rimorphin and Body-Weight

rimorphin has been researched along with Body-Weight* in 3 studies

Other Studies

3 other study(ies) available for rimorphin and Body-Weight

ArticleYear
The impact of postnatal environment on opioid peptides in young and adult male Wistar rats.
    Neuropeptides, 2008, Volume: 42, Issue:2

    Early environmental influences can change the neuronal development and thereby affect behavior in adult life. The aim in the present study was to thoroughly examine the impact of early environmental factors on endogenous opioids by using a rodent maternal separation (MS) model. The endogenous opioid peptide system is not fully developed at birth, and short- and/or long-term alterations may occur in these neural networks in animals exposed to manipulation of the postnatal environment. Rat pups were subjected to one of five rearing conditions; 15 min (MS15) litter (l) or individual (i), 360 min (MS360) l or i daily MS, or housed under normal animal facility rearing (AFR) conditions during postnatal days 1-21. Measurements of immunoreactive (ir) Met-enkephalin-Arg6Phe7 (MEAP) and dynorphin B (DYNB) peptide levels in the pituitary gland and in a number of brain areas, were performed at three and 10 weeks of age, respectively. MS-induced changes were more pronounced in ir MEAP levels, especially in individually separated rats at three weeks of age and in litter-separated rats at 10 weeks of age. The enkephalin and dynorphin systems have different developmental patterns, dynorphin appearing earlier, which may point at a more sensitive enkephalin system during the early postnatal weeks. The results provide evidence that opioid peptides are sensitive for early environmental factors and show that the separation conditions are critical and also result in changes manifesting at different time points. MS-induced effects were observed in areas related to stress, drug reward and dependence mechanisms. By describing effects on opioid peptides, the study addresses the possible role of a deranged endogenous opioid system in the previously described behavioral consequences of MS.

    Topics: Age Factors; Animals; Animals, Newborn; Body Weight; Dynorphins; Endorphins; Enkephalin, Methionine; Environment; Female; Male; Maternal Behavior; Maternal Deprivation; Opioid Peptides; Pituitary Gland; Pregnancy; Rats; Rats, Wistar; Social Isolation; Stress, Psychological

2008
Ethanol-induced effects on opioid peptides in adult male Wistar rats are dependent on early environmental factors.
    Neuroscience, 2007, May-25, Volume: 146, Issue:3

    The vulnerability to develop alcoholism is dependent on both genetic and environmental factors. The neurobiological mechanisms underlying these factors are not fully understood but individual divergence in the endogenous opioid peptide system may contribute. We have previously reported that early-life experiences can affect endogenous opioids and also adult voluntary ethanol intake. In the present study, this line of research was continued and the effects of long-term voluntary ethanol drinking on the opioid system are described in animals reared in different environmental settings. Rat pups were subjected to 15 min (MS15) or 360 min (MS360) of daily maternal separation during postnatal days 1-21. At 10 weeks of age, male rats were exposed to voluntary ethanol drinking in a four-bottle paradigm with 5%, 10% and 20% ethanol solution in addition to water for 2 months. Age-matched controls received water during the same period. Immunoreactive (ir) Met-enkephalin-Arg6Phe7 (MEAP) and dynorphin B (DYNB) peptide levels were thereafter measured in the pituitary gland and several brain areas. In water-drinking animals, lower ir MEAP levels were observed in the MS360 rats in the hypothalamus, medial prefrontal cortex, striatum and the periaqueductal gray, whereas no differences were seen in ir DYNB levels. Long-term ethanol drinking induced lower ir MEAP levels in MS15 rats in the medial prefrontal cortex and the periaqueductal gray, whereas higher levels were detected in MS360 rats in the hypothalamus, striatum and the substantia nigra. Chronic voluntary drinking affected ir DYNB levels in the pituitary gland, hypothalamus and the substantia nigra, with minor differences between MS15 and MS360. In conclusion, manipulation of the early environment caused changes in the opioid system and a subsequent altered response to ethanol. The altered sensitivity of the opioid peptides to ethanol may contribute to the previously reported differences in ethanol intake between MS15 and MS360 rats.

    Topics: Alcohol Drinking; Animals; Animals, Newborn; Body Weight; Central Nervous System Depressants; Dose-Response Relationship, Drug; Dynorphins; Endorphins; Enkephalin, Methionine; Environment; Ethanol; Female; Male; Maternal Deprivation; Opioid Peptides; Pregnancy; Radioimmunoassay; Rats; Rats, Wistar; Risk; Stress, Psychological

2007
Long-term effects of short and long periods of maternal separation on brain opioid peptide levels in male Wistar rats.
    Neuropeptides, 2003, Volume: 37, Issue:3

    Environmental manipulations early in life may induce persistent alterations in adult behaviour and physiology. The underlying neural mechanisms of these responses are not yet clear. We have previously reported long-term changes in brain opioid peptide levels in male and female Sprague-Dawley rats after short periods (15 min, known as neonatal handling) of maternal separation (MS) until weaning. To study this further, we investigated behavioural and neurochemical effects of repeated MS in male Wistar rats. The rat pups were separated from their dams in litters for either 360 min (MS360) or 15 min (MS15) daily from postnatal day 1 to 21 or exposed to normal animal facility rearing. Behavioural analysis showed that MS360 rats had increased ultrasonic calls on postnatal day 5 compared to MS15 rats, but not on postnatal day 6. Moreover, the MS360 rats had more animals with higher frequency of calls at day 5 than 6 than the MS15 rats. Analysis of the opioid peptides dynorphin B and Met-enkephalin-Arg(6)Phe(7) with radioimmunoassay 7 weeks after the MS procedure, revealed long-term neurochemical changes in several brain areas and in the pituitary gland. Immunoreactive dynorphin B and Met-enkephalin-Arg(6)Phe(7) levels were affected in the hypothalamus and dynorphin B levels in the neurointermediate pituitary lobe, amygdala, substantia nigra and the periaqueductal gray. Together, these findings show that repeated periods of MS early in life in male Wistar rats affect the development of the ultrasonic call response and induce long-lasting and possibly permanent alterations in the opioid peptide systems.

    Topics: Animals; Animals, Newborn; Behavior, Animal; Body Weight; Brain; Corticosterone; Dynorphins; Endorphins; Enkephalin, Methionine; Enkephalins; Female; Male; Maternal Deprivation; Opioid Peptides; Pituitary Gland; Protein Precursors; Radioimmunoassay; Rats; Rats, Wistar; Time Factors; Ultrasonics

2003