory region bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
cis-regulatory region sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
core promoter sequence-specific DNA bindingCellular tumor antigen p53Homo sapiens (human)
TFIID-class transcription factor complex bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription repressor activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription activator activity, RNA polymerase II-specificCellular tumor antigen p53Homo sapiens (human)
protease bindingCellular tumor antigen p53Homo sapiens (human)
p53 bindingCellular tumor antigen p53Homo sapiens (human)
DNA bindingCellular tumor antigen p53Homo sapiens (human)
chromatin bindingCellular tumor antigen p53Homo sapiens (human)
DNA-binding transcription factor activityCellular tumor antigen p53Homo sapiens (human)
mRNA 3'-UTR bindingCellular tumor antigen p53Homo sapiens (human)
copper ion bindingCellular tumor antigen p53Homo sapiens (human)
protein bindingCellular tumor antigen p53Homo sapiens (human)
zinc ion bindingCellular tumor antigen p53Homo sapiens (human)
enzyme bindingCellular tumor antigen p53Homo sapiens (human)
receptor tyrosine kinase bindingCellular tumor antigen p53Homo sapiens (human)
ubiquitin protein ligase bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase regulator activityCellular tumor antigen p53Homo sapiens (human)
ATP-dependent DNA/DNA annealing activityCellular tumor antigen p53Homo sapiens (human)
identical protein bindingCellular tumor antigen p53Homo sapiens (human)
histone deacetylase bindingCellular tumor antigen p53Homo sapiens (human)
protein heterodimerization activityCellular tumor antigen p53Homo sapiens (human)
protein-folding chaperone bindingCellular tumor antigen p53Homo sapiens (human)
protein phosphatase 2A bindingCellular tumor antigen p53Homo sapiens (human)
RNA polymerase II-specific DNA-binding transcription factor bindingCellular tumor antigen p53Homo sapiens (human)
14-3-3 protein bindingCellular tumor antigen p53Homo sapiens (human)
MDM2/MDM4 family protein bindingCellular tumor antigen p53Homo sapiens (human)
disordered domain specific bindingCellular tumor antigen p53Homo sapiens (human)
general transcription initiation factor bindingCellular tumor antigen p53Homo sapiens (human)
molecular function activator activityCellular tumor antigen p53Homo sapiens (human)
promoter-specific chromatin bindingCellular tumor antigen p53Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (19)

Processvia Protein(s)Taxonomy
nuclear bodyCellular tumor antigen p53Homo sapiens (human)
nucleusCellular tumor antigen p53Homo sapiens (human)
nucleoplasmCellular tumor antigen p53Homo sapiens (human)
replication forkCellular tumor antigen p53Homo sapiens (human)
nucleolusCellular tumor antigen p53Homo sapiens (human)
cytoplasmCellular tumor antigen p53Homo sapiens (human)
mitochondrionCellular tumor antigen p53Homo sapiens (human)
mitochondrial matrixCellular tumor antigen p53Homo sapiens (human)
endoplasmic reticulumCellular tumor antigen p53Homo sapiens (human)
centrosomeCellular tumor antigen p53Homo sapiens (human)
cytosolCellular tumor antigen p53Homo sapiens (human)
nuclear matrixCellular tumor antigen p53Homo sapiens (human)
PML bodyCellular tumor antigen p53Homo sapiens (human)
transcription repressor complexCellular tumor antigen p53Homo sapiens (human)
site of double-strand breakCellular tumor antigen p53Homo sapiens (human)
germ cell nucleusCellular tumor antigen p53Homo sapiens (human)
chromatinCellular tumor antigen p53Homo sapiens (human)
transcription regulator complexCellular tumor antigen p53Homo sapiens (human)
protein-containing complexCellular tumor antigen p53Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Research

Studies (2,070)

TimeframeStudies, This Drug (%)All Drugs %
pre-1990335 (16.18)18.7374
1990's470 (22.71)18.2507
2000's549 (26.52)29.6817
2010's562 (27.15)24.3611
2020's154 (7.44)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 20.32

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be moderate demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index20.32 (24.57)
Research Supply Index7.68 (2.92)
Research Growth Index4.67 (4.65)
Search Engine Demand Index26.67 (26.88)
Search Engine Supply Index2.00 (0.95)

This Compound (20.32)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials2 (0.09%)5.53%
Reviews53 (2.46%)6.00%
Case Studies2 (0.09%)4.05%
Observational1 (0.05%)0.25%
Other2,098 (97.31%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]