rimorphin has been researched along with Parkinson-Disease* in 2 studies
2 other study(ies) available for rimorphin and Parkinson-Disease
Article | Year |
---|---|
Region-specific bioconversion of dynorphin neuropeptide detected by in situ histochemistry and MALDI imaging mass spectrometry.
Brain region-specific expression of proteolytic enzymes can control the biological activity of endogenous neuropeptides and has recently been targeted for the development of novel drugs, for neuropathic pain, cancer, and Parkinson's disease. Rapid and sensitive analytical methods to profile modulators of enzymatic activity are important for finding effective inhibitors with high therapeutic value. Combination of in situ enzyme histochemistry with MALDI imaging mass spectrometry allowed developing a highly sensitive method for analysis of brain-area specific neuropeptide conversion of synthetic and endogenous neuropeptides, and for selection of peptidase inhibitors that differentially target conversion enzymes at specific anatomical sites. Conversion and degradation products of Dynorphin B as model neuropeptide and effects of peptidase inhibitors applied to native brain tissue sections were analyzed at different brain locations. Synthetic dynorphin B (2pmol) was found to be converted to the N-terminal fragments on brain sections whereas fewer C-terminal fragments were detected. N-ethylmaleimide (NEM), a non-selective inhibitor of cysteine peptidases, almost completely blocked the conversion of dynorphin B to dynorphin B(1-6; Leu-Enk-Arg), (1-9), (2-13), and (7-13). Proteinase inhibitor cocktail, and also incubation with acetic acid displayed similar results. Bioconversion of synthetic dynorphin B was region-specific producing dynorphin B(1-7) in the cortex and dynorphin B (2-13) in the striatum. Enzyme inhibitors showed region- and enzyme-specific inhibition of dynorphin bioconversion. Both phosphoramidon (inhibitor of the known dynorphin converting enzyme neprilysin) and opiorphin (inhibitor of neprilysin and aminopeptidase N) blocked cortical bioconversion to dynorphin B(1-7), wheras only opiorphin blocked striatal bioconversion to dynorphin B(2-13). This method may impact the development of novel therapies with aim to strengthen the effects of endogenous neuropeptides under pathological conditions such as chronic pain. Combining histochemistry and MALDI imaging MS is a powerful and sensitive tool for the study of inhibition of enzyme activity directly in native tissue sections. Topics: Animals; Brain; Cysteine Endopeptidases; Dynorphins; Endorphins; Glycopeptides; Humans; Neuropeptides; Oligopeptides; Parkinson Disease; Protease Inhibitors; Rats; Salivary Proteins and Peptides; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization | 2017 |
Primate model of Parkinson's disease: alterations in multiple opioid systems in the basal ganglia.
A motor disorder similar to idiopathic Parkinson's Disease develops in rhesus monkeys after several daily repeated doses of N-methyl-4-phenyl, 1,2,3,6-tetrahydropyridine (MPTP). The concentrations of peptides derived from proenkephalin A, proenkephalin B, substance P and somatostatin were measured by specific radioimmunoassays in the basal ganglia of MPTP-treated monkeys. In MPTP-treated monkeys, dynorphin B concentration was reduced in the caudate. In the putamen, the concentrations of peptides derived from both proenkephalin A and proenkephalin B were decreased. In the globus pallidus, the concentrations of all opioid peptides tend to be increased, reaching significance only for alpha-neo-endorphin. In the substantia nigra, only Met-enkephalin concentration was reduced, while other peptides derived from either proenkephalin A or proenkephalin B were not changed. Substance P and somatostatin were not changed in any brain area examined. Some of the symptoms associated with Parkinson's Disease may be related to altered activity of endogenous opiates in basal ganglia. Topics: Animals; Basal Ganglia; Dynorphins; Endorphins; Enkephalin, Leucine; Enkephalin, Methionine; Female; Macaca mulatta; Male; Nucleus Accumbens; Parkinson Disease; Protein Precursors; Substantia Nigra | 1984 |